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Abstract. If F is a (not necessarily associative) monad on Set, then the
natural transformation F (A×B) → F (A)×F (B) is surjective if and only
if F (1) = 1. Specializing F to FV , the free algebra functor for a variety
V, this result generalizes and clarifies an observation by Dent, Kearnes
and Szendrei in 2012.
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1. Introduction

A key observation in [2] by T. Dent, K. Kearnes, and Á. Szendrei is that for
any variety V with idempotent operations each set theoretic product decom-
position

d : {x, y, z, u} � {a, b} × {a, b}
extends to a surjective homomorphism

δ : FV({x, y, z, u}) � FV({a, b}) × FV({a, b}) (1.1)

from the 4-generated free algebra in V to the square of the 2-generated one.
This fact has an interesting geometric interpretation, which is relevant

in the study of congruence modularity. The shifting lemma from [9], which is
concerned with shifting a congruence γ from one side of an α−β-parallelogram
to the opposite side modulo α∧β, can be specialized to axis-parallel rectangles
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inside a product of algebras where α and β are in fact kernels of the projections
and γ a factor congruence.
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Surjectivity of the above map implies that the projections on the image
commute, and since Ker δ = α ∧ β, it follows that α and β also commute
in the preimage. In particular, therefore, the shifting lemma, which in [9] is
the major geometrical tool for studying congruence modularity, is only needed
in situations of permuting congruence relations α and β. The restriction to
idempotent varieties in these studies is not severe, since a variety is congruence
modular iff its idempotent reduct is congruence modular.

Variations of the shifting lemma (e.g. [1]) and, more recently, categorical
generalizations as in [3] suggest to investigate the situation in a more general
context. In this note, therefore, rather than exploring further ramifications of
the above observation, we explore the abstract reasons behind the surjectivity
of δ in (1.1). It turns out that we can deal with this in a framework which is
more abstract than universal algebras and varieties. We are rather considering
(not necessarily associative) Set-monads F , of which the functor FV , which
associates with a set X the free algebra FV(X) and with a map g : X → Y its
unique homomorphic extension ḡ : FV(X) → FV(Y ), is just an example.

2. Monads and main result

Monads on a category C are functors F : C → C together with two natural
transformations ι : Id → F and μ : F ◦ F → F , satisfying two unit laws and
an associative law. Our results will even hold for nonassociative monads, so
skipping the associative law, we shall only state the unit laws:

μX ◦ ιF (X) = idF (X) = μX ◦ FιX (2.1)

Equations (2.1) are usually expressed as a commutative diagram:

F (X)
ιF (X)�� F (F (X))

μX

��

F (X)
FιX��

F (X)

���������

���������

���������

���������

Rather easy examples of monads on the category of sets are obtained from
collection data types in programming, such as List〈X〉, Set〈X〉 or Tree〈X〉;
see also [11]. In popular programming languages, List〈X〉 denotes the type of
lists of elements from a base type X. Given a function g : X → Y , the function
map(g) : List〈X〉 → List〈Y 〉 which sends [x1, . . . , xn] ∈ List〈X〉 to the list
[g(x1), . . . , g(xn)] ∈ List〈Y 〉 represents the action of the functor List on maps.
In mathematical notation we write (List g) rather than map(g). Obviously,
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map(f ◦ g) = map(f) ◦ map(g) and map(idX) = idList〈X〉, so the pair List〈−〉
with map indeed establishes a functor.

For List to be a monad, we need a natural transformation ι : Id → List,
as well as a “multiplication” μ : List ◦ List → List. The former can be chosen
as the singleton operator with ιX : X → List〈X〉 sending any x ∈ X to the
one-element list [x].

