Algebra Univers. (2020) 81:18
© 2020 The Author(s)
1420-8911,/20/020001-14

published online March 30, 2020 I Algebra Uni li

https://doi.org/10.1007/500012-020-00654-w gebra Umversalis
Check for
updates

Connected monads weakly preserve products

H. Peter Gumm

Dedicated to Ralph Freese, Bill Lampe, and J.B. Nation.

Abstract. If F' is a (not necessarily associative) monad on Set, then the
natural transformation F'(A x B) — F(A) x F(B) is surjective if and only
if F(1) = 1. Specializing F' to Fy, the free algebra functor for a variety
V, this result generalizes and clarifies an observation by Dent, Kearnes
and Szendrei in 2012.

Mathematics Subject Classification. 18A22, 08B10, 08B20.

Keywords. Idempotent free algebra, Connected monad, Preservation
of products.

1. Introduction

A key observation in [2] by T. Dent, K. Kearnes, and A. Szendrei is that for
any variety V with idempotent operations each set theoretic product decom-
position

d:{z,y,z,u} - {a,b} x {a,b}
extends to a surjective homomorphism

6 : Fy({z,y, z,u}) - Fy({a,b}) x Fy({a,b}) (L.1)

from the 4-generated free algebra in V to the square of the 2-generated one.
This fact has an interesting geometric interpretation, which is relevant
in the study of congruence modularity. The shifting lemma from [9], which is
concerned with shifting a congruence v from one side of an oo — (-parallelogram
to the opposite side modulo aA 3, can be specialized to axis-parallel rectangles

Presented by W. DeMeo.
This article is part of the topical collection “Algebras and Lattices in Hawaii” edited by
W. DeMeo.

® Birkhduser

http://crossmark.crossref.org/dialog/?doi=10.1007/s00012-020-00654-w&domain=pdf

18 Page 2 of 14 H.P. Gumm Algebra Univers.

inside a product of algebras where o and (3 are in fact kernels of the projections
and v a factor congruence.

Surjectivity of the above map implies that the projections on the image
commute, and since Kerd = « A 3, it follows that « and (3 also commute
in the preimage. In particular, therefore, the shifting lemma, which in [9] is
the major geometrical tool for studying congruence modularity, is only needed
in situations of permuting congruence relations o and 3. The restriction to
idempotent varieties in these studies is not severe, since a variety is congruence
modular iff its idempotent reduct is congruence modular.

Variations of the shifting lemma (e.g. [1]) and, more recently, categorical
generalizations as in [3] suggest to investigate the situation in a more general
context. In this note, therefore, rather than exploring further ramifications of
the above observation, we explore the abstract reasons behind the surjectivity
of 0 in (1.1). It turns out that we can deal with this in a framework which is
more abstract than universal algebras and varieties. We are rather considering
(not necessarily associative) Set-monads F, of which the functor F),, which
associates with a set X the free algebra F\,(X) and with a map g : X — Y its
unique homomorphic extension g : F,(X) — Fy(Y), is just an example.

2. Monads and main result

Monads on a category C are functors F' : C — C together with two natural
transformations ¢ : Id — F and p: F o F' — F, satisfying two unit laws and
an associative law. Our results will even hold for nonassociative monads, so
skipping the associative law, we shall only state the unit laws:

,UXOLF(X) :idF(X):/LxOFLX (21)
Equations (2.1) are usually expressed as a commutative diagram:

LF(X) Fux

F(X) —X F(F(X)) <X F(X)

N

FX)

Rather easy examples of monads on the category of sets are obtained from
collection data types in programming, such as List(X), Set(X) or Tree(X);
see also [11]. In popular programming languages, List(X) denotes the type of
lists of elements from a base type X. Given a function g : X — Y, the function
map(g) : List(X) — List(Y) which sends [z1,...,2,] € List(X) to the list
l9(z1),...,9(xn)] € List(Y) represents the action of the functor List on maps.
In mathematical notation we write (List g) rather than map(g). Obviously,

Vol. 81 (2020) Connected monads weakly preserve products Page 3 of 14 18

map(f og) = map(f)omap(g) and map(idx) = idris(x), so the pair List(—)
with map indeed establishes a functor.

