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Abstract. Classes of multisorted minions closed under extensions, reflec-
tions, and direct powers are considered from a relational point of view.
As a generalization of a result of Barto, Opršal, and Pinsker, the clo-
sure of a multisorted minion is characterized in terms of constructions on
multisorted relation pairs which are invariant for minions.
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1. Introduction

In the famous “wonderland paper” by L. Barto, J. Opršal and M. Pinsker (the
first version appeared in 2015), a new algebraic notion saw the light of day:
the reflection of an algebra (applicable also to a single function) [3, Defini-
tion 4.1]. This notion was introduced for the primary purpose of investigating
the computational complexity of constraint satisfaction problems (CSPs).

From the algebraic point of view, reflections generalize at the same time
both subalgebras and homomorphic images; however, they no longer preserve
arbitrary identities but only so-called h1-identities, nowadays also known as
minor identities. Furthermore, for the operations of an algebra, instead of
clones, a weaker notion had to be considered where composition of functions
is no longer required: the so-called minions (also called minor-closed classes
or clonoids [1,5,9,11]). The well-known Galois connection Pol–Inv (for clones
and relational clones, induced by the property of preservation of a relation by a
function) does not work well for describing these minions as Galois closures. It
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turned out that the Galois theory introduced by Pippenger [9] for minor-closed
sets of functions provides the right tool for minions: instead of (invariant)
relations one has to consider pairs of relations.

Already Pippenger dealt with functions f : An → B between two sets (an
approach which was later also used for so-called promise constraint satisfaction
problems, PCSPs [2,4]). Therefore it was natural to ask if and how all these
notions work for multisorted algebras (i.e., algebras with several base sets) in
general, in order to provide a systematic algebraic treatment of everything that
pertains or might pertain to reflections. This was done in [7] where Birkhoff-
like theorems were established for multisorted algebras and minor identities,
and in [8] where the Galois connection Pol–Inv is generalized to the multisorted
case, yielding mPol–mInv with minions as Galois closed sets.

In the present paper we use results from [7] and [8] in order to treat
one of the main results of the wonderland paper, namely, the characterization
of the ERP-closure (see [3, Theorem 1.3] and also [2, Corollary 9.5]), also for
multisorted algebras. In particular, we ask how this ERP-closure can be char-
acterized from the relational point of view (i.e., by constructions on invariant
relation pairs of minions). To this end, we introduce reflections (and coreflec-
tions) also for relation pairs (see Section 3), and these new concepts turn out
to provide a suitable tool for enlightening reflections from the relational point
of view.

The paper is organized as follows. In Section 2, we review basic concepts
and well-known results related to multisorted operations and algebras, minors,
reflections, and relation pairs that will be needed in the subsequent sections.
In Section 3, we define reflections and coreflections as well as liftings and
flattenings of relation pairs and establish a few auxiliary results.

The main results are given in Section 4. At first, we define the opera-
tors E, R, P (extensions, reflections, direct powers) and for each of them we
show how they can be characterized via invariant relation pairs (Propositions
4.4, 4.6, 4.7). Combining the above, we then characterize the RP-closure in
Theorem 4.12. We would like to underline that this result is of interest on its
own right if one wants to consider only algebras of a fixed type. Finally, with
Theorem 4.13 we put forward the multisorted counterpart of the wonderland
theorem [3, Theorem 1.3] (see also [2, Corollary 9.5]); this also includes the
characterization via relational constructions (cf. Theorem 4.13(b)(ii)).

We would like to mention at this point that usual (one-sorted) algebras
as well as clones are special cases of multisorted algebras and special cases of
minions, respectively. Therefore all results of this paper can be (re)interpreted
and used for the classical case, too. It is possible to characterize clones C as
minions with special properties for its invariant relation pairs mInv C (and
Inv C can be defined from mInv C). This is, however, not in the main focus of
the current paper and therefore will not be considered and proved here.
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2. Preliminaries

Multisorted operations

We start by briefly recalling basic concepts in the theory of multisorted sets
and multisorted operations. We follow the presentation of [7,8], which is largely
based on the terminology used in the book by Wechler [12], and we refer
the reader to those publications for precise definitions, further details, and
explanations not given here.

We denote by N and N+ the set of nonnegative integers and the set of
positive integers, respectively. For n ∈ N, let [n] := {1, . . . , n}.

We write W (S) for the set of all words over a set S; this includes the
empty word ε. We denote by |w| the length of a word w ∈ W (S) and by |w|s
the number of occurrences of a letter s ∈ S in w.

Let S be a set of elements called sorts. An S-indexed family of sets is
called an S-sorted set. Let A = (As)s∈S and B = (Bs)s∈S be S-sorted sets.
We say that A is an (S-sorted) subset of B and we write A ⊆ B if As ⊆ Bs for
all s ∈ S. The union, intersection, and direct product of S-sorted sets A and
B, as well as powers of A are defined componentwise: A ∪ B := (As ∪ Bs)s∈S ,
A ∩ B := (As ∩ Bs)s∈S , and A × B := (As × Bs)s∈S , Ak := (Ak

s)s∈S for any
k ∈ N. Let SA := { s ∈ S | As �= ∅ } be the set of essential sorts of A.

For a word w = s1s2 . . . sn ∈ W (S), let Aw := As1 × As2 × · · · × Asn
.

Note that Aε = {∅}. A pair (w, s) ∈ W (S) × S is called a declaration over S.
A declaration (w, s) with w = s1 . . . sn is reasonable in A if As = ∅ implies
Asi

= ∅ for some i, or, equivalently, if Aw �= ∅ implies As �= ∅. Note that the
declaration (ε, s) is reasonable in A if and only if As �= ∅.

Any function of the form f : Aw → As is called an S-sorted operation on
A; the pair (w, s) is necessarily a reasonable declaration in A. The pair (w, s)
is called the declaration of f , the word w is called the arity of f , and the
element s is called the (output) sort of f . The elements of S occurring in the
word w are called the input sorts of f . We denote the declaration and arity of
f by dec(f) and ar(f), respectively.

We denote the set of all S-sorted operations of declaration (w, s) on A

by Op(w,s)(A). Let Op(A) be the set of all S-sorted operations on A, i.e.,

Op(A) :=
⋃{

Op(w,s)(A) | (w, s) ∈ W (S) × S
}

.

An S−sorted-mapping f from A to B, denoted by f : A → B, is a family
(fs)s∈S of maps fs : As → Bs.

Minors, reflections, powers

Definition 2.1. Given an S-sorted operation f : Aw → As with w = s1 . . . sn, a
word u = u1 . . . um ∈ W (S) such that {s1, . . . , sn} ⊆ {u1, . . . , um} and a map
σ : [n] → [m] satisfying si = uσ(i) for all i ∈ [n] (sort compatibility), define the
function fu

σ : Au → As of declaration (u, s) by the rule fu
σ (a) := f(aσ), for all

a ∈ Au, i.e.,

fu
σ (a1, . . . , am) := f

(
aσ(1), . . . , aσ(n)

)
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for all ai ∈ Aui
(1 ≤ i ≤ m). Such a function fu

σ is called a minor of f . A set
F ⊆ Op(A) is minor -closed or a (multisorted) minion if it contains all minors
of its members. For F ⊆ Op(A), we denote by 〈F 〉 the minion generated by
F , i.e., the smallest minion containing F .