The monad multiplication μ is for each type X defined as

μX : List〈List〈X〉〉 → List〈X〉,
taking a list of lists [l1, . . . , ln] and appending them into a single list l1+· · ·+ln.
Programmers call this operation “flatten”. The unit laws then state that for
each list l = [x1, . . . , xn] ∈ List〈X〉 we should have

flatten([ [x1, . . . , xn] ]) = [x1, . . . , xn] = flatten([ [x1], . . . , [xn] ]),

which is obvious. Not all monads arise from collection classes, and other uses
of monads have all but revolutionized functional programming, see e.g. [12] or
[15].

Relevant for universal algebraists is the fact that for every variety V the
construction of the free algebra FV(X) over a set X is a monadic functor.
In this case, ιX : X → FV(X) is the inclusion of variables, or rather their
interpretations as V−terms.

The defining property of FV(X) states that each map g : X → A for
A ∈ V has a unique homomorphic extension ḡ : FV(X) → A.

From a map f : X → Y , we therefore obtain the homomorphism

FVf : FV(X) → FV(Y )

as the unique homomorphic extension of the composition ιY ◦f : X → FV(Y ):

FV(X)
FVf �� FV(Y )

X
��

ιX

��

f ��

��

Y
��

ιY

��

The flattening map μ : FV(FV(X)) → FV(X) can be considered as term
composition: a term t(t1, . . . , tn), whose argument positions have been filled by
other terms, is interpreted as an honest V-term. To make this precise, consider
the diagram below, in which FV(X) appears in two roles – in the top row as
an algebra and in the bottom row as a set of free variables for FV(FV(X)).

The left square is obtained by instantiating the previous diagram with
Y := FV(X) and f := ιX . The right hand triangle defines μX as the homo-
morphic extension of the identity map idFV(X) from FV(X), considered as set
of free variables for FV(FV(X)), to FV(X) considered as a V-algebra.

FV(X)
FV ιX �� FV(FV(X))

μX �� FV(X)

X
��

ιX

��

ιX
�� FV(X)

��

ιFV (X)

��

�� idFV (X)

����������������
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The first monad equation immediately follows from the definition of μ, and
the second equation

μX ◦ (FV ιX) = idFV(X)

follows from the fact that both the left hand side and the right hand side of
this equation are homomorphic extensions of ιX : X → FV(X), as can be read
from the diagram, so they must be equal.

The earlier mentioned examples Tree〈X〉, List〈X〉, and Set〈X〉, just
correspond to the free groupoid, the free semigroup, and the free semilattice
over the set X of generators, and are themselves instances of this scheme.

We are now ready to state our main result.

Theorem 2.1. A (not necessarily associative) Set-monad F weakly preserves
products if and only if F (1) ∼= 1.

It will be easy to see (Lemma 4.6 below) that F weakly preserves the
product A1 × A2 if and only if the canonical morphism δ = (Fπ1, Fπ2) in the
below diagram is epi:

F (A1 × A2)

Fπi 		��
���

���
��

δ �� F (A1) × F (A2)

ηi

			
			

			
		

F (Ai)

(2.2)

The starting point of our discussion, (1.1) from [2], is therefore seen to represent
an instance of this result when setting A1 = A2 = {a, b} and F = FV . But
before coming to its proof we need a few preparations.

3. Connected functors

Put 1 = {0} and for any set X denote by !X the unique (terminal) map from
X to 1. A Set-functor F is called connected if F (1) ∼= 1. Given a variety V,
the functor FV is connected if and only if V is idempotent.

It is well known, see [14], that every Set-Functor F can be constructed
as a sum of connected functors:

F = Σe∈F (1)Fe.

For e ∈ F (1) one simply puts Fe(X) = {u ∈ F (X) | (F !X)(u) = e}. On maps
f : X → Y , each subfunctor Fe is just the domain-codomain-restriction of Ff
to Fe(X).

In the following we denote by cX
y : X → Y or, if X is clear, simply by cy,

the constant map with value y ∈ Y. We shall need the following lemma:

Lemma 3.1. If F is a connected functor, then FcX
y is a constant map. When-

ever ι : Id → F is a natural transformation, then FcX
y = c

F (X)
ιY (y).