For List to be a monad, we need a natural transformation ¢ : I'd — List,
as well as a “multiplication” pu : List o List — List. The former can be chosen
as the singleton operator with tx : X — List(X) sending any = € X to the
one-element list [x].

The monad multiplication p is for each type X defined as

px ¢ List{List(X)) — List(X),

taking a list of lists [I1,. .., l,] and appending them into a single list I+ - -+1,,.
Programmers call this operation “flatten”. The unit laws then state that for
each list I = [z1,...,z,] € List(X) we should have

flatten([[x1, ..., zn]]) = [21, ..., 0] = flatten([[z1], .- ., [Tn]]),

which is obvious. Not all monads arise from collection classes, and other uses
of monads have all but revolutionized functional programming, see e.g. [12] or
[15].

Relevant for universal algebraists is the fact that for every variety V the
construction of the free algebra Fy,(X) over a set X is a monadic functor.
In this case, tx : X — Fy(X) is the inclusion of variables, or rather their
interpretations as V—terms.

The defining property of F),(X) states that each map g : X — A for
A €V has a unique homomorphic extension g : F)(X) — A.

From a map f: X — Y, we therefore obtain the homomorphism

Fyf: Fy(X) — Fp(Y)
as the unique homomorphic extension of the composition ¢ty o f : X — F,(Y):

Ro(X) 2 my(y)

7
ij\ JALY
S

X Y
The flattening map p : Fy(Fy (X)) — Fy(X) can be considered as term
composition: a term t(ty, .. ., t,), whose argument positions have been filled by

other terms, is interpreted as an honest V-term. To make this precise, consider
the diagram below, in which Fy,(X) appears in two roles — in the top row as
an algebra and in the bottom row as a set of free variables for Fy,(Fy(X)).

The left square is obtained by instantiating the previous diagram with
Y := Fy(X) and f := tx. The right hand triangle defines px as the homo-
morphic extension of the identity map idp, x) from Fy(X), considered as set
of free variables for Fy(Fy (X)), to F\,(X) considered as a V-algebra.

Fy(X) ——% s By (Fp(X)) — = Fy(X)
LXJ LFV(X)j\ /
'LdFv(X)
X Fy(X)

Lx

18 Page 4 of 14 H.P. Gumm Algebra Univers.

The first monad equation immediately follows from the definition of u, and
the second equation

px o (Fyix) = idp,(x)

follows from the fact that both the left hand side and the right hand side of
this equation are homomorphic extensions of tx : X — F),(X), as can be read
from the diagram, so they must be equal.

The earlier mentioned examples Tree(X), List(X), and Set(X), just
correspond to the free groupoid, the free semigroup, and the free semilattice
over the set X of generators, and are themselves instances of this scheme.

We are now ready to state our main result.

Theorem 2.1. A (not necessarily associative) Set-monad F weakly preserves
products if and only if F(1) = 1.

It will be easy to see (Lemma 4.6 below) that F' weakly preserves the
product Ay x As if and only if the canonical morphism § = (Fry, Frg) in the
below diagram is epi:

F(Al X Ag) F(Al) X F(AQ) (22)

Fr; /

F(A;)

The starting point of our discussion, (1.1) from [2], is therefore seen to represent
an instance of this result when setting A = As = {a,b} and F = Fy. But
before coming to its proof we need a few preparations.

3. Connected functors

Put 1 = {0} and for any set X denote by !x the unique (terminal) map from
X to 1. A Set-functor F is called connected if F(1) = 1. Given a variety V,
the functor Fy, is connected if and only if V is idempotent.

It is well known, see [14], that every Set-Functor F' can be constructed
as a sum of connected functors:

F = Seer)Fe.

For e € F(1) one simply puts Fo.(X) = {u € F(X) | (F!x)(u) = e}. On maps
f: X =Y, each subfunctor F is just the domain-codomain-restriction of F f
to Fu(X).

