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Finitary shadows of compact subgroups
of S(ω)
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Abstract. Let LF be the lattice of all subgroups of the group SF (ω) of
all finitary permutations of the set of natural numbers. We consider sub-
groups of SF (ω) of the form C ∩ SF (ω), where C is a compact subgroup
of the group of all permutations. In particular, we study their distribu-
tion among elements of LF . We measure this using natural relations of
orthogonality and almost containedness. We also study complexity of the
corresponding families of compact subgroups of S(ω).
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1. Introduction

Let SF (ω) be the group of all finitary permutations of ω (= the set of natural
numbers). This means that the elements of SF (ω) are exactly permutations
g ∈ S(ω) with finite support. We remind the reader that S(ω) is the group of all
permutations of ω and the support of g ∈ S(ω) is the following set supp(g) =
{x | g(x) �= x}. The group SF (ω) appears in many parts of mathematics.
We just mention the theory of locally finite groups [1] and the fact that the
unique AFD von Neumann factor of type II1 is defined as V N(SF (ω)) [8].
The algebraic structure of subgroups of SF (ω) is described in [6,7].

Let LF be the lattice of all subgroups of the group SF (ω). In [5] the
author studied some van Douwen invariants of LF . In the classical case these
cardinals describe properties of the lattice of subsets of ω with respect to the
relations of almost containedness and orthogonality associated with the ideal
of finite sets (see [10]). In [5] this approach is applied to LF and the ideal IF of
all finite subgroups. The appropriate invariants corresponding to a, h, p, t, r, s
were introduced and studied. The aim of the present paper is to apply the
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methods of [5] to the subsemilattice of shadows of compact subgroups of S(ω),
i.e. groups of the form SF (ω) ∩ C, where C is a compact subgroup of S(ω).

It is worth noting here that the structure of compact subgroups in S(ω)
is quite complicated. For example it is proved in [3] that the isomorphism
relation on the family of compact subgroups of S(ω) is as complicated as
the isomorphisms relation on graphs. There subgroups are considered in the
natural Borel space of subgroups of S(ω), see preliminaries below. We will also
use this approach.

We consider S(ω) as a complete metric space by defining

d(g, h) =
∑

{2−n | g(n) �= h(n) or g(−1(n)) �= h(−1(n))}.

Let S<∞ denote the set of all bijections between finite substes of ω.
We shall use small Greek letters δ, σ, τ to denote elements of S<∞. For any
σ ∈ S<∞, let dom[σ], rng[σ] denote the domain and the range of σ respectively.
Let

S+
<∞ = {σ ∈ S<∞ | dom[σ] is an initial segment of ω}.

Initial segments of ω will be identified with the corresponding ordinals. For
every σ ∈ S<∞, let Nσ = {f ∈ S∞ | f ⊇ σ}. The family {Nσ | σ ∈ S+

<∞} is a
basis of the Polish topology of S(ω). Given a subset D ⊂ S(ω), we define the
following tree TD = {σ ∈ S+

<∞ | D ∩ Nσ �= ∅}.

The Effros structure on S(ω) is the standard Borel space consisting of
F(S(ω)), the set of closed subsets, together with the σ-algebra generated by
the sets

CU = {D ∈ F(S(ω)) | D ∩ U �= ∅},where U is open.

We mention here that the set U(S(ω)) of all closed subgroups of S(ω) is
a Borel subset of F(S(ω)) (see Lemma 2.5 of [3]).

Recall that throughout the paper LF denotes the lattice of all subgroups
of SF (ω) and IF - the ideal of all finite subgroups. We say that G1 and G2

from LF \ IF are orthogonal if their intersection is in IF . The group G1 is
almost contained in G2 (G1 ≤a G2) if G1 is a subgroup of a group finitely
generated over G2 by elements of SF (ω). These relations were introduced in
[5]. The van Douwen invariants for LF mentioned above were defined with
respect to them.