Vol. 81 (2020) Connected monads weakly preserve products Page 5 of 14 18

Proof. For y ∈ Y, denote by ȳ : 1 → Y the constant map with value y. Observe,
that an arbitrary map f is constant if and only if it factors through 1, i.e.
cX
y = ȳ ◦ !X . Applying F and adding the natural transformation ι into the

picture,

F (X)

F !X 		







FcXy ��

!F (X)

��

F (Y )

F (1) ∼= 1
F ȳ

�������
Y

ιY�����

1
��ι1

���� ȳ

�������

we obtain:

FcX
y = F ȳ ◦ F !X

= F ȳ ◦ ι1 ◦ !F (X)

= ιY ◦ ȳ ◦ !F (X)

= ιY (y) ◦ !F (X)

= c
F (X)
ιY (y). �

In the above, we have seen that connected functors preserve constant
maps. It might be interesting to remark that this very property characterizes
connected functors:

Corollary 3.2. A functor F is connected if and only if for every constant mor-
phism cy the morphism Fcy is constant, again.

Proof. Suppose that F preserves constant maps. As id1 is constant, F (id1) =
idF (1) must also be constant, which implies F (1) ∼= 1. �

In general, the elements of F (1) correspond uniquely to the natural trans-
formations between the identity functor Id and F . This can be seen by instan-
tiating the Yoneda Lemma

nat(Hom(A,−), F ) ∼= F (A) (3.1)

with A = 1. Therefore we note:

Corollary 3.3. A monad (F, ι, μ) is connected if and only if ι is the only trans-
formation from the identity functor to F .

Definition 3.4. Let C1 be the constant functor with C1(X) = 1 for all X and
C1f = id1 for all f . We say that a functor F possesses a constant, if there is
a transformation from C1 to F which is natural, except perhaps at X = ∅.

Clearly, each element of F (∅) gives rise to a constant, but not conversely,
since there is nothing to stop us from changing F only on the empty set ∅
and on empty maps ∅X : ∅ → X by choosing any U ⊆ F (∅) and redefining
F ′(∅) := U as well as F ′∅X = F∅X◦ ⊆X

U . For that reason we do not require
naturality at ∅ in the above definition.

We shall need the following observation:
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Lemma 3.5. A connected functor either possesses a constant or it has the
identity functor as a subfunctor.

Proof. By the Yoneda Lemma, there is exactly one natural transformation
ι : Id → F . Assume that some ιX is not injective, then there are x1 �= x2 ∈ X
with ιX(x1) = ιX(x2). Given an arbitrary Y with y1, y2 ∈ Y, consider a map
f : X → Y with f(x1) = y1 and f(x2) = y2. By naturality,

ιY (y1) = ιY (f(x1)) = Ff ◦ ιX(x1) = Ff ◦ ιX(x2) = ιY (y2),

hence each ιY is constant and therefore factors through 1. This makes the
upper and lower triangle inside the following naturality square commute, too.

x̄1 ��
x̄2

�� X

f

��

ιX ��

���
��

��
F (X)

Ff

��

1

�������

����
���

ȳ1 ��
ȳ2

�� Y
ιY

��

�������
F (Y )

The left triangle commutes since 1 is terminal. If X �= ∅, the terminal map !X :
X → 1 is epi, from which we now conclude that the right triangle commutes
as well, except, possibly, when X = ∅. Thus F possesses a constant. �

4. Preservation properties

We are concerned with the question, under which conditions the δ in equation
(1.1) is epi. Therefore, we take a look at the canonical map δ = (Fπ1, Fπ2) :
F (A1 × A2) → F (A1) × F (A2) which arises from the commutative diagram
(2.2), where πi, resp ηi, denote the canonical component projections.

The first thing to observe is:

Lemma 4.1. δ = (Fπ1, Fπ2) : F (A1 × A2) → FA1 × FA2 is natural in each
component.