In the following we denote by ci" : X — Y or, if X is clear, simply by ¢,
the constant map with value y € Y. We shall need the following lemma:
X
Yy
ever ¢ : Id — F is a natural transformation, then ch(=c

Lemma 3.1. If F' is a connected functor, then Fc¢; is a constant map. When-
F(X)

vy (y)

Vol. 81 (2020) Connected monads weakly preserve products Page 5 of 14 18

Proof. Fory € Y, denote by § : 1 — Y the constant map with value y. Observe,

that an arbitrary map f is constant if and only if it factors through 1, i.e.
ci(= golx. Applying F' and adding the natural transformation ¢ into the
picture,

we obtain:

Fcy =FjoFlx
=Fyouolpx)

= LyogO!F(X)

=uy(y)o !F(X)

=X O
vy (y)

In the above, we have seen that connected functors preserve constant
maps. It might be interesting to remark that this very property characterizes

connected functors:

Corollary 3.2. A functor F is connected if and only if for every constant mor-
phism c, the morphism Fc, is constant, again.

Proof. Suppose that F' preserves constant maps. As idy is constant, F'(idy) =
idp(1y) must also be constant, which implies F'(1) = 1. O

In general, the elements of F'(1) correspond uniquely to the natural trans-
formations between the identity functor I'd and F'. This can be seen by instan-
tiating the Yoneda Lemma

nat(Hom(A,—),F) = F(A) (3.1)
with A = 1. Therefore we note:

Corollary 3.3. A monad (F,¢,) is connected if and only if v is the only trans-
formation from the identity functor to F.

Definition 3.4. Let C; be the constant functor with C1(X) = 1 for all X and
C1f = idy for all f. We say that a functor F' possesses a constant, if there is
a transformation from C; to F' which is natural, except perhaps at X = ().

Clearly, each element of F'(f)) gives rise to a constant, but not conversely,
since there is nothing to stop us from changing F' only on the empty set
and on empty maps Ox : § — X by choosing any U C F()) and redefining
F'(0) := U as well as F'0x = Fllxo C¥ . For that reason we do not require
naturality at () in the above definition.

We shall need the following observation:

18 Page 6 of 14 H.P. Gumm Algebra Univers.

Lemma 3.5. A connected functor either possesses a constant or it has the
identity functor as a subfunctor.

Proof. By the Yoneda Lemma, there is exactly one natural transformation
t:Id — F. Assume that some ¢y is not injective, then there are x1 # zo € X
with tx(21) = tx(22). Given an arbitrary Y with y1,y2 € Y, consider a map
f: X — Ywith f(x1) = y; and f(z2) = y2. By naturality,

vy (y1) =ty (f(z1)) = Ffoux(z1) = Ff oux(w2) = 1ty (y2),

hence each ¢y is constant and therefore factors through 1. This makes the
upper and lower triangle inside the following naturality square commute, too.

To ‘/\

Ff
Y1 /
=Y F(Y)

The left triangle commutes since 1 is terminal. If X ## (), the terminal map !y :
X — 1 is epi, from which we now conclude that the right triangle commutes
as well, except, possibly, when X = (). Thus F possesses a constant. O

4. Preservation properties

We are concerned with the question, under which conditions the J in equation
(1.1) is epi. Therefore, we take a look at the canonical map 6 = (F'my, F'ra) :
F(A; x Ay) — F(Ay) x F(Az) which arises from the commutative diagram
(2.2), where m;, resp 7;, denote the canonical component projections.

The first thing to observe is:

Lemma 4.1. 0 = (F'my, Fmy) : F(A; X As) — FA; x F Ay is natural in each
component.

Proof. Assume f : Ay — A} and g : Ay — A, are given. We want to show
that the following diagram commutes:

F(Al « AQ) (F7T1,F7T2)

F(Al) X F(A2)
F(fxg)i

(A} x Ay)

lFfXFg

Fﬂi,Fﬂé
W Im) . R(Ay) x F(AD)

Vol. 81 (2020) Connected monads weakly preserve products Page 7 of 14 18

We calculate:

((Ff x Fg)o (Fm, Fra))(u) =

F(myo f x g)(u))
=((Fr1 o F(fxg)))(Fﬂz o F(fxg))(u))
=(F(m)(F(fxg)(w),F(m5)(F(f xg)(u)))
= (Fmy, Fmy) (F(fxg)(u))
= ((Fmy, Fry) o F(f % g)) (u). O

Notice that in order for § to be surjective, the functor F' must be con-
nected or trivial.