The main results of the paper concern the structure of shadows of com-
pact subgroups with respect to orthogonality and almost containedness. In this
way, we extend several results from [5] concerning chains, antichains and reap-
ing families. We assume that the reader knows some basic set theory, [4], [9],
for example Martin’s Axiom. For basic material on Polish spaces used in the
paper, see [2]. Cardinal numbers which we sometimes mention can be found
in [10].
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2. Compact subgroups of SF (ω) and characteristics

The following description of compact subsets/subgroups of S(ω) is a well-
known fact with an easy proof. It implies that the subset of F(S(ω)) consisting
of all compact subgroups of S(ω) is Borel (see [3]). We will denote it by C.

Lemma 2.1. (1) A closed subset D ⊂ S(ω) is compact if and only if the tree
TD is finite at each level.

(2) A subgroup G ≤ S(ω) has compact closure if and only if all of its orbits
on ω are finite.

Let ω =
.⋃{Yi | i ∈ ω} be a partition of ω into pairwise disjoint nonempty

finite subsets. For every i ∈ ω, let Si be a subgroup of Sym(Yi). We consider
Si as a subgroup of S(ω) extending its action to ω \ Yi by identity. We allow
that some pairs (Si, Yi) can be of the form ({id}, {n}), where n ∈ ω. It is clear
that the group 〈⋃{Si | i ∈ ω}〉 is a subgroup of SF (ω) and its closure in S(ω)
is the compact group

∏{Si | i ∈ ω} with the natural action on ω.

Lemma 2.2. (i) Any compact subgroup of S(ω) is a closed subgroup of a
group of the form

∏{Si | i ∈ ω} as above.
(ii) Any finitary shadow of a compact subgroup of S(ω) is a subgroup of a

group of the form 〈⋃{Si | i ∈ ω}〉 as above.

Proof. Let G be a compact subgroup of S(ω) and let
.⋃{Yi | i ∈ ω} be a

partition of ω into G-orbits. By Lemma 2.1 all Yi are finite. Let Si be the
subgroup of Sym(Yi) induced by G. Then G ≤ ∏{Si | i ∈ ω} and

SF (ω) ∩
∏

{Si | i ∈ ω} = 〈
⋃

{Si | i ∈ ω}〉.
The rest is clear. �
2.1. Between LF and C

The following lemma is a paraphrase of Lemma 2.4 from [3].

Lemma 2.3. For every X ⊆ SF (ω), the following relation is Borel.

A(X) = {(Y,Z) ∈ C2 | X ⊆ Y Z}
Proof. Notice that X ⊆ Y Z is equivalent to the Borel condition

(∀α ∈ TX)(∃β ∈ TY )(∃γ ∈ TZ)(α = β ◦ γ).

For the nontrivial implication, assume f ∈ X. Then to every n ∈ ω we can
assign a pair (βn, γn) ∈ TY × TZ such that f |n = βn ◦ γn or equivalently a
pair (gn, hn) ∈ Y × Z such that f |n = (gnhn)|n. Since Y × Z is compact as
a product of compact sets, then passing to some converging subsequence if
necessary, we can assume that (gn, hn) converges to some (g, h) ∈ Y × Z such
that limn→∞ gnhn = gh. Therefore f = gh is an element of Y Z. �

For every permutation g ∈ S(ω), denote by Cg the family of all compact
C < S(ω) such that g ∈ C. Note that it is a Borel set, because it can be
expressed as the following intersection

Cg =
⋂

n∈N

{C ∈ C | C ∩ Ng|n �= ∅}.
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The following proposition will be very helpful below.

Proposition 2.4. Let G ∈ LF . The following sets are Borel.
(1) The set of all compact subgroups C of S(ω) such that C ∩ SF (ω) = G.
(2) The set of all compact subgroups C of S(ω) such that G is almost con-

tained in C.
(3) The set of all compact subgroups C of S(ω) such that C∩SF (ω) is almost

contained in G.
(4) The set of all compact subgroups C of S(ω) such that G is orthogonal to

C.