Definition 2.2. Let A and B be S-sorted sets. A reflection of A into B is a
pair (h, h′) of SB-sorted mappings h = (hs)s∈SB

, h′ = (h′
s)s∈SB

, hs : Bs → As,
h′

s : As → Bs. Reflections of A into B exist if and only if SB ⊆ SA.
Assume that SB ⊆ SA and (h, h′) is a reflection of A into B. If (w, s) ∈

W (S)×S is a declaration that is reasonable in both A and B and f : Aw → As,
then we can define the (h, h′)-reflection of f as the map f(h,h′) : Bw → Bs that
is the empty map if Bw = ∅ and is otherwise given by the rule

f(h,h′) (b1, . . . , bn) := h′
s (f (hs1 (b1) , . . . , hsn

(bn)))

for all (b1, . . . , bn) ∈ Bw, which we may write briefly as

f(h,h′) (b) = h′
s (f (hw(b)))

for b = (b1, . . . , bn) ∈ Bw. We say that an S-sorted operation g is a reflection
of f if g is an (h, h′)-reflection of f for some reflection (h, h′).

Let F ⊆ Op(A). If dec(f) is reasonable in B for all f ∈ F , then the (h, h′)-
reflection of F is defined as F(h,h′) := { f(h,h′) | f ∈ F }. Sets of operations of
the form F(h,h′) for some reflection (h, h′) are called reflections of F .

Definition 2.3. Let f ∈ Op(A) and I an arbitrary index set. Define f⊗I ∈
Op(AI) by componentwise application of f to indexed families, i.e., for all
(aj

i )i∈I ∈ AI (1 ≤ j ≤ n),

f⊗I
((

a1
i

)
i∈I

, . . . , (an
i )i∈I

)
:=

(
f

(
a1

i , a
2
i , . . . , a

n
i

))
i∈I

.

We refer to f⊗I as a direct power of f . For F ⊆ Op(A), let F⊗I := { f⊗I |
f ∈ F }. If the index set I is finite, then f⊗I is called a finite direct power of
f . Whenever I = [k] for some k ∈ N, we may write simply f⊗k and F⊗k for
f⊗[k] and F⊗[k].

The following two propositions show that reflections and direct powers
of minions are minions.

Proposition 2.4. [8, Proposition 5.2] Let A and B be S-sorted sets. Let F ⊆
Op(A), and let (h, h′) be a reflection of A into B such that F(h,h′) is defined.
If F is a minion, then F(h,h′) is a minion.

Proposition 2.5. Let A be an S-sorted set, and let F ⊆ Op(A) be a minion.
Then for any k ∈ N, F⊗k is a minion.

Proof. Let g ∈ F⊗k with dec(g) = (w, s), w = s1 . . . sn. Then g = f⊗k for
some f ∈ F with dec(f) = (w, s). It is straightforward to verify that for all
u = u1 . . . um ∈ W (S) and σ : [n] → [m] such that fu

σ is defined, it holds that
(f⊗k)u

σ = (fu
σ )⊗k. Thus F⊗k is minor-closed if F is minor-closed. �
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Multisorted algebras and identities

A (multisorted similarity) type is a triple τ = (S,Σ,dec), where S is a set of
sorts, Σ is a set of function symbols, and dec: Σ → W (S) × S is a mapping.
If f ∈ Σ and dec(f) = (w, s), we say that f has arity w and sort s. A
(multisorted) algebra of type τ is a system A = (A; ΣA), where A is an S-
sorted set, called the carrier (or the universe) of A, and ΣA = (fA)f∈Σ is a
family of S-sorted operations on A, each fA of declaration dec(f). Denote by
Alg(τ) the class of all multisorted algebras of type τ .

Homomorphisms, subalgebras, and direct products of multisorted alge-
bras are defined in the expected way. Let A = (A,ΣA) and B = (B,ΣB) be
multisorted algebras of type τ = (S,Σ,dec). For a reflection (h, h′) of A into
B, the algebra B is called the (h, h′)-reflection of A if fB = (fA)(h,h′) for all
f ∈ Σ. The algebra B is a reflection of A if B is an (h, h′)-reflection of A for
some reflection (h, h′) of A into B.

Let K be a class of multisorted algebras of a fixed type. Denote by SK,
HK, PK, and RK the class of all subalgebras, homomorphic images, direct
products, and reflections of members of K, respectively.

Terms can be defined in the setting of multisorted algebras much in the
same way as in the classical one-sorted case. One has to be a bit more careful
in defining identities. In contrast to the one-sorted case, it is not sufficient to
define an identity to be a pair of terms; one also has to specify the variables
that are to be valuated when one decides whether an identity holds in an
algebra. With this in mind, the definition of a multisorted algebra satisfying
an identity can be laid out in the expected way. For further details, see [7,
Section 3].

We consider terms of type τ = (S,Σ,dec) over the standard set of vari-
ables X = (Xs)s∈S with Xs := {xs

i | i ∈ N+ }. A term is called a minor
term (also known as a term of height 1 ) if it contains exactly one occurrence
of a function symbol. Thus a minor term is of the form fσ(1) . . . σ(n) where
f ∈ Σ with dec(f) = (w, s), w = s1 . . . sn, and σ : [n] → X is a map sat-
isfying σ(i) ∈ Xsi

for all i ∈ [n]; this term will be denoted by fσ. A word
u = u1 . . . um ∈ W (S) is a feasible arity for fσ if for every i ∈ [n] it holds
that if σ(i) = xsi

j then |u|si
≥ j. If u is a feasible arity for fσ, then we can

define the term operation of arity u induced by fσ on A, denoted by (fu
σ )A and

defined by (fu
σ )A : Au → As, (fu

σ )A(a1, . . . , am) := fA(aν(1), . . . , aν(n)), where
ν(i) = � if and only if σ(i) = xsi

j and � is the position of the j-th occurrence
of si in u.

Example 2.6. In order to illustrate the notions introduced above, consider the
multisorted similarity type τ = (S,Σ,dec), where S = {1, 2, 3}, Σ = {f},
dec(f) = (12321, 2). Then fx1

3x
2
2x

3
4x

2
2x

1
2 is a minor term of type τ over the

standard set X of variables. We can write this term as fσ with σ : [5] → X, 1 
→
x1

3, 2 
→ x2
2, 3 
→ x3

4, 4 
→ x2
2, 5 
→ x1

2. The word u = 333221333221333221 ∈
W (S) is a feasible arity for fσ (because u has at least 3 occurrences of 1, at least
2 occurrences of 2, at least 4 occurrences of 3, and so on). Given an algebra A =
(A; ΣA) of type τ (that is, ΣA = {fA} and fA is an operation of declaration
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(12321, 2) on A), the term fσ induces the term operation (fu
σ )A of arity u on A,

defined by the rule (fu
σ )A(a1, a2, . . . , a18) := fA(a18, a5, a7, a5, a12) (because

the 3rd occurrence of 1 lies at the 18th position in u, the 2nd occurrence of 2
at the 5th position, and so on).

