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Solving a fixed number of equations over
finite groups

Philipp Nuspl

Abstract. We investigate the complexity of solving systems of polynomial
equations over finite groups. In 1999 Goldmann and Russell showed NP-
completeness of this problem for non-Abelian groups. We show that the
problem can become tractable for some non-Abelian groups if we fix the
number of equations. Recently, Földvári and Horváth showed that a single
equation over groups which are semidirect products of a p-group with
an Abelian group can be solved in polynomial time. We generalize this
result and show that the same is true for systems with a fixed number
of equations. This shows that for all groups for which the complexity of
solving one equation has been proved to be in P so far, solving a fixed
number of equations is also in P. Using the collecting procedure presented
by Horváth and Szabó in 2006, we furthermore present a faster algorithm
to solve systems of equations over groups of order pq.
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1. Introduction

In the past two decades large efforts were made to understand the complexity of
solving polynomial equations over finite groups. A polynomial over a group G
is a product of variables, inverses of variables and elements of G. For a fixed
finite group G the (polynomial) equation solvability problem—PolSat(G) for
short—asks whether two polynomials r, t over G attain the same value for some
evaluation of the variables in G. In [7] and [8] it was shown that for nilpotent
groups G the problem PolSat(G) can be solved in polynomial time. Further-
more, it was shown that the problem PolSat(G) is NP-complete for non-
solvable groups G. The result for nilpotent groups has been revisited several
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times using different approaches, e.g. in [12] and [5]. Some results are known for
non-nilpotent solvable groups. There is, however, no complete classification for
non-nilpotent solvable groups. In [16], it was shown that PolSat(Zp�Zq) ∈ P
for primes p, q. Most of the previously known results were generalized in [6],
where it was shown that PolSat(P � A) ∈ P for all p-groups P and Abelian
groups A. These are the two tractability results which we generalize in Theo-
rems 1.1 and 1.2 from a single equation to a fixed number of equations. One of
the groups not covered by these results is the group S4. A list of these groups
of small order which are not covered by the known tractability results is given
in [11].

It has been shown recently in [17] that, under the Exponential Time
Hypothesis (ETH), the problem PolSat(S4) cannot be solved faster than in
quasi-polynomial time. In particular, under the ETH it cannot be solved in
polynomial time. Similar hardness-results have been shown in [19]: under the
ETH the problem PolSat(G) is not decidable in polynomial time if the group
G has Fitting length at least four. The same result has been shown for certain
groups with Fitting length three. Under a different open conjecture it has been
shown in [3] that a quasi-polynomial time algorithm indeed exists for solvable
groups.

The complexity of the (polynomial) system equation solvability problem—
PolSysSat(G) for short—was completely classified in [7] and [8]. In this prob-
lem it is checked whether a system t1 = r1, . . . , ts = rs for group polynomials
tl, rl for l = 1, . . . , s has a solution. It was shown that PolSysSat(A) ∈ P for
Abelian groups A and PolSysSat(G) ∈ NPC for non-Abelian groups G, i.e.
a dichotomy holds for this problem.

The s-PolSysSat problem asks whether a system of s many equations
has a solution. This problem for general algebras is different from the problem
for one equation and from the problem for systems. Namely, in [9] it was
shown that PolSat(L) ∈ P for the two-element lattice L = 〈{0, 1},∧,∨〉 but
2-PolSysSat(L) ∈ NPC. In [1] it was shown that s-PolSysSat(G) ∈ P for
nilpotent groups G. Hence, any nilpotent non-Abelian group is a witness for
the fact that the problem of solving systems in general becomes easier if we
fix the number of equations.

In Section 3 we generalize Theorem 16 from [16] which states that
PolSat(G) ∈ P for groups of order |G| = pq for primes p, q. We measure
the length ‖t‖ of a polynomial t by the length of the string which defines it.
Then our new version of the theorem can be formulated in the following way:

Theorem 1.1. Let G be a finite group with |G| = pq for primes p ≥ q and
s ∈ N fixed. Then s-PolSysSat(G) ∈ P. In particular, we can decide in time
O(max1≤l≤s‖t(l)‖2(p−1)s) whether a given system t(1) = · · · = t(s) = 1 has a
solution.