Lemma 4.2. If the canonical decomposition as in Theorem 2.1 is always epi,
then either F'(1) 2 1 or F is the trivial functor with constant value ().

Proof. For the projections 71,7 : 1 X 1 — 1 we have m; = 79, since 1 is a
terminal object, hence also F'ry = F'ry. Let 11,12 be the projections from the
product F'(1) x F(1) to its components. Then

m o (Fm, Fry) = Fry = Frg = g o (Frry, Frma).

By assumption, § = (F'm1, F'mg) is epi, so 11 = 1. For arbitrary a,b € F(1)
then (a,b) € F(1) x F(1), so

a= nl(aab) = 772(0’3 b) =b.
So F(1) either has just one element, or F(1) = (. In the latter case, for each

set X the map !y : X — 1 should yield a map Flx : F(X) — F(1), so
F(1) = () implies F(X) = 0. a

Next, recall some elementary categorical notions.

Definition 4.3. Given objects Aj, As in a category C, a product of Ay and
As is an object P together with morphisms p; : P — A;, such that for any
“competitor”, i.e. for any object Q with morphisms ¢; : Q@ — A;, there exists
a unique morphism d : Q — P, such that ¢; = p; od for ¢ = 1, 2. Products, if
they exist, are unique up to isomorphism and are commonly written A; x As.

Similarly, given morphisms f; : Ay — B and fs : As — B with common
codomain B, their pullback is defined to be a pair of maps p; : P — A; and
po : P — A with common domain P such that

Jiopr = faope
and for each “competitor”, i.e. each object @) with morphisms ¢; : Q@ — A;
and g9 : QQ — As also satisfying fioq; = faoqs there exists a unique morphism
d:@Q — P sothat p;od=¢; for i = 1,2 (see Figure 1).
In both definitions, if we drop the uniqueness requirement, we obtain the
definition of weak product, resp. weak pullback.

18 Page 8 of 14 H.P. Gumm Algebra Univers.

resp.

FIGURE 1. (Weak) pullback and (weak) product

Notice that in case there exists a terminal object 1, the product of Aq
with As is the same as the pullback of the terminal morphisms !4, : A; — 1.

Weak products (weak pullbacks) arise from right invertible morphisms
into products (pullbacks):

Lemma 4.4. If (P, p1,p2) is a product (resp. pullback), then (W, wq,ws) is a
weak product (resp. weak pullback) if and only if there is a right invertible
w : W — P such that w; = p; ow.

Proof. Tf w has a right inverse e, and (Q, ¢1, ¢2) is a competitor to W, then it is
also a competitor to P, hence there is a morphism d : Q — P with ¢; = p; od.
Then e o d is the required morphism to W. Indeed,

w;o(eod)=piowoeod=p;od=g.

Conversely, assume that (W, wy,ws) is a weak product, then both W and
P are competitors to each other, yielding both a morphism w : W — P with
w; = p; ow and a morphism e : P — W with p; = w; oe.

Now (P, p1,p2) is also a competitor to itself, yet both p; o (woe) = p;
and p; oidp = p; for i = 1,2. By uniqueness it follows that woe = idp, so w is
indeed right invertible. (The same proof works for the case of weak pullbacks).

O

Definition 4.5. Let F' : C — D be a functor. We say that F weakly preserves
products (pullbacks) if whenever (P,p1,p2) is a product (pullback), then its
image (F'(P), Fp1, Fp2) is a weak product (weak pullback).

It is well known that a functor weakly preserves a limit L if and only
it preserves weak limits, see e.g. [5]. Surjective maps are right invertible, so
regarding (1.1) or its more general formulation (2.2), we now arrive at the
following relevant observation:

Lemma 4.6. The canonical map 6 in (2.2) is epi if and only if F weakly pre-
serves the product (A; X Ay, m,ms).