An identity is a triple (S′, t1, t2), usually written as t1 ≈S′ t2, where t1
and t2 are terms of type τ over X and S′ ⊆ S such that the sorts of the variables
occurring in the two terms belong to the set S′. An algebra A satisfies the
identity t1 ≈S′ t2 if the terms t1 and t2 have the same (output) sort and take
the same value under every valuation of variables from Xs in As, s ∈ S′. A
minor identity is an identity where the two terms are minor terms. An algebra
A satisfies a minor identity fσ ≈S′ gπ if and only if for any (equivalently, for
one) u = u1 . . . um ∈ W (S) with {u1, . . . , um} = S′ that is a feasible arity for
both fσ and gπ it holds that (fA)u

σ = (gA)u
π.

The satisfaction relation induces a Galois connection between multisorted
algebras and minor identities. For a class K of algebras, let mIdK be the set of
all minor identities satisfied by every algebra in K, and for a class J of minor
identities, let ModJ be the class of all algebras satisfying every identity in
J . This Galois connection was investigated in [7], where it was shown that
the Galois closed classes of multisorted algebras (minor-equational classes) are
precisely the reflection-closed varieties.

Theorem 2.7 [7, Theorem 5.2]. Let K be a class of multisorted algebras of a
fixed type. Then Mod mIdK = RPK.

Relation pairs

Let A be an S-sorted set and m ∈ N. An m-ary S-sorted relation on A is a
family R = (Rs)s∈S where Rs ⊆ Am

s for every s ∈ S. (Note that for m > 0,
the only m-ary relation on the empty set is ∅, and that there are precisely two
0-ary relations on any set: ∅ and {∅}.) An m-ary S-sorted relation pair of A is
a pair (R,R′) where R and R′ are m-ary S-sorted relations on A. Denote by
Relp(m) the set of all m-ary S-sorted relation pairs on A and by Relp(A) the
set of all S-sorted relation pairs on A, i.e.,

Relp(A) :=
⋃

m∈N

Relp(m)(A).

Let f : Aw → As with w := s1 . . . sn, and let (R,R′) be an m-ary S-
sorted relation pair on A. The operation f preserves the relation pair (R,R′)
(or f is a polymorphism of (R,R′), or (R,R′) is an invariant relation pair of
f), denoted by f � (R,R′), if for all (a1i, a2i, . . . , ami) ∈ Rsi

(i = 1, . . . , n), it
holds that

(f (a11, a12, . . . , a1n) , f (a21, a22, . . . , a2n) , . . . , f (am1, am2, . . . , amn)) ∈ R′
s.

The preservation relation � induces a Galois connection between S-
sorted operations and S-sorted relation pairs on A, consisting of the maps
mPol : P(Relp(A)) → P(Op(A)) and mInv : P(Op(A)) → P(Relp(A)) given
by

mPol(Q) := { f ∈ Op(A) | ∀(R,R′) ∈ Q : f � (R,R′) } ,
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mInv(F ) := { (R,R′) ∈ Relp(A) | ∀f ∈ F : f � (R,R′) } ,

for any F ⊆ Op(A) and Q ⊆ Relp(A).
The closed sets of operations and relation pairs with respect to this Galois

connection were described in [8] as the minor-closed classes of operations (i.e.,
minions) and the so-called minor-closed classes of relation pairs, respectively.

Analogues of the “elementary operations” ζ, τ , pr, ×, and ∧ on relations
(see [6, Section II.2.3], [10, Subsections 1.1.7 and 1.1.9]) can be defined for
S-sorted relation pairs (see [8, pp. 70–71]) by applying each operation compo-
nentwise and in parallel in each sort. A relation pair (R,R′) is a relaxation of
(R̃, R̃′) if R ⊆ R̃ and R′ ⊇ R̃′. For an arbitrary equivalence relation � on [m],
let δm

� := (δm
�,s)s∈S , where

δm
�,s := { (a1, . . . , am) ∈ Am

s | (i, j) ∈ � =⇒ ai = aj } .

Relation pairs of the form (δm
� , δm

� ) are called diagonal relation pairs. A set Q ⊆
Relp(A) of relation pairs is minor -closed if it contains the diagonal relation
pairs and is closed under the elementary operations ζ, τ , pr, ×, ∧, relaxations,
and arbitrary intersections. For Q ⊆ Relp(A), we denote by [Q] the minor-
closure of Q, i.e., the smallest minor-closed set of relation pairs on A that
contains Q.

Theorem 2.8 [8, Theorems 4.10, 4.16]. Let A := (As)s∈S be an S-sorted set,
and assume that the sets As are all finite.

(i) Let F ⊆ Op(A). Then F = mPol Q for some Q ⊆ Relp(A) if and only if
F is a minion. Consequently, 〈F 〉 = mPol mInv F for any F ⊆ Op(A).

(ii) Let Q ⊆ Relp(A). Then Q = mInv F for some F ⊆ Op(A) if and only if Q
is minor-closed. Consequently, [Q] = mInv mPol Q for any Q ⊆ Relp(A).

3. Reflection, coreflection, lifting, and flattening of relation
pairs

As explained in the introduction, our main goal is to formulate a multisorted
analogue of the wonderland theorem [3, Theorem 1.3] (see also [2, Corol-
lary 9.5]). A part of this theorem concerns whether a relational structure can
be obtained from another by special relational constructions; this condition
is referred to as pp-constructibility (see [3, Definition 3.4, Corollary 3.10] and
also [2, Definition 4.9]).

In this section, we will introduce a few constructions on multisorted re-
lation pairs: reflection, coreflection, lifting, and flattening. We will later (in
Theorem 4.13) see that these new concepts—in particular, coreflection and
flattening—may serve as building blocks for an analogue or generalization of
pp-constructibility (see Remark 4.15 for details).

Reflection and coreflection

In this subsection, we introduce a pair of new concepts that forms a counterpart
to reflections of operations: reflections and coreflections of relation pairs. These
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prove to be useful for describing reflections of minions in terms of invariant
relation pairs.

Definition 3.1. Let A and B be S-sorted sets, and let (h, h′) be a reflection of A
into B. Let (R,R′) be an S-sorted relation pair on A. The (h, h′)-reflection of
(R,R′) is the S-sorted relation pair (R,R′)(h,h′) on B given by (R,R′)(h,h′) :=
(h−1(R), h′(R′)), where h−1(R) := (Ts)s∈S and h′(R′) := (T ′

s)s∈S with

Ts :=

{
h−1

s (Rs) , ifBs �= ∅,

∅, ifBs = ∅,
T ′

s :=

{
h′

s (R′
s) , ifBs �= ∅,

∅, ifBs = ∅,

and

h−1
s (Rs) := { (a1, . . . , am) ∈ Bm

s | (hs(a1), . . . , hs(am)) ∈ Rs },

h′
s(R

′
s) := { (h′

s(a1), . . . , h′
s(am)) | (a1, . . . , am) ∈ R′

s }.

Let (T, T ′) be an S-sorted relation pair on B. The (h, h′)-coreflection of (T, T ′)
is the S-sorted relation pair (T, T ′)(h,h′) on A given by (T, T ′)(h,h′)

:= (h(T ), h′−1(T ′)), where h(T ) := (Rs)s∈S and h′−1(T ′) := (R′
s)s∈S with

Rs :=

{
hs (Ts) , ifBs �= ∅,

∅, ifBs = ∅,
R′

s :=

{
h′

s
−1 (T ′

s) , if Bs �= ∅,

∅, if Bs = ∅.