Theorem 1 from [6] states that for a finite group G ∼= P �A for a p-group
P and Abelian group A we have PolSat(G) ∈ P. In Section 4 we prove a
generalized version and show that the same argument can be used for systems
with a fixed number of equations.
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Theorem 1.2. Let G ∼= P � A, where P is a finite p-group and A a finite
Abelian group and s ∈ N fixed. Then s-PolSysSat(G) ∈ P. In particular,
we can decide in time O(max1≤l≤s‖t(l)‖s|G||G| log2 |G|) whether a given system
t(1) = · · · = t(s) = 1 has a solution.

As a corollary of Theorem 1.2 we get:

Corollary 1.3. Let G ∼= Z2pα � A, where p is a prime, α ∈ N and A is a finite
Abelian group. Then s-PolSysSat(G) ∈ P for all s ∈ N.

2. Preliminaries

A polynomial t(x1, . . . , xm) over a finite group G is a formal product of vari-
ables, their inverses and constants from G, i.e. t(x1, . . . , xm) = g1 · · · gn, with
gi ∈ {x1, . . . , xm} ∪ {x−1

1 , . . . , x−1
m } ∪ G. The length of the polynomial is de-

fined as ‖t‖:=n. Sometimes we are going to use the word ‘polynomial’ also for
the operation t : Gm → G defined by t, but this will never cause confusion,
as it will be clear from the context. If a polynomial contains the inverse of
a variable, say x−1

i , then we can replace it with x
|G|−1
i . These replacements

of inverses only increase the length linearly for a fixed group G. Hence, we
can assume that a polynomial is given as a product of variables and group
elements. Let r be a second polynomial over the group G, then the length of
the equation

t(x1, . . . , xm) = r(x1, . . . , xm)

is defined as ‖t‖ + ‖r‖. Furthermore, this equation has a solution if and only
if (tr−1)(x1, . . . , xm) = 1 has a solution. The length of this new equation only
grows linearly. Hence, for studying the complexity we can assume that r = 1.

Let q be a prime power, let Fq be the finite field with q elements and let
Fq[x1, . . . , xn] be the ring of polynomials over Fq. We denote the multiplicative
group of the field by F

×
q :=(Fq−{0}, ·) and the function induced by a polynomial

f ∈ Fq[x1, . . . , xn] by fFq . A polynomial f ∈ Fq[x1, . . . , xn] is given in expanded
form if f is given as

f(x1, . . . , xn) =
∑

0≤s1,...,sn≤q−1

cs1,...,sn
xs1

1 · · · xsn
n

with cs1,...,sn
∈ Fq, i.e. f is written as a sum of monomials with reduced

exponents. Then we define the length of f as

‖f‖:=
∑

cs1,...,sn �=0

1 + s1 + · · · + sn.

Solving equations over groups can, in many cases, be reduced in polyno-
mial time to the problem of solving one or a system of equations over a finite
field. Frequently, the polynomials in these equations over finite fields are given
in expanded form. These solvability problems where the input is restricted to
polynomials given in expanded form are called sigma solvability problems and
we write e.g. PolSatΣ(Fq). For general rings these problems were considered
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for instance in [12]. If f, g are polynomials over Fq, the equation f = g has a
solution if and only if f − g = 0 has a solution. Hence, we can assume that the
right-hand sides of the equations are 0.

Additionally to the solvability problems we also consider the sigma equiv-
alence problem, PolEqvΣ(Fq). Here we are given two polynomials f, g over Fq

and we want to decide whether they induce the same function on Fq. We write
f ≈ g in this case. Of course f ≈ g holds if and only if f − g ≈ 0 holds, so we
can again assume that the right-hand side is 0. This problem was considered
for general rings in [13,15].

The following lemma shows that the sigma equivalence problem for finite
fields can be solved in linear time with respect to the length of the input
polynomial if the polynomial is given in expanded form. This is even true if
some of the variables are restricted to the multiplicative subgroup F

×
q .

Lemma 2.1. Let q be a prime power and Fq the finite field with q elements. Fur-
thermore, let f ∈ Fq[x1, . . . , xn, y1, . . . , ym] be a polynomial given in expanded
form. Then it can be decided in time O(‖f‖) whether
fFq (s1, . . . , sn, u1, . . . , um) = 0 for all s1, . . . , sn ∈ Fq and u1, . . . , um ∈ F

×
q . In

particular, PolEqvΣ(Fq) ∈ P.