(1) This is a direct consequence of the following equality:

{C | C ∩ SF (ω) = G} =
⋂

g∈G

Cg \
⋃

g∈SF (ω)\G

Cg.

(2) For every finite D ⊂ ω, let S(D) = {g ∈ SF (ω) | supp(g) ⊆ D}. Then,
G ≤a C if and only if G ⊆ 〈C ∪ S(D)〉, for some finite D ⊆ ω. On the
other hand, if D is a union of finitely many orbits of C, then 〈C∪S(D)〉 =
S(D)C.
Summarizing the above, we have

G ≤a C ⇔ ∃D ( G ⊆ S(D)C ∧ (D is finite )).

Now we apply Lemma 2.3 to conclude that for given G, the set {C |
G ≤a C} is equal to the union

⋃{A(G)|S(D) | D is a finite subset of ω},
where A(G)|S(D) denotes the section of A(G) with respect to the first
coordinate Y = S(D).

(3) First, observe that for given H < SF (ω), the set below is Borel.

CH = {C ∈ C | C ∩ SF (ω) ⊆ H}.

Indeed, we have

CH = C \
⋃

g∈SF (ω)\H

Cg.

Hence the following set is Borel:

{C | C ∩ SF (ω) ≤a G} =
⋃

{C〈A∪G〉 | A < SF (ω), A finite}.

(4) C is orthogonal to G if and only if g �∈ C, for all but finitely many g ∈ G.
Therefore

{C ∈ C | C ⊥ G} =
⋃

{(
⋂

g∈G\A

(C \ Cg)) | A ⊆ G,A is finite}. �

2.2. Characteristics

It is clear that two finitary groups with finite orbits can generate a subgroup of
S(ω) with infinite orbits. Thus by Lemma 2.2 (ii), finitary shadows of compact
subgroups do not form a sublattice of LF . On the other hand it is obviously a
meet-subsemilattice of LF . It is also worth noting that the set LF \ IF does
not have minimal elements. This follows from the following lemma.
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Lemma 2.5. Let G ∈ LF \ IF and m ∈ ω. Then:
(i) there exists a non-trivial g ∈ G such that supp(g) ∩ m = ∅,
(ii) moreover, for any H ⊂ Sym(m) and any sequence G0, G1, . . . , Gn ∈

LF \ IF of groups orthogonal to G, the above g can be chosen such that
additionally 〈H, g〉 ∩ Gi = 〈H〉 ∩ Gi, for i ≤ n.

The proof may be found in [5], Lemma 2.3. By statement (i) any infinite
G < SF (ω) contains a sequence (gn) of permutations with pairwise disjoint
supports. Any proper subsequence of (gn) generates a proper subgroup of G.
Thus, G cannot be minimal. This supports the claim made before the lemma.

Moreover, taking appropriate powers we can additionally require that
every gi consists of cycles of the same prime length greater than 1 (which can
differ for distinct elements of (gi)). Indeed if pα1

1 pα1
2 . . . pαs

s is the factorization
of the order of gi into prime factors with non-trivial αj , j ≤ s, then the order
of gk

i is prime, where k = pα1−1
1 pα1

2 . . . pαs
s .

Hence we may assume that the subgroup 〈gi〉 has the closure which is
contained in a group of the form described in Lemma 2.2(i), where each Si

is cyclic. Since these shadows will play the main role in our arguments we
introduce a notion characterizing them.

Definition 2.6. Let (gn) be a sequence of permutations from SF (ω) with pair-
wise disjoint supports such that every gi consists of cycles of the same length
greater than 1. We say that a function f : ω \ {0} → ω ∪ {∞} is the char-
acteristic of this sequence if for every i > 1, the value f(i) is the number of
elements of order i in the sequence and f(1) is the number of points fixed by
all gi.