Let Q ⊆ Relp(A) be a set of relation pairs on A. The (h, h′)-reflection
of Q is the set Q(h,h′) := { (R,R′)(h,h′) | (R,R′) ∈ Q } of relation pairs on B.
We define (h, h′)-coreflections of sets of relation pairs analogously. A relation
pair (a set of relation pairs) is called a reflection (a coreflection) of another
relation pair (set of relation pairs) if the former is the (h, h′)-reflection ((h, h′)-
coreflection) of the latter for some reflection (h, h′).

Proposition 3.2 [8, Proposition 5.4]. Let A and B be S-sorted sets, (R,R′) ∈
Relp(A), (T, T ′) ∈ Relp(B), and let (h, h′) be a reflection of A into B. Let
f ∈ Op(A), and assume that dec(f) is reasonable in B. Then the following
statements hold.

(i) If f � (R,R′) then f(h,h′) � (R,R′)(h,h′).
(ii) If f(h,h′) � (T, T ′) then f � (T, T ′)(h,h′).
(iii) If F ⊆ Op(A) and dec(f) is reasonable in B for all f ∈ F , then

mInv F(h,h′) =
{

(T, T ′) ∈ Relp(B) | (T, T ′)(h,h′) ∈ mInv F
}

.

The last statement can be written in alternative form. For a set Q ⊆
Relp(A) of relation pairs, denote by Relax(Q) the set of all relaxations of
members of Q.

Proposition 3.3. Let A and B be S-sorted sets, let F ⊆ Op(A) and assume
that dec(f) is reasonable in B for all f ∈ F , and let (h, h′) be a reflection of
A into B. Then mInv F(h,h′) = Relax((mInv F )(h,h′)).
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Proof. Let (T, T ′) ∈ mInv F(h,h′). By Proposition 3.2(iii), (h(T ), h′−1(T ′)) ∈
mInv F , so (h−1(h(T )), h′(h′−1(T ′))) ∈ (mInv F )(h,h′). Since T ⊆ h−1(h(T ))
and T ′ ⊇ h′(h′−1(T ′)), (T, T ′) is a relaxation of (h−1(h(T )), h′(h′−1(T ′)));
hence (T, T ′) ∈ Relax((mInv F )(h,h′)).

For the converse inclusion, let (T, T ′) ∈ Relax((mInv F )(h,h′)). Then there
exists (T̃ , T̃ ′) ∈ (mInv F )(h,h′) such that T ⊆ T̃ , T ′ ⊇ T̃ ′, and (T̃ , T̃ ′) =
(R,R′)(h,h′) = (h−1(R), h′(R)) for some (R,R′) ∈ mInv F . Thus f � (R,R′)
for all f ∈ F . By Proposition 3.2(i), f(h,h′) � (h−1(R), h′(R)) for every f ∈ F ,
so (T̃ , T̃ ′) ∈ mInv F(h,h′). By Theorem 2.8(ii), mInv F(h,h′) is minor-closed and
hence contains all relaxations of its members; therefore (T, T ′) ∈ mInv F(h,h′).

�

Lemma 3.4. For any Q ⊆ Relp(A), we have mPol Q = mPol Relax Q.

Proof. Since Q ⊆ Relax Q, we have mPol Relax Q ⊆ mPol Q by the basic
properties of Galois connections. In order to prove the converse inclusion
mPol Q ⊆ mPol Relax Q, let f ∈ mPol Q, and let (R,R′) ∈ Relax Q. Then
(R,R′) is a relaxation of some (T, T ′) ∈ Q. Since R ⊆ T and T ′ ⊆ R′ and
f � (T, T ′), it is clear that f � (R,R′). Therefore f ∈ mPol Relax Q. �

Lifting and flattening

We now define another pair of useful concepts, two maps that provide trans-
lations between relation pairs defined on a multisorted set A and ones defined
on a finite power of A: lifting and flattening.

Definition 3.5. The sets Ank and (Ak)n are obviously in a one-to-one corre-
spondence via the lifting map 
k : Ank → (Ak)n and its inverse, the flattening
map �k : (Ak)n → Ank, defined by


k(a11, . . . , a1k, . . . , an1, . . . , ank) := ((a11, . . . , a1k) , . . . , (an1, . . . , ank)) ,

�k((a11, . . . , a1k) , . . . , (an1, . . . , ank)) := (a11, . . . , a1k, . . . , an1, . . . , ank) .

The lifting and flattening maps induce maps between the power sets
P(Ank) and P((Ak)n) in the natural way: for any � ⊆ Ank and σ ⊆ (Ak)n,
define 
k� := { 
ka | a ∈ � } and �kσ := { �ka | a ∈ σ }. For relation pairs of
suitable arities, we write 
k(R,R′) := (
kR, 
kR′) and �k(R,R′) := (�kR, �kR′).
For a set Q ⊆ Relp(A) of relation pairs of arbitrary arities, define


kQ := { 
k(R,R′) | (R,R′) ∈ Q and the arity of (R,R′) is divisible by k } ,

and for T ⊆ Relp(Ak), define

�kT := { �k(R,R′) | (R,R′) ∈ T }.

Lemma 3.6.

(i) For any (R,R′) ∈ Relp(A) with arity divisible by k and for any (T, T ′) ∈
Relp(Ak), we have �k
k(R,R′) = (R,R′) and 
k�k(T, T ′) = (T, T ′).

(ii) For any Q ⊆ Relp(A), [Q] = [�k
k[Q]].
(iii) For any f ∈ Op(A) and (T, T ′) ∈ Relp(Ak), we have f⊗k � (T, T ′) if

and only if f � �k(T, T ′).
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(iv) For any M ⊆ Op(A) and (T, T ′) ∈ Relp(Ak), (T, T ′) ∈ mInv M⊗k if
and only if �k(T, T ′) ∈ mInv M.

(v) For any M ⊆ Op(A), mInv M⊗k = 
k(mInv M).

Proof. (i) Obvious.
(ii) Let � ∈ [Q] be m-ary. Then � × · · · × �︸ ︷︷ ︸

k

is a km-ary member of [Q]. By

(i), � × · · · × � = �k
k(� × · · · × �) ∈ �k
k[Q]; hence � = pr1,...,m(� × · · · × �) ∈
[�k
k[Q]], so we have [Q] ⊆ [�k
k[Q]]. The converse inclusion holds because

�k
k[Q] = { � ∈ [Q] | the arity of � is divisible by k } ⊆ [Q];

hence [�k
k[Q]] ⊆ [[Q]] = [Q].
(iii) Assume f is n-ary and (T, T ′) is m-ary. Since f⊗k is defined as the

coordinatewise application of f to k-tuples in Ak, it is easy to see that for any
ai ∈ (Ak)m (i = 1, . . . , n), we have �kf⊗k(a1, . . . ,an) = f(�ka1, . . . , �kan).