Proof. The polynomial xq−x =
∏

s∈Fq
(x−s) clearly vanishes for all evaluations

of x from Fq. Analogously, yq−1−1 =
∏

s∈F
×
q
(y−s) vanishes for all evaluations

from F
×
q . We define the Gröbner basis

B:= { xq
i − xi | 1 ≤ i ≤ n } ∪

{
yq−1

j − 1
∣∣∣ 1 ≤ j ≤ m

}
.

Then fFq (s1, . . . , sn, u1, . . . , um) = 0 for all s1, . . . , sn ∈ Fq, u1, . . . , um ∈ F
×
q if

and only if f ∈ IdealFq[x1,...,xn,y1,...,ym](B): clearly, if f is in the ideal generated
by B, the statement holds by the construction of B. The other implication
follows from the Combinatorial Nullstellensatz [2, Theorem 1.1].

To check if f is contained in the ideal generated by B, we need to check
whether f reduces to 0 modulo B. Reduction modulo B is particularly easy
as we only need to reduce all the exponents. This reduction and collection of
monomials can be done in time O(‖f‖) as f is given in expanded form. �

Let n, β, n1, . . . , nβ ∈ N and let S1, . . . , Sβ be subgroups of F
×
q . Further-

more, let X = {x1, . . . , xn} and Yj = {yj,1, . . . , yj,nj
} denote pairwise disjoint

sets of variables for j = 1, . . . , β. Additionally, let f, g ∈ Fq[X,Y1, . . . , Yβ ] be
polynomials in expanded form. We then say (following the notation from [4])
that

f |Fq,S1,...,Sβ
= g|Fq,S1,...,Sβ

is solvable if there exist field elements s1, . . . , sn ∈ Fq and sj,1, . . . , sj,nj
∈ Sj

for j = 1, . . . , β such that

fFq (s1, . . . , sn, s1,1, . . . , s1,n1 , . . . , sβ,1, . . . , sβ,nβ
)

= gFq (s1, . . . , sn, s1,1, . . . , s1,n1 , . . . , sβ,1, . . . , sβ,nβ
).
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Analogously, we say that

f |Fq,S1,...,Sβ
≈ g|Fq,S1,...,Sβ

holds if for all s1, . . . , sn ∈ Fq and sj,1, . . . , sj,nj
∈ Sj for j = 1, . . . , β we have

fFq (s1, . . . , sn, s1,1, . . . , s1,n1 , . . . , sβ,1, . . . , sβ,nβ
)

= gFq (s1, . . . , sn, s1,1, . . . , s1,n1 , . . . , sβ,1, . . . , sβ,nβ
).

The following lemma appears as a part of a proof in [14, p. 221]. We
include a different self-contained proof following an approach from [16] and
using Lemma 2.1.

Lemma 2.2 [14]. Let q be a prime power and Fq the finite field with q elements.
Let S1, . . . , Sβ be subgroups of F

×
q . Furthermore, let X = {x1, . . . , xn} and

Yj = {yj,1, . . . , yj,nj
} denote pairwise disjoint sets of variables for every j =

1, . . . , β. Let f1, . . . , fs ∈ Fq[X,Y1, . . . , Yβ ] be polynomials given in expanded
form. Then it can be decided in time

O
(

max
1≤i≤s

‖fi‖(q−1)s

)

whether the system of equations
f1|Fq,S1,...,Sβ

= 0
...

fs|Fq,S1,...,Sβ
= 0

(2.1)

has a solution. In particular, PolSatΣ(Fq) ∈ P and s-PolSysSatΣ(Fq) ∈ P
for fixed s ∈ N.

Proof. Since F
×
q is cyclic, we can write F

×
q = 〈a〉 for some a ∈ F

×
q . Then

Sj = 〈alj 〉 = {ylj | y ∈ F
×
q } for some lj ∈ {1, . . . , q − 1} for j = 1, . . . , β. Now,

let

f̃i:=fi

(
x1, . . . , xn, yl1

1,1, . . . , y
l1
1,n1

, . . . , y
lβ
β,1, . . . , y

lβ
β,nβ

)

be polynomials in expanded form. Then (2.1) has a solution if and only if the
system

f̃1|Fq,F×
q ,...,F×

q
= 0

...

f̃s|Fq,F×
q ,...,F×

q
= 0

(2.2)

has a solution. These polynomials f̃i can be computed in time O(‖fi‖) and we
have ‖f̃i‖ = O(‖fi‖). Let f be the expanded form of the product

f :=
s∏

i=1

(
1 − (f̃i)q−1

)
.