Whereas the above mentioned result of [2], in which the monad F' is the
free-algebra-functor Fy, served a purely universal algebraic purpose, it also
has an interesting coalgebraic interpretation. It is well known that coalge-
braic properties of classes of F-coalgebras are to a large degree determined by
weak pullback preservation properties of the functor F', which serves as a type

Vol. 81 (2020) Connected monads weakly preserve products Page 9 of 14 18

or signature for a class Coalgr of coalgebras. Prominent structure theoretic
properties can be derived from the assumptions that F' weakly preserves pull-
backs of preimages, kernel pairs or both, see e.g. [4,5,6,7,8,13]. Here we add
one more property to this list: preservation of pullbacks of constant maps.

Theorem 4.7. Let F' be a nontrivial functor. Then the following are equivalent:

(1) F has no constant and weakly preserves products.
(2) F is connected and weakly preserves pullbacks of constant maps.

Proof. If F is nontrivial and weakly preserves the product 1 x1 = 1, then F is
connected as a consequence of Lemma 4.2. Since F' has no constants, F()) = ()
and moreover Lemma 3.5 provides Id as a subfunctor of F'. Thus we obtain a
natural transformation ¢ : I'd — F which is injective in each component.

Let now cfl : X; — Y for i = 1,2 be constant maps with y; € Y.
Applying F', Lemma 3.1 yields Fci" = ci/(();‘; fori=1,2.

If y1 = yo then the pullback of the ci’ is simply (X1 x Xa,m,7m2).
The F cifl are constant maps with the same target value vy (y1) = ty(y2),
so their pullback is the product F(X;) x F(X3) with canonical projections
n; : F(X1) x F(X3) — F(X;). By assumption, F' weakly preserves products,
which gives us a surjective canonical map § : F(X; x X3) — F(X1) x F(X3)
with Fm; = n; o d, so Lemma 4.4 ensures that (F(X; x X3), Frry, Frg) is a
weak pullback of the Fci(

If y1 # o, then the pullback of the C‘;(is (0,0x,,0x,), the empty
set) with empty mappings Ox,: @ — X;. Since ¢y is injective, the Fe,,
are constant maps with disjoint images, too, consequently their pullback is
(0,97(x,),Dp(x,)). This is the same we would obtain by applying F' to the
pullback of the ¢,,, taking into account that F'(()) = 0.

For the reverse direction, suppose that F' is connected and weakly pre-
serves pullbacks of constant maps. The product (X; x X, 71, m2) is at the
same time the pullback of the terminal maps !x, : X; — 1. Applying F' and
considering that F'(1) = 1, we see that the F'lx, are also terminal maps, so
their pullback is (F'(X7) x F(X2),m1,7n2). Thus, if F weakly preserves the pull-
back of the !x,, then we must have that (F(X; x Xa), Fm, F'ra) is a weak
pullback of the Flx, which by Lemma 4.4 means that there exists a surjective
mapé:F(Xl><X2)—>F(X1)xF(Xg)WithnioézFﬂ'i.]

The following example demonstrates that the requirement that F' has no
constants is essential in Theorem 4.7.

Example 4.8. Consider the functor T" with T(X) = X?/A where A is the
equivalence relation on X? identifying any two elements in the diagonal of X2.
For 21,79 € X, we denote the elements of X2/A by (z1,x9) if 21 # z2 and by
1 otherwise. On maps f : X — Y the functor T is defined as (T'f)(L) = L
and

1 if f(x1) = f(22),

(Tf)(x1,22) = {(f($1),f(x2)) else.

18 Page 10 of 14 H.P. Gumm Algebra Univers.

Then T is a functor and the projection ma : X2 — X?2/A is a natural trans-
formation. Even though T'(()) = 0, the functor does have a constant, L.

The map 0 = (Tm,Tme) : T(X xY) - T(X) x T(Y) is surjective: If
X = (or Y = () this is trivial, otherwise fix some z € X and y € Y. Then
((x1,22), (y1,92)) € T(X) x T(Y) has preimage ((z1,y1), (z2,y2)). Preimages

of ((z1,22), L) and of (L, (y1,42)) are ((z1,y)(22,y)) and ((z, 1), (2,92)).
Finally (L, L) has preimage L. Thus T weakly preserves products.