Proof. Assume f : A1 → A′
1 and g : A2 → A′

2 are given. We want to show
that the following diagram commutes:

F (A1 × A2)
(Fπ1,Fπ2) ��

F (f×g)

��

F (A1) × F (A2)

Ff×Fg

��
F (A′

1 × A′
2)

(Fπ′
1,Fπ′

2) �� F (A′
1) × F (A′

2)
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We calculate:

((Ff × Fg) ◦ (Fπ1, Fπ2))(u) = (Ff × Fg)((Fπ1)(u), (Fπ2)(u))

= ((Ff ◦ Fπ1)(u), (Fg ◦ Fπ2)(u))

= (F (f ◦ π1)(u), F (g ◦ π2)(u))

= (F (π′
1 ◦ f × g)(u), F (π′

2 ◦ f × g)(u))

=((Fπ′
1 ◦ F (f×g))(u),(Fπ′

2 ◦ F (f×g))(u))

=(F (π′
1)(F (f×g)(u)),F (π′

2)(F (f×g)(u)))

= (Fπ′
1,Fπ′

2)(F (f×g)(u))

= ((Fπ′
1, Fπ′

2) ◦ F (f × g))(u). �

Notice that in order for δ to be surjective, the functor F must be con-
nected or trivial.

Lemma 4.2. If the canonical decomposition as in Theorem 2.1 is always epi,
then either F (1) ∼= 1 or F is the trivial functor with constant value ∅.

Proof. For the projections π1, π2 : 1 × 1 → 1 we have π1 = π2, since 1 is a
terminal object, hence also Fπ1 = Fπ2. Let η1, η2 be the projections from the
product F (1) × F (1) to its components. Then

η1 ◦ (Fπ1, Fπ2) = Fπ1 = Fπ2 = η2 ◦ (Fπ1, Fπ2).

By assumption, δ = (Fπ1, Fπ2) is epi, so η1 = η2. For arbitrary a, b ∈ F (1)
then (a, b) ∈ F (1) × F (1), so

a = η1(a, b) = η2(a, b) = b.

So F (1) either has just one element, or F (1) = ∅. In the latter case, for each
set X the map !X : X → 1 should yield a map F !X : F (X) → F (1), so
F (1) = ∅ implies F (X) = ∅. �

Next, recall some elementary categorical notions.

Definition 4.3. Given objects A1, A2 in a category C, a product of A1 and
A2 is an object P together with morphisms pi : P → Ai, such that for any
“competitor”, i.e. for any object Q with morphisms qi : Q → Ai, there exists
a unique morphism d : Q → P , such that qi = pi ◦ d for i = 1, 2. Products, if
they exist, are unique up to isomorphism and are commonly written A1 × A2.

Similarly, given morphisms f1 : A1 → B and f2 : A2 → B with common
codomain B, their pullback is defined to be a pair of maps p1 : P → A1 and
p2 : P → A2 with common domain P such that

f1 ◦ p1 = f2 ◦ p2

and for each “competitor”, i.e. each object Q with morphisms q1 : Q → A1

and q2 : Q → A2 also satisfying f1◦q1 = f2◦q2 there exists a unique morphism
d : Q → P so that pi ◦ d = qi for i = 1, 2 (see Figure 1).

In both definitions, if we drop the uniqueness requirement, we obtain the
definition of weak product, resp. weak pullback.
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Figure 1. (Weak) pullback and (weak) product

Notice that in case there exists a terminal object 1, the product of A1

with A2 is the same as the pullback of the terminal morphisms !Ai
: Ai → 1.

Weak products (weak pullbacks) arise from right invertible morphisms
into products (pullbacks):

Lemma 4.4. If (P, p1, p2) is a product (resp. pullback), then (W,w1, w2) is a
weak product (resp. weak pullback) if and only if there is a right invertible
w : W → P such that wi = pi ◦ w.