Then for fixed s, the polynomial f can be computed in polynomial time from
the f̃i and we have ‖f‖ = O(max1≤i≤s‖fi‖(q−1)s). First, suppose the system
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(2.2) has no solution. Then for all s1, . . . , sn ∈ Fq and s1,1, . . . , sβ,nβ
∈ F

×
q

there exists an i ∈ {1, . . . , s} such that f̃
Fq

i (s1, . . . , sn, s1,1, . . . , sβ,nβ
) �= 0.

Therefore, by the definition of f ,

f(X,Y1, . . . , Yβ)|
Fq,F×

q ,...,F×
q

≈ 0 (2.3)

holds. Conversely, if (2.3) holds, then (2.2) has no solution. Hence, the system
(2.1) has no solution if and only if (2.3) holds. The latter equation can be
checked in time O(‖f‖) by Lemma 2.1. �

3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we are going to reduce solving equations over
G with |G| = pq for primes p, q to the sigma solvability problem over the finite
fields Zp and Zq. We are going to write the operations of G multiplicatively
whereas the additive group of a field Zp is written additively as (Zp,+).

Proof of Theorem 1.1. Let G be a finite group with |G| = pq for primes p ≥ q.
If p = q or q � p−1, then G is Abelian and the result follows from [7]. Otherwise,
if q | p − 1, we can write G = Zp � Zq. This semidirect product is defined by
some homomorphism

ψ : (Zq,+) → (Zp − {0}, ·) = Z
×
p

∼= Aut(Zp).

Then the product of (a1, b1), (a2, b2) ∈ G is given by

(a1, b1) · (a2, b2) = (a1 + ψ(b1) · a2, b1 + b2).

For polynomials t(1), . . . , t(s) we want to decide whether the system

t(1) = (a(1)
1 , b

(1)
1 ) · (a(1)

2 , b
(1)
2 ) · · · (a(1)

n1
, b(1)

n1
) = (0, 0)

...

t(s) = (a(s)
1 , b

(s)
1 ) · (a(s)

2 , b
(s)
2 ) · · · (a(s)

ns
, b(s)

ns
) = (0, 0)

has a solution. Here, the a
(l)
i are either constants or variables over Zp and the

b
(l)
i are either constants or variables over Zq. This system can be rewritten

using the definition of the semidirect product to get
n1∑

i=1

a
(1)
i

i−1∏

j=1

ψ(b(1)
j ) = · · · =

ns∑

i=1

a
(s)
i

i−1∏

j=1

ψ(b(s)
j ) = 0 (3.1a)

n1∑

i=1

b
(1)
i = · · · =

ns∑

i=1

b
(s)
i = 0 (3.1b)

where the first part (3.1a) is a system of s equations over Zp and the second
part (3.1b) is a system of s equations over Zq. This technique was introduced
in [16] as collecting procedure. The system (3.1b) is a linear system over a finite
field. We denote the variables of this second part by y1, . . . , yn. This system
over Zq can be solved using Gaussian elimination. If there is no solution, then
the overall system does not have a solution. If it has at least one solution,
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we can write the solutions parametrized by some variables z1, . . . , zk over Zq,
i.e. yi =

∑k
j=1 ci,jzj + di for all i = 1, . . . , n with ci,j , di ∈ Zq. Then ψ(yi) =

ψ(di)
∏k

j=1 ψ(zj)ci,j which we can substitute in the first system (3.1a). Hence,
the system (3.1a) is now a system of s polynomial equations over Zp given in
expanded form with some variables a

(l)
i over Zp and some variables ψ(zj) over

Im(ψ). As Im(ψ) is a subgroup of Z
×
p , we can apply Lemma 2.2.