To see that T does not weakly preserve pullbacks of constant maps, con-
sider ¢, ¢ : X — {0,1} whose pullback is (). But T(c{) = T(c¥) = Ci(x)
and their pullback is T'(X) x T'(X). Clearly there is no way to find a surjective
map from T'(0) = 0 to T(X) x T(Y) as would be required by Lemma 4.4.

5. Proof of the main theorem

We are finally turning to the proof of Theorem 2.1, verifying the surjectivity of
0 = (F'my, Frg) when (F, ¢, u) is a monad. Thus given (p, q) € F(A;) x F(As),
we are required to find an element ¢ € F(A; x As) such that (Frp)(t) = p and
(Fm2)(t) = q.
For each a € A; we define a map o, : Ao — A X As by
oa(b) := (a,b).

Next we define 7: A — F(A; x As) by
7(a) := (Foa)(q).

The following picture gives an overview, where the lower squares commute due
to the fact that p is a natural transformation,

o F(Al X Ag) - F(AQ)
F(F(A) F(F(A; x Az)) F(F(As))

FFmy FFry

and the commutativities involving the dotted arrows will be established in the
following auxiliary lemma:
Lemma 5.1.

(1) FmyoT =14,
(2) FryoT =c}.

Vol. 81 (2020) Connected monads weakly preserve products Page 11 of 14 18

Proof. From the definition it follows that m o o, = cg‘Q and mg 0 0, = ida,.
Using these, and Lemma 3.1, we calculate:

~
b
fin
—~
S
-
—
=
~—

and similarly

whence (F'mg o 7) is the constant map cj;h : A; — F(Ag). O

With these lemmas in place, we can finish the proof of Theorem 2.1. We

set
t:= (pa,xa, o F1)(p)
and claim:
(Fm)(t) = p (5.1)
(F'mo)(t) = g- (5.2
In order to show (5.1), we calculate, using naturality of u, for i =1,2:

FTQ)((MAl X Az OFT)(p))

(Fmi) () = (
= (Fmi OﬂAlezoFT)(p)
= (
= (

pa, o F(FmioT))(p).
Then for ¢ = 1 we continue, using Lemma 5.1 and the first monad law:
(na, o F(Fmyo7))(p) = (1a, © Fra,)(p)

= idp(a,)(p)
=D,

18 Page 12 of 14 H.P. Gumm Algebra Univers.

whereas for i = 2 we obtain, using Lemmas 5.1 and 3.1 as well as the second
monad law:

(pa, 0 F(Fmy07))(p) = (1a, © F(c)"))(p)
= (g0,)) ()

= HA, (LF(AQ)(Q))

= (ka, © Ltr(4,))(q)

Corollary 5.2. Let a = Kerm and 3 = Kerm, then
F(Ax B)/ahB=F(A) x F(B).

6. Conclusion

We have shown that a key observation in the work of Dent, Kearnes and
Szendrei [2] results from a weak limit preservation property which results from
the free-algebra functor F), being a (not necessarily associative) monad. Such
weak limit preservation properties of Set—functors are highly relevant when
using such functors as type functors for coalgebras.

Indeed, in a forthcoming paper [10] weak preservation of kernel pairs and
preservation of preimages by Fy will be characterized by syntactic criteria for
the equations ¥ defining the variety V.

Acknowledgements

Open Access funding provided by Projekt DEAL. I am sincerely indebted to
Peter Jipsen and Andrew Moshier for inspiring discussions during my stay at
Chapman University, where the main result of this note was obtained.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the orig-
inal author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vol. 81 (2020) Connected monads weakly preserve products Page 13 of 14 18

References

[1] Chajda, I., Czédli, G., Horvath, E.: The shifting lemma and shifting lat-
tice identities. Algebra Universalis 50, 51-60 (2003). https://doi.org/10.1007/
s00012-003-1808-2

[2] Dent, T., Kearnes, K.A., Szendrei, A An easy test for congruence mod-
ularity. Algebra Universalis 67(4), 375-392 (2012). https://doi.org/10.1007/
s00012-012-0186-z

[3] Gran, M., Rodelo, D., Nguefeu, I.T.: Variations of the shifting lemma and gour-
sat categories. Algebra Universalis 80(1) (Jan 2019). https://doi.org/10.1007/
s00012-018-0575-2