Assume first that f⊗k � (T, T ′), and let b1, . . . ,bn ∈ �kT ; then it holds
that bi = �kai for some ai ∈ T (i = 1, . . . , n). Since f⊗k � (T, T ′), we have
f⊗k(a1, . . . ,an) ∈ T ′. Consequently f(�ka1, . . . , �kan) = �kf⊗k(a1, . . . ,an) ∈
�kT ′. Therefore f � �k(T, T ′).

Assume now that f � �k(T, T ′), and let a1, . . . ,an ∈ T . Then we have
�ka1, . . . , �kan ∈ �kT , so �kf⊗k(a1, . . . ,an) = f(�ka1, . . . , �kan) ∈ �kT ′. There-
fore f⊗k(a1, . . . ,an) ∈ T ′; hence f⊗k � (T, T ′).

(iv) Follows immediately from part (iii).
(v) The following logical equivalences hold by parts (i) and (iv) and by

the fact that the arity of �k(T, T ′) is a multiple of k:

(T, T ′) ∈ mInv M⊗k ⇐⇒ �k(T, T ′) ∈ mInv M
⇐⇒ 
k�k(T, T ′) ∈ 
k(mInv M)

⇐⇒ (T, T ′) ∈ 
k(mInv M). �

Lemma 3.7. For any Q ⊆ Relp(Ak), [�kQ] = [�k[Q]].

Proof. Clearly �kQ ⊆ �k[Q], so the inclusion [�kQ] ⊆ [�k[Q]] holds. For the
converse inclusion [�k[Q]] ⊆ [�kQ], it suffices to show that �k[Q] ⊆ [�kQ].
For this, we need to prove the following: if (R,R′), (T, T ′) ∈ [Q] such that
�k(R,R′), �k(T, T ′) ∈ [�kQ], then also �kζ(R,R′), �kτ(R,R′), �kpr(R,R′),
�k((R,R′) × (T, T ′)), �k((R,R′) ∧ (T, T ′)) are in [�kQ]; if (Ri, R

′
i) ∈ [Q] such

that �k(Ri, R
′
i) ∈ [�kQ] for i ∈ I, then also �k

⋂
i∈I(Ri, R

′
i) ∈ [�kQ]; if (R,R′) ∈

[Q] such that �k(R,R′) ∈ [�kQ] and (T, T ′) is a relaxation of (R,R′), then also
�k(T, T ′) ∈ [�kQ]; and for any diagonal relation pair (δm

� , δm
� ) on Ak, we have

�k(δm
� , δm

� ) ∈ [�k[Q]]. Most of this is routine verification, and for illustration
we only provide a detailed proof of �kτ(R,R′) ∈ [�kQ].

So, assume (R,R′) ∈ [Q] is m-ary and �k(R,R′) ∈ [�kQ]. We have

�kτR = �k{ (a2,a1,a3, . . . ,am) | (a1, . . . ,am) ∈ R }
= { �k(a2,a1,a3, . . . ,am) | (a1, . . . ,am) ∈ R }
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= { �k(a2,a1,a3, . . . ,am) | �k(a1, . . . ,am) ∈ �kR } ,

which is a result of a permutation of the rows of �kR, which can be obtained
from �kR by a suitable application of the operations ζ and τ . An analogous
statement with the same permutation of rows holds for �kτR′. Consequently,
�kτ(R,R′) ∈ [�k(R,R′)] ⊆ [�kQ].

As for the other statements, it is straightforward to verify that

�kζ(R,R′) = ζk (�k(R,R′)) ,

�kpr(R,R′) = prk+1,...,mk �k(R,R′),

�k((R,R′) × (T, T ′)) = �k(R,R′) × �k(T, T ′),

�k((R,R′) ∧ (T, T ′)) = �k(R,R′) ∧ �k(T, T ′),

�k

⋂

i∈I

(Ri, R
′
i) =

⋂

i∈I

�k(Ri, R
′
i);

if (T, T ′) is a relaxation of (R,R′) then �k(T, T ′) is a relaxation of �k(R,R′);
and �k(δm

� , δm
� ) = (δkm

�′ , δkm
�′ ) where �′ is the equivalence relation on the set

{1, . . . , km} given by i �′ j if and only if �i/k� � �j/k� and i ≡ j (mod k) (�x�
stands for the least integer greater than or equal to x). Therefore our desired
conclusion follows. �

4. Results

Equipped with the tools introduced in the previous sections, we are now ready
to develop our main results. Note that if A := (As)s∈S is an S-sorted set
in which the components As are all finite, then [QA] = mInv mPol QA by
Theorem 2.8. We will build our theory under this finiteness assumption.

Definition 4.1. Let A and B be S-sorted sets, and let M1 ⊆ Op(A) and M2 ⊆
Op(B) be minions. A mapping λ : M1 → M2 is a minion homomorphism
if for every f ∈ M1, dec(f) = dec(λf), and for every minor fu

σ , we have
(λf)u

σ = λ(fu
σ ).

Definition 4.2. Let M1,M2 ⊆ Op(A). We say that M2 is an extension of M1

if M1 ⊆ M2.

Definition 4.3. We define the operators E, R, P, Pfin as follows. Let F ⊆ Op(A)
for some S-sorted set A, and let F be a collection of sets of operations on some
S-sorted set. Let PF be the set of all direct powers of F , and let Pfin F be the
set of all finite direct powers of F , i.e., Pfin F := {F⊗k | k ∈ N }. Let RF be
the set of all reflections of members of F . Let EF be the set of all extensions
of members of F .

We can express the operators R and P in a more algebraic way as fol-
lows. Given a set M ⊆ Op(A), we can view M as an S-sorted algebra AM
whose carrier is A and fundamental operations are the members of M, more
precisely, as the algebra AM = (A; (fAM)f∈M) of type τ = (S,M,decM)
with decM : M → W (S) × S, f 
→ dec(f), and fAM = f for every f ∈ M.
On the other hand, given an S-sorted algebra A = (A; (fA)f∈I), let us denote
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by FA the set of fundamental operations of A, i.e., FA := { fA | f ∈ I }.
Obviously FAM = M for any M ⊆ Op(A), but the algebras AFA

and A are
not generally the same.

With the above notation, we have F ′ ∈ PF if and only if there is some
set I such that F ′ = F(AF )I . We have F ′ ∈ RF if and only if F ′ = F(AF )(h,h′)
for some F ∈ F and for some reflection (h, h′).

Recall that a reflection (h, h′) of A into B is a pair of maps h = (hs)s∈SB
,

h′ = (h′
s)s∈SB

, hs : Bs → As, h′
s : As → Bs for all s ∈ SB, i.e., for all s ∈ S

such that Bs �= ∅ (see Definition 2.2).

Proposition 4.4. Let A and B be S-sorted sets, and assume that the compo-
nents As and Bs are all finite. Let M1 := mPol QA and M2 := mPol QB

for QA ⊆ Relp(A) and QB ⊆ Relp(B). Then the following conditions are
equivalent.
(I) M2 ∈ EM1.

(II) QB ⊆ [QA].

Proof. The condition M2 ∈ EM1 is equivalent to M1 ⊆ M2. Since the
operators of a Galois connection are order-reversing, the latter condition is
equivalent to QB ⊆ [QB ] = mInv M2 ⊆ mInv M1 = [QA]. �

Lemma 4.5. Let QB ⊆ Relp(B), and let (h, h′) be a reflection of A into B.
Then QB ⊆ mInv(mPol Q(h,h′)

B )(h,h′).