We say that f : ω \ {0} → ω ∪{∞} is a potential characteristic if it is the
characteristic of some sequence as above.

Note that the characteristic of (gn) is already determined by the subgroup
〈g0, g1, . . .〉. This follows from the fact that any sequence of generators of this
subgroup of the form as above is equal to some (gk0

0 , gk1
1 , . . .) where ki is prime

to the order of gi. Moreover the family of potential characteristics can be
described as follows.

• A function f : ω \ {0} → ω ∪ {∞} is a potential characteristic if and only
f has infinitely many values or there is i > 1 such that f(i) = ∞.

Definition 2.7. Let f be a potential characteristic and G be a subgroup of S(ω).
We say that G accepts f if there is a sequence (g0, g1, . . .) of permutations as
in Definition 2.6 such that G contains all gi and f is the characteristic of
(g0, g1, . . .).

Lemma 2.8. Let f : ω \ {0} → ω ∪ {∞} be a potential characteristic. Then the
set {C ∈ C | C accepts f} is Borel.

Proof. Fix an arbitrary sequence (rn) of natural numbers such that each i ∈
ω \ {0} appears in (rn) exactly f(i)-many times. For every n ∈ ω, let Sn be
the countable family of infinite sequences (gn,k) ∈ (SF (ω))ω satisfying the
following conditions:
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(i) (∀k, l)(k �= l ⇒ supp(gn,k) ∩ supp(gn,l) = ∅);
(ii) (∀k < n)(the order of gn,k is rk);
(iii) (∀k ≥ n)(gn,k = idω).

We claim that

{C ∈ C | C accepts f} =
⋂

n∈ω

⋃

(gn,k)∈Sn

⋂

k

Cgn,k
.

To justify ⊆ take any compact C accepting f and let (g′
k) be any sequence

of finitary permutations witnessing this, i.e. the supports of (g′
k) are pairwise

disjoint and for every i > 0 there are f(i)-many elements of order i. Moreover,
by permuting (g′

n) if necessary, we may assume that the order g′
k is rk. Now,

for every n, define (gn,k) follows:

gn,k =

{
g′

k, k ≤ n,

idω, k > n.

Then (gn,k) ∈ Sn and C ∈ ⋂
k Cgn,k

, for every n ∈ ω.
For ⊇, suppose that

C ∈
⋂

n∈ω

⋃

(gn,k)∈Sn

⋂

k

Cgn,k

and for every n ∈ ω choose an arbitrary (gn,k) ∈ Sn such that for each k,
gn,k ∈ C. Then ((gn,k) | n ∈ ω) is a sequence of elements Cω. By the Tychonoff
product theorem, the latter is compact. Hence the sequence ((gn,k) | n ∈ ω)
contains a subsequence ((gni,k) | i ∈ ω) convergent to an element (g′

k) ∈ Cω.
Then for every k ∈ ω, there is ik ≥ k such that for all i ≥ ik, gni,l = g′

l, for all
l ≤ k. This implies that the elements of (g′

k) have pairwise disjoint supports and
satisfy the condition (∀k)(the order of g′

k is rk). This proves that C accepts f .
�

3. The relation of almost containedness

Let f∞ be defined by f∞(n) = ∞, for every n > 0. This is the greatest function
under the natural (partial) ordering of the family of all potential characteristics
(see Definition 2.6).

The following theorem shows that the subsemilattice of finitary shadows
of compact groups is sufficiently dense in LF under <a. Furthermore, f∞ is
the only possible greatest element in the families of potential characteristics
which appear in some natural way. The theorem extends Lemma 2.4 from [5].

Theorem 3.1. For any countable sequence G0 > G1 > · · · > Gi > · · · of
elements of LF \ IF there is a potential characteristic f : ω \ {0} → ω ∪ {∞}
and a finitary shadow G of a compact subgroup of S(ω) accepting f such that
G ≤a Gi, i ∈ ω and any finite subfamily of {Gi | i ∈ ω} ∪ {G} has an infinite
common subgroup.