The l-th equation in (3.1a) contains ‖t(l)‖ monomials. Each monomial
has at most length n(p − 1) + 1 where n is the number of variables in the
equation. Hence, the length of every polynomial in equation (3.1a) after all
replacements is at most ‖t(l)‖n(p − 1). Since n ≤ smax1≤l≤s‖t(l)‖, we can
decide with Lemma 2.2 in time

O
(

max
1≤l≤s

(‖t(l)‖2s(p − 1))(p−1)s

)

whether a given system has a solution. For fixed s this is

O
(

max
1≤l≤s

‖t(l)‖2(p−1)s

)
.

This dominates the complexity of applying Gaussian elimination to the second
part (3.1b). Note that for general systems—i.e. s is not fixed—we see that this
algorithm has exponential time. �

4. Proof of Theorem 1.2

Let G = P � A, where P is a finite p-group of order |P | = pα for α ∈ N and
A is a finite Abelian group. Lemma 4 in [6] shows that these are exactly the
finite groups where the commutator subgroup is a p-group. Furthermore, one
can choose P and A in such a way that p � |A|. In [6] it was also shown that
there exists a subnormal series

{e} = N0 � N1 � · · · � Nα = P = M0 � M1 � · · · � Mβ = G

with Ni � P and Ni/Ni−1
∼= Zp for i = 1, . . . , α. Moreover, Mj � G and

Mj/Mj−1
∼= Zpj

for primes pj and j = 1, . . . , β. We can fix a polycyclic
sequence B = (b1, . . . , bα, c1, . . . , cβ), i.e. bi ∈ Ni − Ni−1 for i = 1, . . . , α and
cj ∈ Mj − Mj−1 for j = 1, . . . , β. Then for every element g ∈ G there exists a
unique sequence (u1, . . . , uα, v1, . . . , vβ) with ui ∈ {0, . . . , p−1} for i = 1, . . . , α
and vj ∈ {0, . . . , pj − 1} for j = 1, . . . , β such that g = bu1

1 · · · buα
α cv1

1 · · · cvβ

β , cf.
[10, Lemma 8.3]. The tuple (u1, . . . , uα, v1, . . . , vβ) is called the exponent vector
of g and the expression bu1

1 · · · buα
α cv1

1 · · · cvβ

β the normal form of g (with respect
to the fixed polycyclic sequence B). In [6] it was shown that there exists a finite
field Fq with characteristic p and q ≤ p|A| such that the multiplicative group
F

×
q contains a cyclic subgroup Sj of order pj for all j = 1, . . . , β. Such a field

Fq is called a base field of the group G. We denote the respective isomorphisms
by ϕj : Zpj

→ Sj for j = 1, . . . , β.
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The following lemma from [6] shows how we can reduce multiplication in
G to evaluation of polynomials over Fq. In particular, it shows that we can find
polynomials over Fq which describe the exponent vector of the product g1 · · · gn

for arbitrary g1, . . . , gn ∈ G. These polynomials can be computed in expanded
form in polynomial time and the number of variables in the monomials are
bounded. This can be used to reduce solving an equation over G to solving a
fixed number of equations over Fq.

Lemma 4.1 [6]. For a prime p let P be a p-group of order pα. Let A be an
Abelian group with p � |A| and consider the group G = P � A. Let B =
(b1, . . . , bα, c1, . . . , cβ) be a polycyclic sequence of G. Let Fq denote a base field
of G and ϕ1, . . . , ϕβ the isomorphisms which embed Zpj

into F
×
q . For an arbi-

trary positive integer n let

Xn,α = {xk,i | 1 ≤ k ≤ n, 1 ≤ i ≤ α }
Yn−1,β = { yk,j | 1 ≤ k ≤ n − 1, 1 ≤ j ≤ β }

be disjoint sets of variables. Then there exist f1, . . . , fα ∈ Fq[Xn,α, Yn−1,β ]
given in expanded form such that for arbitrary elements h1, . . . , hn ∈ P and
a1, . . . , an ∈ A with normal forms

hk = b
uk,1
1 · · · buk,α

α c0
1 · · · c0

β ,

ak = b0
1 · · · b0

αc
vk,1
1 · · · cvk,β

β

for k = 1, . . . , n, the normal form of the product h1a1 · · · hnan is

h1a1 · · · hnan = b
f
Fq
1 (u1,1,...,un,α,ϕ1(v1,1),...,ϕβ(vn−1,β))

1 · · ·
b
f
Fq
α (u1,1,...,un,α,ϕ1(v1,1),...,ϕβ(vn−1,β))

α

c
v1,1+···+vn,1
1 · · · cv1,β+···+vn,β

β .