Proof. The inclusion Q
(h,h′)
B ⊆ mInv mPol Q(h,h′)

B obviously holds by the basic
properties of Galois connections. Proposition 3.2(iii) implies QB ⊆
mInv(mPol Q(h,h′)

B )(h,h′). �

Proposition 4.6. Let A and B be S-sorted sets, and assume that the compo-
nents As and Bs are all finite. Let M1 := mPol QA and M2 := mPol QB for
QA ⊆ Relp(A) and QB ⊆ Relp(B). The following conditions are equivalent.
(I) M2 ∈ RM1.

(II) There exists a reflection (h, h′) of A into B such that
(i) Q

(h,h′)
B ⊆ [QA] and

(ii) [QA](h,h′) ⊆ [QB ].

Proof. (I) ⇒ (II): Assume that M2 ∈ RM1. Then there exists a reflection
(h, h′) of A into B such that M2 = (M1)(h,h′). By Theorem 2.8(ii) and Propo-
sition 3.2(iii), we have

[QB ] = mInv M2 = mInv (M1)(h,h′) =
{

(T, T ′) | (T, T ′)(h,h′) ∈ mInv M1

}
,

which implies

Q
(h,h′)
B ⊆ [QB ](h,h′) ⊆ mInv M1 = [QA].

Furthermore, by Proposition 3.3,

[QB ] = mInv (M1)(h,h′) = Relax(mInv M1)(h,h′)
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= Relax
(
[QA](h,h′)

) ⊇ [QA](h,h′).

(II) ⇒ (I): Assume that there exist a reflection (h, h′) of A into B such
that Q

(h,h′)
B ⊆ [QA] and [QA](h,h′) ⊆ [QB ]. Then

M2 = mPol QB = mPol[QB ] ⊆ mPol[QA](h,h′) = mPol Relax[QA](h,h′)

= mPol mInv (M1)(h,h′) = (M1)(h,h′) ,

where we have applied Proposition 2.4, Theorem 2.8, Proposition 3.3, and
Lemma 3.4, as well as basic properties of Galois connections together with the
inclusion [QA](h,h′) ⊆ [QB ].

Conversely, from the inclusion Q
(h,h′)
B ⊆ [QA] we get

mPol Q(h,h′)
B ⊇ mPol[QA] = mPol QA = M1,

which implies
(
mPol Q(h,h′)

B

)

(h,h′)
⊇ (M1)(h,h′) .

Thus by Lemma 4.5 and basic properties of Galois connections,

QB ⊆ mInv
(
mPol Q(h,h′)

B

)

(h,h′)
⊆ mInv (M1)(h,h′) ,

and, consequently,

M2 = mPol QB ⊇ mPol mInv (M1)(h,h′) = (M1)(h,h′) .

We conclude that M2 = (M1)(h,h′); hence M2 ∈ RM1. �

Proposition 4.7. Let A and B be S-sorted sets, and assume that the compo-
nents As and Bs are all finite. Let M1 := mPol QA and M2 := mPol QB

for QA ⊆ Relp(A) and QB ⊆ Relp(B). Then the following conditions are
equivalent.
(I) M2 ∈ Pfin M1.

(II) There exists an integer k ∈ N+ such that B = Ak and 
k[QA] = [QB ].
Moreover, these conditions imply the following:
(III) There exists an integer k ∈ N+ such that B = Ak and [�kQB ] = [QA].

Proof. (I) ⇒ (II): Assume M2 ∈ Pfin M1. Then there exists an integer k ∈ N+

such that M2 = M⊗k
1 ; hence B = Ak. By Lemma 3.6(v) we have

[QB ] = mInv mPol QB = mInv M2 = mInv M⊗k
1

= 
k(mInv M1) = 
k(mInv mPol QA) = 
k[QA].

(II) ⇒ (I): Assume there exists an integer k ∈ N+ such that B = Ak and

k[QA] = [QB ]. By Lemma 3.6(v), we have

mInv M2 = mInv mPol QB = [QB ] = 
k[QA]

= 
k(mInv mPol QA) = 
k(mInv M1) = mInv M⊗k
1 .

Consequently, M2 = mPol mInv M2 = mPol mInv M⊗k
1 = M⊗k

1 , i.e., M2 ∈
Pfin M1.
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(III) ⇒ (I): By Lemmas 3.6(ii) and 3.7 we have [QA] = [�k
k[QA]] =
[�k[QB ]] = [�kQB ]. �
Lemma 4.8. For any set Q ⊆ Relp(A) and for any reflection (h, h′) of A into
B it holds that (Q(h,h′))(h,h′) ⊆ Relax Q ⊆ [Q].

Proof. An element (T, T ′) ∈ (Q(h,h′))(h,h′) is of the form ((R,R′)(h,h′))(h,h′)

for some (R,R′) ∈ Q. Since T = h(h−1(R)) ⊆ R and T ′ = h′−1(h′(R′)) ⊇ R′,
(T, T ′) is a relaxation of (R,R′), so (T, T ′) ∈ Relax Q ⊆ [Q]. �
Proposition 4.9. Let A and B be S-sorted sets, and assume that the compo-
nents As and Bs are all finite. Let M1 := mPol QA and M2 := mPol QB for
QA ⊆ Relp(A) and QB ⊆ Relp(B). The following conditions are equivalent.
(I) M2 ∈ ERM1.

(II) There exists a reflection (h, h′) of A into B such that Q
(h,h′)
B ⊆ [QA].

Proof. (I) ⇒ (II): Assume M2 ∈ ERM1. Then there exists a minion M′
2 such

that M′
2 ⊆ M2 and M′

2 ∈ RM1. Let QB′ := mInv M′
2; obviously M′

2 =
mPol QB′ . By Proposition 4.6, there exists a reflection (h, h′) of A into B such
that Q

(h,h′)
B′ ⊆ [QA]. Since M′

2 ⊆ M2, we have QB ⊆ mInv M2 ⊆ mInv M′
2 =

QB′ . By taking (h, h′)-coreflections, we obtain Q
(h,h′)
B ⊆ Q

(h,h′)
B′ ⊆ [QA].

(II) ⇒ (I): Assume there exists a reflection (h, h′) of A into B such that
Q

(h,h′)
B ⊆ [QA]. Let QB′ := QB ∪ [QA](h,h′) and M′

2 := mPol QB′ . Since
QB ⊆ QB′ by definition, we have M′

2 = mPol QB′ ⊆ mPol QB = M2,
so M2 ∈ EM′

2. It remains to show that M′
2 ∈ RM1. For this, it suf-

fices to show that QA and QB′ , together with the reflection (h, h′), satisfy
the conditions of Proposition 4.6(II). Condition (i) holds because Q

(h,h′)
B′ =

Q
(h,h′)
B ∪ ([QA](h,h′))(h,h′) ⊆ [QA] ∪ [QA] = [QA] by Lemma 4.8. Condition (ii)

holds because [QA](h,h′) ⊆ QB′ by definition, so [QA](h,h′) ⊆ [QB′ ]. �
Remark 4.10. From this point on, we have to make the small technical as-
sumption that the S-sorted sets A and B satisfy SB ⊆ SA. This is due to the
fact that reflections of A into B exist if and only if SB ⊆ SA (see Definition 2.2)
but minion homomorphisms may exist between minions on A and B regardless
of the essential sorts. For example, consider S = {1}, A = {0, 1, 2}, B = ∅;
hence SA = {1} = S, SB = ∅. Let M1 := { c

(n)
2 | n ∈ N+ } ⊆ Op(A) (constant

operations of all arities taking value 2), M2 := { ∅(n) | n ∈ N+ } ⊆ Op(B)
(empty functions of all arities). The sets M1 and M2 are minions, and the
maps λ : M1 → M2, c

(n)
2 
→ ∅(n), and μ : M2 → M1, ∅(n) 
→ c

(n)
2 , are minion

homomorphisms.