Moreover, the class of functions f satisfying the conditions of the previous
paragraph for the sequence G0 > G1 > · · · > Gi > · · · has the greatest element
if and only if the function f∞ lies in this class.
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Proof. Let a decreasing sequence G0 > G1 > · · · > Gi > · · · of elements
of LF \ IF be given. For every i ∈ ω choose non-trivial gi ∈ Gi such that
supp(gi) is disjoint from the supports of g0, g1, . . . , gi−1. We can do this by
Lemma 2.5(i). Replacing gi by an appropriate gk

i , we can ensure that each gi

consists of cycles of the same length. Let G be the group generated by all these
gi. Then by Lemma 2.1(2) G is a shadow from LF \IF and there is f accepted
by G. Moreover G ≤a Gi for every i ∈ ω and the condition of ≤ centeredness
holds, i.e. the intersection of any finite subfamily of {Gi : i ∈ ω} ∪ {G} does
not belong to IF .

Assume that for any f realizing the statement of the theorem there is
k > 0 such that f(k) < ∞. To show that such f is not the greatest element
we apply the following procedure. For the first f(k) + 1 steps we define gi to
be arbitrary (pairwise disjoint) cycles of length k, and thereafter follow the
above construction. The group generated by (gi) fulfills the conditions of the
theorem and accepts a characteristic which is not ≤ f . �

Note. It is worth noting that when f = f∞ the Borel set of compact groups
accepting f is dense in F(S(ω)). This follows from the definition of the topol-
ogy on F(S(ω)) and the Baire category theorem. On the other hand it is also
easy to see that for every f �= f∞ this set is nowhere dense in F(S(ω)).

Proposition 3.2. Let a countable sequence G0 > G1 > · · · of elements of LF \
IF and a potential characteristic f : ω \ {0} → ω ∪ {∞} satisfy the terms of
Theorem 3.1. Then the set of all compact groups C accepting f that fulfill the
following conditions is Borel:
(1) C ∩ SF (ω) ≤a Gi, i ∈ ω and
(2) any finite subfamily of {Gi | i ∈ ω}∪{C∩SF (ω)} has an infinite common

subgroup.

Proof. Since (Gi)i∈ω is decreasing, condition (2) above is equivalent to the
following one:
(2′) (∀i ∈ ω)(Gi �⊥ C).
Then the family of all compact sets satisfying conditions (1)–(2) above is equal
to the following countable intersection:

⋂

i∈ω

({C ∈ C | C ∩ SF (ω) ≤a Gi} \ {C ∈ C | C ⊥ Gi}).

By Lemma 2.4(3,4) this is a Borel set. Now to finish the proof it suffices to
intersect the latter with the family of compact groups accepting f , which is
Borel by Lemma 2.8. �

4. The relation of orthogonality

In this section we consider the relation of orthogonality in LF \ IF . We will
see that the groups accepting f∞ are also distinguished in this context. The
following theorem extends the statements of Theorem 2.6 of [5] concerning the
reaping number.
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Theorem 4.1. Let f be a potential characteristic such that f(1) = ∞ and
f(p) = ∞ for all primes p (f(k) is arbitrary for other k ∈ ω). If Ψ ⊂ LF \ IF
is countable, then there exists G ∈ LF \ IF which is a finitary shadow of a
compact subgroup of S(ω) accepting f , such that for every G′ ∈ Ψ the groups
G,G′ are not orthogonal and G′ �≤a G.

Assuming Martin’s Axiom and f = f∞, the statement above holds for
any family Ψ ⊂ LF \ IF of cardinality < 2ω.