Proof. If w has a right inverse e, and (Q, q1, q2) is a competitor to W, then it is
also a competitor to P, hence there is a morphism d : Q → P with qi = pi ◦ d.
Then e ◦ d is the required morphism to W . Indeed,

wi ◦ (e ◦ d) = pi ◦ w ◦ e ◦ d = pi ◦ d = qi.

Conversely, assume that (W,w1, w2) is a weak product, then both W and
P are competitors to each other, yielding both a morphism w : W → P with
wi = pi ◦ w and a morphism e : P → W with pi = wi ◦ e.

Now (P, p1, p2) is also a competitor to itself, yet both pi ◦ (w ◦ e) = pi

and pi ◦ idP = pi for i = 1, 2. By uniqueness it follows that w ◦e = idP , so w is
indeed right invertible. (The same proof works for the case of weak pullbacks).

�

Definition 4.5. Let F : C → D be a functor. We say that F weakly preserves
products (pullbacks) if whenever (P, p1, p2) is a product (pullback), then its
image (F (P ), Fp1, Fp2) is a weak product (weak pullback).

It is well known that a functor weakly preserves a limit L if and only
it preserves weak limits, see e.g. [5]. Surjective maps are right invertible, so
regarding (1.1) or its more general formulation (2.2), we now arrive at the
following relevant observation:

Lemma 4.6. The canonical map δ in (2.2) is epi if and only if F weakly pre-
serves the product (A1 × A2, π1, π2).

Whereas the above mentioned result of [2], in which the monad F is the
free-algebra-functor FV , served a purely universal algebraic purpose, it also
has an interesting coalgebraic interpretation. It is well known that coalge-
braic properties of classes of F -coalgebras are to a large degree determined by
weak pullback preservation properties of the functor F , which serves as a type
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or signature for a class CoalgF of coalgebras. Prominent structure theoretic
properties can be derived from the assumptions that F weakly preserves pull-
backs of preimages, kernel pairs or both, see e.g. [4,5,6,7,8,13]. Here we add
one more property to this list: preservation of pullbacks of constant maps.

Theorem 4.7. Let F be a nontrivial functor. Then the following are equivalent:
(1) F has no constant and weakly preserves products.
(2) F is connected and weakly preserves pullbacks of constant maps.

Proof. If F is nontrivial and weakly preserves the product 1×1 ∼= 1, then F is
connected as a consequence of Lemma 4.2. Since F has no constants, F (∅) = ∅
and moreover Lemma 3.5 provides Id as a subfunctor of F . Thus we obtain a
natural transformation ι : Id → F which is injective in each component.

Let now cXi
yi

: Xi → Y for i = 1, 2 be constant maps with yi ∈ Y .

Applying F , Lemma 3.1 yields FcXi
yi

= c
F (Xi)
ιY (yi)

for i = 1, 2.

If y1 = y2 then the pullback of the cXi
yi

is simply (X1 × X2, π1, π2).
The FcXi

yi
are constant maps with the same target value ιY (y1) = ιY (y2),

so their pullback is the product F (X1) × F (X2) with canonical projections
ηi : F (X1) × F (X2) → F (Xi). By assumption, F weakly preserves products,
which gives us a surjective canonical map δ : F (X1 × X2) → F (X1) × F (X2)
with Fπi = ηi ◦ δ, so Lemma 4.4 ensures that (F (X1 × X2), Fπ1, Fπ2) is a
weak pullback of the FcXi

yi
.