Lemma 4.11. Let A and B be S-sorted sets such that SB ⊆ SA. Let M1 ⊆
Op(A) and M2 ⊆ Op(B) be minions, There exists a surjective minion homo-
morphism of M1 onto M2 if and only if there exists an algebra B ∈ RPAM1

with FB = M2.

Proof. For notational simplicity, write A := AM1 . Assume first that the map
λ : M1 → M2 is a surjective minion homomorphism. Let B = (B, (fB)f∈M1)
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be the algebra of the same type as AM1 with fundamental operations fB = λf
for every f ∈ M1. By definition, FB = M2. It remains to show that B ∈ RPA,
which is equivalent to B ∈ Mod mIdA by Theorem 2.7. Let fσ ≈S′ gπ be a
minor identity satisfied by A. This means that for any u ∈ W (S) with Imu =
S′ that is a feasible arity for both fσ and gπ, we have (fA)u

σ = (gA)u
π. Since

λ is a minion homomorphism, (fB)u
σ = (λfA)u

σ = λ((fA)u
σ) = λ((gA)u

π) =
(λgA)u

π = (gB)u
π. Hence B satisfies fσ ≈S′ gπ. We conclude that B satisfies

every identity satisfied by A, that is, B ∈ Mod mIdA.
Assume now that there exists an algebra B ∈ RPA = Mod mIdA such

that FB = M2. Define the map λ : M1 → M2 by the rule f 
→ fB for all
f ∈ M1. The map λ is surjective onto FB = M2 by definition. We claim that
λ is a minion homomorphism. We have dec(f) = dec(λf) for all f ∈ M1 by
definition. Let now f ∈ M1, and let u = u1 . . . um and σ be such that the minor
fu

σ is defined. Then fu
σ ∈ M1 and f = fA and (fA)u

σ = fu
σ = ((fu

σ )A)u
ι , where

ι : [m] → S, i 
→ ui, so A clearly satisfies the identity fσ ≈S′ (fu
σ )ι, where S′

is the union of the sets of input sorts of f and fu
σ . By our assumption, also B

satisfies this identity, so (fB)u
σ = ((fu

σ )B)u
ι . Hence (λf)u

σ = (λfA)u
σ = (fB)u

σ =
((fu

σ )B)u
ι = (fu

σ )B = λ((fu
σ )A) = λ(fu

σ ), and we conclude that λ is a surjective
minion homomorphism. �

Theorem 4.12. Let A and B be S-sorted sets such that SB ⊆ SA. Let M1 :=
mPol QA and M2 := mPol QB for QA ⊆ Relp(A) and QB ⊆ Relp(B).
(a) The following conditions are equivalent.

(i) M2 ∈ RPM1.
(ii) There exists a surjective minion homomorphism λ : M1 → M2.

(b) Assume that the components As and Bs of A and B are all finite. Then
the following conditions are equivalent.

(i) M2 ∈ RPfin M1.
(ii) There exist an integer k ∈ N+ and a reflection (h, h′) of Ak into B

such that
(1) �kQ

(h,h′)
B ⊆ [QA] and

(2) (
k[QA])(h,h′) ⊆ [QB ].

Proof. (a) This is Lemma 4.11.
(b) (i) ⇒ (ii): Assume M2 ∈ RPfin M1. Then there exists M′

1 ∈ Pfin M1

such that M2 ∈ RM′
1. By Proposition 4.7, there exists k ∈ N+ such that

M′
1 = mPol QAk for some QAk ⊆ Relp(Ak) satisfying 
k[QA] = [QAk ]; this

together with Lemma 3.6(ii) implies [QA] = [�k
k[QA]] = [�k[QAk ]]. By Propo-
sition 4.6, there exists a reflection (h, h′) of Ak into B such that Q

(h,h′)
B ⊆ [QAk ]

and [QAk ](h,h′) ⊆ [QB ]. Putting these equalities and inclusions together, we
get

�kQ
(h,h′)
B ⊆ �k[QAk ] ⊆ [�k[QAk ]] = [QA],

(
k[QA])(h,h′) = [QAk ](h,h′) ⊆ [QB ].

(ii) ⇒ (i): Assume that there exist an integer k ∈ N+ and a reflection
(h, h′) of Ak into B such that �kQ

(h,h′)
B ⊆ [QA] and (
k[QA])(h,h′) ⊆ [QB ]. Let
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QAk := 
k[QA]. By Lemma 3.6(v) we have QAk = 
k(mInv M1) = mInv M⊗k
1 ,

so QAk is minor-closed by Theorem 2.8, i.e., [QAk ] = QAk . By Proposition 2.5,
M⊗k

1 is a minion, so M⊗k
1 = mPol mInv M⊗

1 = mPol QAk . By the above
equalities and inclusions and Lemma 3.6(i) we have

Q
(h,h′)
B = 
k�kQ

(h,h′)
B ⊆ 
k[QA] = QAk = [QAk ],

[QAk ](h,h′) = (
k[QA])(h,h′) ⊆ [QB ].

Now Proposition 4.6 yields M2 ∈ RM⊗k
1 ⊆ RPfin M1. �

As announced in the introduction, the following theorem can be consid-
ered as the multisorted analogue of the wonderland theorem [3, Theorem 1.3]
(see also [2, Corollary 9.5]).

Theorem 4.13. Let A and B be S-sorted sets such that SB ⊆ SA. Let M1 :=
mPol QA and M2 := mPol QB for QA ⊆ Relp(A) and QB ⊆ Relp(B).

(a) The following conditions are equivalent.
(i) M2 ∈ ERPM1.
(ii) There exists a minion homomorphism λ : M1 → M2.

(b) Assume that the components As and Bs of A and B are all finite. Then
the following conditions are equivalent.

(i) M2 ∈ ERPfin M1.
(ii) There exist an integer k ∈ N+ and a reflection (h, h′) of Ak into B

such that �kQ
(h,h′)
B ⊆ [QA].

Proof. (a) Assume M2 ∈ ERPM1. Then there exists M′
2 ∈ RPM1 such that

M′
2 ⊆ M2. By Lemma 4.11, there exists a surjective minion homomorphism

λ : M1 → M′
2. By extending the codomain of λ, we get a minion homomor-

phism from M1 to M2.
Assume now that λ : M1 → M2 is a minion homomorphism. Let M′

2 :=
Im λ. Now λ is clearly a surjective minion homomorphism of M1 into M′

2, so
by Lemma 4.11, M′

2 ∈ RPM1. Since M′
2 ⊆ M2, we have M2 ∈ ERPM1.