Proof. Let {G0, G1, . . .} be an enumeration of Ψ. Assume that each member
of Ψ occurs infinitely often in the enumeration. We construct two sequences of
finitary permutations with pairwise disjoint supports

g0,0, g0,1, g1,0, g1,1, g2,0, . . . and h0, h1, . . .

such that for all i, j ∈ ω, l ∈ {0, 1} we have supp(gi,l)∩ supp(hj) = ∅, gi,0, hi ∈
Gi and for any k ∈ ω\{0, 1} the set {gi,1 | i ∈ ω} contains f(k) cycles of length
k. It is easily seen that Lemma 2.5(i) yields the existence of such sequences.
Replacing every gi,0 by an appropriate gk

i,0, we will ensure that the elements
of (gi,0) are products of cycles of the same prime length (not necessarily the
same for distinct i). Let Ĝ1 = 〈{gi,l | i ∈ ω, l ∈ {0, 1}}〉 and Ĝ2 = 〈h0, h1, . . .〉.
Then Ĝ1, Ĝ2 are orthogonal to each other but they are not orthogonal to any
Gi (since each member of Ψ is enumerated infinitely often). Applying Lemma
2.1(2) it is easy to see that G = Ĝ1 satisfies the conclusion of the first part of
the statement of the theorem.

To prove the second part of this statement we introduce a ccc forcing
notion P as follows.

• P consists of all pairs (H,H ′) where H,H ′ ⊂ SF (ω) are finite, the sup-
ports of any two elements of H ∪ H ′ have empty intersection and each
permutation from H is a tuple of cycles of the same length.

• The order is defined as follows (H,H ′) ≤ (F, F ′) iff F ⊆ H and F ′ ⊆ H ′.
Let Ψ ⊂ LF \ IF have cardinality < 2ω. Applying Lemma 2.5(i) for any
k,m ∈ ω \ {0, 1} and G′ ∈ Ψ we see that the arguments of the first part of the
proof show that the family

{(H,H ′) ∈ P | k < card(H ′ ∩ G′), k < card(H ∩ G′),
H contains at least k elements of order m}

is dense in P. Assume MA. For a generic Φ define Ĝ = 〈⋃{H | (H,H ′) ∈ Φ}〉.
By Lemma 2.1(2) Ĝ is a shadow of a compact subgroup of S(ω). Moreover it
is easily seen that the characteristic of the generating sequence of Ĝ is f∞ and
for any G′ ∈ Ψ, the groups Ĝ, G′ are not orthogonal and G′ is not contained
in Ĝ under ≤a. �

Concerning the condition of the theorem that f(p) = ∞ for all primes p
note the following observation.

Proposition 4.2. Assume that f is a potential characteristic such that for any
countable Ψ ⊂ LF \ IF there exists a sequence (gi) satisfying Definition 2.6
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for f such that for every G′ ∈ Ψ the groups G = 〈g0, g1, . . . , gi, . . .〉 and G′ are
not orthogonal and G′ �≤a G. Then f(p) = ∞ for all primes p.

Proof. Suppose that f(p) < ∞ for some prime p > 1. Consider a family
Ψ containing a group H generated by a sequence of p-cycles with pairwise
disjoint supports. If a group G has an infinite intersection with H, then G is
not generated by g0, g1, . . . , gi, . . . as above. �

In the following proposition we implement a descriptive approach to the
conclusion of Theorem 4.1.

Proposition 4.3. Let f satisfy the assumptions of Theorem 4.1 and let a family
Ψ ⊂ LF \ IF be countable. Then the set of all compact C < S(ω) accepting f
such that for every G ∈ Ψ, C and G are not orthogonal and G �≤a C ∩ SF (ω),
is Borel.

Proof. The considered set can be expressed as the following intersection

{C ∈ C | C accepts f} ∩
⋂

G∈Ψ

({C ∈ C | C �⊥ G} ∩ {C ∈ C | G �≤a C ∩ SF (ω)}).