Furthermore, with Cα:=(2p − 2)α−1 each monomial of fi for i = 1, . . . , α
contains at most αCα(q − 1)Cα variables from Xn,α, each polynomial fi can be
furthermore computed in time O(nCα+1) and ‖fi‖ = O(nCα+1).

Proof of Theorem 1.2. We follow the proofs from Lemma 7 and Theorem 1 in
[6] and point out the differences which occur when we consider s equations
instead of one. We consider a system

t(1):= t
(1)
1 · · · t(1)n1

= 1
...

t(s):= t
(s)
1 · · · t(s)ns

= 1

of length n:=
∑s

l=1 nl where all the t
(l)
k for l = 1, . . . , s and k = 1, . . . , nl are

either variables over G or elements (i.e. constants) in G. We fix a polycyclic
sequence B = (b1, . . . , bα, c1, . . . , cβ) of G and a base field Fq of characteristic p.
First, we compute the normal form of all elements t ∈ {t(1)1 , . . . , t

(s)
ns }: if t

(l)
k is
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a constant in the group, we can replace it with its respective normal form. If
t
(l)
k is a variable, we replace it with

t
(l)
k = b

x
(l)
k,1

1 . . . b
x
(l)
k,α

α c
z
(l)
k,1

1 . . . c
z
(l)
k,β

β ,

where x
(l)
k,i are variables over Zp and z

(l)
k,j are variables over Zpj

for l = 1, . . . , s,

k = 1, . . . , nl, i = 1, . . . , α and j = 1, . . . , β. We write y
(l)
k,j :=ϕj(z

(l)
k,j). Then

these y
(l)
k,j are variables over Sj . Replacing all t with their normal form and

creating all variables x
(l)
k,i, y

(l)
k,j , z

(l)
k,j can be done in time O(n).

Now, for every l = 1, . . . , s we define two sets of variables

X(l):=
{

x
(l)
k,i | 1 ≤ k ≤ nl, 1 ≤ i ≤ α

}

Y (l):=
{

y
(l)
k,j | 1 ≤ k ≤ nl − 1, 1 ≤ j ≤ β

}

where we identify x
(l)
k,i with x

(l̃)

k̃,̃i
if and only if i = ĩ and t

(l)
k and t

(l̃)

k̃
are the

same variables over G and analogously for y
(l)
k,j . We furthermore write

Z(l):=
{

z
(l)
k,j | 1 ≤ k ≤ nl, 1 ≤ j ≤ β

}
.

Now, applying Lemma 4.1 on every group polynomial t(l) yields polynomials
f

(l)
1 , . . . , f

(l)
α ∈ Fq[X(l), Y (l)] such that

t(l) = b
f
(l)
1 (X(l),Y (l))

1 · · · bf(l)
α (X(l),Y (l))

α c
g
(l)
1 (Z(l))

1 · · · cg
(l)
β (Z(l))

β (4.1)

for all l = 1, . . . , s where the polynomials g
(l)
j are of the form

g
(l)
j := z

(l)
1,j + · · · + z

(l)
nl,j

∈ Zpj
[Z(l)].

Computing these polynomials f
(l)
i , g

(l)
j in expanded form can be done with

Lemma 4.1 in time O(
∑s

l=1 nCα+1
l ) = O(max1≤l≤s s nCα+1

l ) and we have
‖f

(l)
i ‖ = O(nCα+1

l ).
Since 1 = b0

1 · · · b0
αc0

1 · · · c0
β and by the uniqueness of the normal form, the

equations (4.1) yield the system

f
(1)
1

(
X(1), Y (1)

)
|Zp,S1,...,Sβ

= · · · = f
(s)
1

(
X(s), Y (s)

)
|Zp,S1,...,Sβ

= 0

...

f (1)
α

(
X(1), Y (1)

)
|Zp,S1,...,Sβ

= · · · = f (s)
α

(
X(s), Y (s)

)
|Zp,S1,...,Sβ

= 0

(4.2a)

g
(1)
1

(
Z(1)

)
= · · · = g

(s)
1

(
Z(s)

)
= 0

...

g
(1)
β

(
Z(1)

)
= · · · = g

(s)
β

(
Z(s)

)
= 0.