[4] Gumm, H.P.: Elements of the general theory of coalgebras. In: LUATCS 99.
Rand Afrikaans University, Johannesburg, South Africa (1999), https://www.
mathematik.uni-marburg.de/~gumm /Papers/Luatcs.pdf

[6] Gumm, H.P.: Functors for coalgebras. Algebra Universalis 45, 135-147 (2001).
https://doi.org/10.1007 /s00012-001-8156-x

[6] Gumm, H.P., Schroder, T.: Coalgebraic structure from weak limit preserving
functors. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science. Elec-
tronic Notes in Theoretical Computer Science, vol. 33, pp. 113-133. Elsevier
Science, Amsterdam (2000). https://doi.org/10.1016/S1571-0661(05)80346-9

[7] Gumm, H.P., Schréoder, T.: Monoid-labeled transition systems. Electron.
Notes Theor. Comput. Sci. 44, 184-203 (2001). https://doi.org/10.1016/
S1571-0661(04)80908-3

[8] Gumm, H.P., Schroder, T.: Types and coalgebraic structure. Algebra Universalis
53, 229-252 (2005). https://doi.org/10.1007/s00012-005- 1888-2

[9] Gumm, H.P.: Geometrical methods in congruence modular algebras. No. 286
in Memoirs of the AMS, American Mathematical Society (1983), https://
bookstore.ams.org/memo-45-286

[10] Gumm, H.P.: Free-algebra functors from a coalgebraic perspective. In: Coalge-
braic Methods in Computer Science (CMCS 2020). IFIP-LNCS, Springer (to
appear), https://arxiv.org/abs/2001.08453

[11] Manes, E.G.: Implementing collection classes with monads. Math. Struct. Com-
put. Sci. 8(3), 231-276 (1998). https://doi.org/10.1017/S0960129598002515

[12] Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55—
92 (1991). https://doi.org/10.1016,/0890-5401(91)90052-4. selections from 1989
IEEE Symposium on Logic in Computer Science

[13] Rutten, J.: Universal coalgebra: A theory of systems. Tech. rep., CWI, Amster-
dam (1996), CS-R9652

https://doi.org/10.1007/s00012-003-1808-2
https://doi.org/10.1007/s00012-003-1808-2
https://doi.org/10.1007/s00012-012-0186-z
https://doi.org/10.1007/s00012-012-0186-z
https://doi.org/10.1007/s00012-018-0575-z
https://doi.org/10.1007/s00012-018-0575-z
https://www.mathematik.uni-marburg.de/~gumm/Papers/Luatcs.pdf
https://www.mathematik.uni-marburg.de/~gumm/Papers/Luatcs.pdf
https://doi.org/10.1007/s00012-001-8156-x
https://doi.org/10.1016/S1571-0661(05)80346-9
https://doi.org/10.1016/S1571-0661(04)80908-3
https://doi.org/10.1016/S1571-0661(04)80908-3
https://doi.org/10.1007/s00012-005-1888-2
https://bookstore.ams.org/memo-45-286
https://bookstore.ams.org/memo-45-286
https://arxiv.org/abs/2001.08453
https://doi.org/10.1017/S0960129598002515
https://doi.org/10.1016/0890-5401(91)90052-4

18 Page 14 of 14 H.P. Gumm Algebra Univers.

[14] Trnkova, V.: On descriptive classification of set-functors. i. Commentationes
Mathematicae Universitatis Carolinae 012(1), 143-174 (1971), http://eudml.
org/doc/16419

[15] Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461-493
(1992). https://doi.org/10.1017/S0960129500001560

H. Peter Gumm

Philipps-Universitat Marburg

Marburg

Germany

e-mail: gumm@mathematik.uni-marburg.de

Received: 1 March 2019.
Accepted: 11 March 2020.

http://eudml.org/doc/16419
http://eudml.org/doc/16419
https://doi.org/10.1017/S0960129500001560

	Connected monads weakly preserve products
	Abstract
	1. Introduction
	2. Monads and main result
	3. Connected functors
	4. Preservation properties
	5. Proof of the main theorem
	6. Conclusion
	Acknowledgements
	References