This set is Borel by Proposition 2.4(2,4) and Lemma 2.8. �

Theorem 4.5 below extends the statements of Theorem 2.6 of [5] con-
cerning the almost disjointness number. To prove it we need the following
lemma (Lemma 2.5 from [5]). We write that G1 is a-equivalent to G2 when-
ever G1 ≤a G2 and G2 ≤a G1.

Lemma 4.4. Let G0, . . . , Gn−1 be a sequence of infinite groups from LF not
a-equivalent to SF (ω). Then for any k,m ∈ ω, k > 0 and H ⊆ Sym(m), there
is a non-trivial finitary permutation ρ consisting of (k + 1)-cycles such that
supp(ρ) ⊂ ω \ m and for every i < n,

〈H, ρ〉 ∩ Gi = 〈H〉 ∩ Gi.

Theorem 4.5. Let f : ω \ {0} → ω ∪ {∞} be a potential characteristic with
infinitely many fixed points. Let Ψ ⊂ LF \ SF (ω)IF be countable. Then there
is a shadow G ∈ LF \ IF accepting f which is orthogonal to every element of
Ψ.

Under Martin’s Axiom this is true for f = f∞ and any Ψ of cardinality
< 2ω.

Proof. For the first part of this statement we construct G by induction. Fix
an enumeration of Ψ: G0, G1, . . .. Let Hn−1 be the set of the elements ρi

constructed at the first n − 1 steps. At the n-th step we choose a permutation
ρn satysfying the thesis of Lemma 4.4 with respect to G0, . . . , Gn, Hn−1 and
mn−1 = sup(

⋃{supp(ρi) : i < n}). Since we can choose ρn of arbitrary order,
we do it so that the characteristic of sequence (ρn) is f . Then the group
H = 〈⋃ Hn〉 is orthogonal to any group from Ψ.

To prove the second part of the statement, given an infinite set Δ ⊂
SF (ω) and an infinite family Ψ ⊂ LF of infinite groups, define a forcing
notion PΔ,Ψ as follows. Let PΔ,Ψ be the set of all pairs (H,F ) where F is a
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finite subset of Ψ and H is a finite set of permutations from Δ such that their
supports are pairwise disjoint. We define (H,F ) ≤ (H ′, F ′) iff H ′ ⊂ H,F ′ ⊂ F
and each h ∈ 〈H〉 \ 〈H ′〉 is not contained in any G ∈ F ′. It is easily verified
that PΔ,Ψ is a ccc forcing notion.

Assume MA. Let Δ be the set of all permutations consisting of cycles of
the same length k, for all k ∈ ω \ {0, 1}. Consider PΔ,Ψ with respect to Δ and
Ψ ⊂ LF of cardinality < 2ω. It is easy to see that the following sets are dense
in PΔ,Ψ (in the latter case apply Lemma 4.4):

• ΣG = {(H,F ) | G ∈ F}, G ∈ Ψ,
• Σl,k = {(H,F ) | the number of the elements of H of order k is > l},

for l ∈ ω, k ∈ ω \ {0, 1}.

By MA we have a filter Φ ⊂ PΔ,Ψ meeting all these Σ’s. It is easy to see that
the group Ĝ = 〈⋃{H | (H,F ) ∈ Φ}〉 is orthogonal to any group from Ψ. If f

is the characteristic of the generating sequence of Ĝ, then f(k) = f∞(k) for
1 < k. Omitting appropriate generators of Ĝ we additionally get f(1) = ∞.

�

The following observation easily follows from Lemmas 2.4 and 2.8.

Proposition 4.6. Let f : ω\{0} → ω∪{∞} satisfy the assumptions of Theorem
4.5. Let Ψ ⊂ LF \SF (ω)IF be countable. Then the set of all compact C < S(ω)
accepting f and orthogonal to any group from Ψ is Borel.

The set under the claim is Borel by Proposition 2.4(4) and Lemma 2.8
since it can be expressed as the following intersection.

{C ∈ C | C accepts f} ∩
⋂

G∈Φ

{C ∈ C | C ⊥ G}. �
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