(4.2b)
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Now, (4.2a) is a system of sα many equations over Fq and (4.2b) a system of s

many equations over Zpj
for every j = 1, . . . , β. We define h

(l)
j :=y

(l)
1,j · · · y(l)

nj ,j .

Then g
(l)
j

(
Z(l)

)
= 0 over Zpj

if and only if h
(l)
j

(
Y (l)

) |Sj
= 1 over Fq. Hence,

we can translate the system (4.2b) into equations over Fq. The variables in
X(l) are over Zp. Since every function over a finite field can be written as
a polynomial, we have a polynomial π ∈ Fq[x] given in expanded form with
Im(π) = Zp ⊆ Fq. We can now replace every x

(l)
k,i with π(x(l)

k,i) in f
(l)
i . Because

of Lemma 4.1 the monomials in f
(l)
i contain at most αCα(q − 1)Cα number of

variables of Xn,α. Then, since the length of π only depends on the group, we
have

‖f̃
(l)
i ‖ ≤ ‖f

(l)
i ‖ · ‖π‖αCα (q−1)Cα

= O(‖t(l)‖Cα+1)

and we can compute the expanded form f̃
(l)
i of the new polynomials in time

O(max1≤l≤s s nCα+1
l ). We now have the system

f̃
(1)
1

(
X(1), Y (1)

)
|Fq,S1,...,Sβ

= · · · = f̃
(s)
1

(
X(s), Y (s)

)
|Fq,S1,...,Sβ

= 0

...

f̃ (1)
α

(
X(1), Y (1)

)
|Fq,S1,...,Sβ

= · · · = f̃ (s)
α

(
X(s), Y (s)

)
|Fq,S1,...,Sβ

= 0

h
(1)
1

(
Y (1)

)
|S1 − 1 = · · · = h

(s)
1

(
Y (s)

)
|S1 − 1 = 0

...

h
(1)
β

(
Y (1)

)
|Sβ

− 1 = · · · = h
(s)
β

(
Y (s)

)
|Sβ

− 1 = 0

which we can solve in time

O
(

max
1≤l≤s

n
s(Cα+1)(q−1)(α+β)
l

)

because of Lemma 2.2. This also dominates the time complexity of the rewrit-
ing steps. Now, we adopt the argument from the proof of Theorem 1 in [6] to
show that

(Cα + 1)(q − 1)(α + β) ≤ |G||G| log2 |G|.
Since |G| = pαp1 · · · pβ for primes p, p1, . . . , pβ , we have

log2 |G| = α log2(p) +
β∑

j=1

log2(pj) ≥ α + β

and

Cα + 1 = (2p − 2)α−1 + 1 ≤ 2 (2p)α−1 ≤ p (p2)α−1 = p2α−1.
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Furthermore, as q ≤ p|A| we have

(Cα + 1)(q − 1) ≤ p2α−1(p|A| − 1) < p2α+|A|−1.

If |A| = 1, then

p2α+|A|−1 = p2α ≤ (pα)pα

= |G||G|.

Otherwise, we have |P | + |A| ≤ |P | · |A| = |G| and

p2α+|A|−1 ≤ p2α+|A| ≤ p|P |+|A| ≤ |G||G|.

Therefore, we have (Cα +1)(q − 1)(α +β) ≤ |G||G| log2 |G|. Hence, in total we
can check in time O(max1≤l≤s‖t(l)‖s|G||G| log2 |G|) whether a given system has
a solution. �

Proof of Corollary 1.3. If p = 2, then Z2pα is a p-group and we can apply
Theorem 1.2 directly. So let p �= 2. Then we have Z2pα = Z2 × Zpα . Automor-
phisms on Z2 × Zpα act identically on Z2 and as an arbitrary automorphism
on the second part Zpα , cf. [18]. Hence,

(Z2 × Zpα) � A ∼= Z2 × (Zpα � A).

Therefore, if we have a system over G, we can separately solve a system over
Z2 and a system over Zpα � A. We can solve entire systems over Z2 using
Gaussian elimination. In particular, we can check whether s given equations
have a solution. For the second part we can apply Theorem 1.2 and can check
whether there is a solution in polynomial time as well. �
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[15] Horváth, G., Lawrence, J., Willard, R.: The complexity of the equation solvabil-
ity problem over finite rings. Preprint (2017)
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