(b) (i) ⇒ (ii): Assume M2 ∈ ERPfin M1. Then there exists k ∈ N such
that M2 ∈ ERM⊗k

1 . By Proposition 4.7, we have M⊗k
1 = mPol QAk for

QAk := 
k[QA]; moreover [�k[QAk ]] = [QA]. By Proposition 4.9, there exists
a reflection (h, h′) of Ak into B such that Q

(h,h′)
B ⊆ [QAk ]. Consequently,

�k(Q(h,h′)
B ) ⊆ �k[QAk ] ⊆ [�k[QAk ]] = [QA].
(ii) ⇒ (i): Assume k ∈ N+ and (h, h′) is a reflection of Ak into B satis-

fying �kQ
(h,h′)
B ⊆ [QA]. Let QAk := 
k[QA]; we have QAk = 
k(mInv M1) =

mInv M⊗k
1 by Lemma 3.6(v), so [QAk ] = QAk . Then Q

(h,h′)
B = 
k(�kQ

(h,h′)
B ) ⊆


k[QA] = QAk = [QAk ], from which it follows by Proposition 4.9 that M2 ∈
ERM⊗k

1 ⊆ ERPfin M1. �

Under the additional hypothesis that there are only a finite number of
sorts, the four conditions of Theorem 4.12 become equivalent, and so do those
of Theorem 4.13. This is a consequence of the following result.
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Proposition 4.14. Let A and B be S-sorted sets. Assume that SB is finite, all
components As and Bs (s ∈ SB) are finite, and SB ⊆ SA. Let M1 ⊆ Op(A)
and M2 ⊆ Op(B) be arbitrary sets of operations, not necessarily minions.
Then the following conditions are equivalent.

(i) M2 ∈ RPfin M1,
(ii) M2 ∈ RPM1.

Proof. (i) ⇒ (ii): Trivial.
(ii) ⇒ (i): Assume that M2 ∈ RPM1 is a reflection of an infinite power

of M1. Then there exists a reflection (h, h′) from AK (for some infinite set
K) to B such that M2 = (MK

1 )(h,h′). We are going to construct a finite
subset k ⊆ K and a reflection (h̃, h̃′) from Ak to B such that (f⊗k)(h̃,h̃′) =
(f⊗K)(h,h′) for each f ∈ M1; therefore M2 = (M⊗K

1 )(h,h′) = (M⊗k
1 )(h̃,h̃′),

which will finish the proof. We recall the following notation. For f ∈ M1 with
dec(f) = (w, s), w = s1 . . . sn, a multisorted map h̄ = (h̄s)s∈S : B → C, and
b := (b1, . . . , bn) ∈ Bw = Bs1 × · · · × Bsn

, let h̄w(b) := (h̄s1(b1), . . . , h̄sn
(bn)).

For α = (aj)j∈K ∈ AK
s let prj(α) := aj , j ∈ K, and let prk(α) := (aj)j∈k be

the projection (restriction) onto the coordinates in k.
Now we define h̃ := prk ◦ h, i.e., h̃s(b) := prk(hs(b)) for b ∈ Bs, s ∈ SB .

The subset k will be chosen below in such a way that it satisfies

f⊗k(h̃w(b)) = g⊗k
(
h̃v(c)

)
=⇒ f⊗K (hw(b)) = g⊗K (hv(c)) (4.1)

for all f, g ∈ M1 with dec(f) = (w, s), dec(g) = (v, s) and all b ∈ Bw, c ∈ Bv.
Note that f⊗k(h̃w(b)) = prk(f⊗K(hw(b))).

We define the multisorted map h̃′ = (h̃′
s)s∈SB

: Ak → B as follows:

h̃′
s(ξ) :=

⎧
⎪⎪⎨

⎪⎪⎩

h′
s

(
f⊗K (hw(b))

)
if ξ = f⊗k

(
h̃w(b)

)
for some f ∈ M1

with dec(f) = (w, s)andb ∈ Bw,

γs otherwise,

(4.2)

where γs is an arbitrary fixed element of Bs, s ∈ SB .
Because of the property (4.1), h̃′ is well defined. We therefore have

(
f⊗k

)
(h̃,h̃′) (b) = h̃′

s

(
f⊗k

(
h̃w(b)

))
(4.2)
= h′

s

(
f⊗K (hw(b))

)
=

(
f⊗K

)
(h,h′) (b),

i.e., (f⊗k)(h̃,h̃′) = (f⊗K)(h,h′), which finishes the proof as mentioned above.
It remains to find a subset k ⊆ K with property (4.1).
Assume without loss of generality that SB = {1, . . . , p} for some p ∈ N+

and Bi = {di1, di2, . . . , dini
} for each i ∈ SB . So

d :=
(
d11, . . . , d1n1 , . . . , dp1, . . . , dpnp

)

is a tuple of length � :=
∑p

i=1 ni containing all elements of B. For any (w, s) =
(s1 . . . sn, i) ∈ W (SB) × SB and b = (b1, . . . , bn) ∈ Bw = Bs1 × · · · × Bsn

,
define the mapping σb : [n] → { (i, j) | i ∈ SB, j ∈ [ni] } by the rule i 
→ (si, j)
if and only if bi = dsij .
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Then for any f ∈ M1 with dec(f) = (w, s) and any h̄ : B → AL (we need
here only L = k or L = K, and h̄ = h̃ or h̄ = h, resp.) we have

f⊗L
(
h̄w(b)

)
= f⊗L

σb

(
h̄u(d)

)
forb ∈ Bw. (4.3)

Here f⊗L
σb denotes the minor (f⊗L)u

σb where the arity u is 1 . . . 1 . . . p . . . p (each
sort i appears ni times). With the definition of a minor (Definition 2.1), (4.3)
can be checked easily. Note that prj(hu(d)) ∈ Au = A1 × · · · × A1 × · · · ×
Ap × · · · × Ap (each Ai appears ni times), i.e., there exist at most |Au| =
|An1

1 × · · · × A
np
p | different �-tuples prj(hu(d)), j ∈ K, where, in particular,

|Au| is finite since all Ai, Bi, and SB are finite. Therefore one can choose a
finite subset k ⊆ K (with |k| ≤ |Au|) such that for all j ∈ K there exists
an i ∈ k such that prj(hu(d)) = pri(hu(d)), the latter being pri(h̃u(d)).
Hence any f⊗K

σb (hu(d)) is uniquely determined by its projection onto k, i.e.,
by f⊗k

σb (h̃u(d)). Consequently, (4.1) follows immediately from (4.3). �

Remark 4.15. A comparison of the wonderland theorem [3, Theorem 1.3] with
our Theorem 4.13 suggests the following generalization of the notion of pp-
constructibility in the multisorted setting. For relational structures QA ⊆
Relp(A) and QB ⊆ Relp(B), we say that QA mc-constructs QB , or that
QB is mc-constructible from QA, if there exist an integer k ∈ N+ and a
reflection (h, h′) of Ak into B such that �kQ

(h,h′)
B ⊆ [QA]. (The “mc” in

“mc-constructible” connotes “minor-closed”.) Thus, condition (ii) in Theo-
rem 4.13(b) asserts that QB is mc-constructible from QA.
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