If y1 �= y2, then the pullback of the cXi
yi

is (∅, ∅X1 , ∅X2), the empty
set ∅ with empty mappings ∅Xi

: ∅ → Xi. Since ιY is injective, the Fcy1

are constant maps with disjoint images, too, consequently their pullback is
(∅, ∅F (X1), ∅F (X2)). This is the same we would obtain by applying F to the
pullback of the cyi

, taking into account that F (∅) = ∅.
For the reverse direction, suppose that F is connected and weakly pre-

serves pullbacks of constant maps. The product (X1 × X2, π1, π2) is at the
same time the pullback of the terminal maps !Xi

: Xi → 1. Applying F and
considering that F (1) ∼= 1, we see that the F !Xi

are also terminal maps, so
their pullback is (F (X1)×F (X2), η1, η2). Thus, if F weakly preserves the pull-
back of the !Xi

, then we must have that (F (X1 × X2), Fπ1, Fπ2) is a weak
pullback of the F !Xi

which by Lemma 4.4 means that there exists a surjective
map δ : F (X1 × X2) → F (X1) × F (X2) with ηi ◦ δ = Fπi. �

The following example demonstrates that the requirement that F has no
constants is essential in Theorem 4.7.

Example 4.8. Consider the functor T with T (X) = X2/Δ where Δ is the
equivalence relation on X2 identifying any two elements in the diagonal of X2.
For x1, x2 ∈ X, we denote the elements of X2/Δ by (x1, x2) if x1 �= x2 and by
⊥ otherwise. On maps f : X → Y the functor T is defined as (Tf)(⊥) = ⊥
and

(Tf)(x1, x2) =

{
⊥ if f(x1) = f(x2),
(f(x1), f(x2)) else.
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Then T is a functor and the projection πΔ : X2 → X2/Δ is a natural trans-
formation. Even though T (∅) = ∅, the functor does have a constant, ⊥.

The map δ = (Tπ1, Tπ2) : T (X × Y ) → T (X) × T (Y ) is surjective: If
X = ∅ or Y = ∅ this is trivial, otherwise fix some x ∈ X and y ∈ Y . Then
((x1, x2), (y1, y2)) ∈ T (X) × T (Y ) has preimage ((x1, y1), (x2, y2)). Preimages
of ((x1, x2),⊥) and of (⊥, (y1, y2)) are ((x1, y)(x2, y)) and ((x, y1), (x, y2)).
Finally (⊥,⊥) has preimage ⊥. Thus T weakly preserves products.

To see that T does not weakly preserve pullbacks of constant maps, con-
sider cX

0 , cX
1 : X → {0, 1} whose pullback is ∅. But T (cX

0 ) = T (cX
1 ) = c

T (X)
⊥

and their pullback is T (X)×T (X). Clearly there is no way to find a surjective
map from T (∅) = ∅ to T (X) × T (Y ) as would be required by Lemma 4.4.

5. Proof of the main theorem

We are finally turning to the proof of Theorem 2.1, verifying the surjectivity of
δ = (Fπ1, Fπ2) when (F, ι, μ) is a monad. Thus given (p, q) ∈ F (A1)×F (A2),
we are required to find an element t ∈ F (A1 ×A2) such that (Fπ1)(t) = p and
(Fπ2)(t) = q.

For each a ∈ A1 we define a map σa : A2 → A1 × A2 by

σa(b) := (a, b).

Next we define τ : A1 → F (A1 × A2) by

τ(a) := (Fσa)(q).

The following picture gives an overview, where the lower squares commute due
to the fact that μ is a natural transformation,

A1

τ

��








ιA1

��
cA1
q

��

A1 × A2
π2

��
π1�� A2

σa��

F (A1) F (A1 × A2)
Fπ2

��
Fπ1

�� F (A2)

F (F (A1))

μA1

��

F (F (A1 × A2))
FFπ1

��
FFπ2

��

μA1×A2

��

F (F (A2))

μA2

��

and the commutativities involving the dotted arrows will be established in the
following auxiliary lemma:

Lemma 5.1.

(1) Fπ1 ◦ τ = ιA1

(2) Fπ2 ◦ τ = cA1
q .
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Proof. From the definition it follows that π1 ◦ σa = cA2
a and π2 ◦ σa = idA2 .

Using these, and Lemma 3.1, we calculate:

(Fπ1 ◦ τ)(a) = (Fπ1)(τ(a))

= (Fπ1)((Fσa)(q))

= ((Fπ1) ◦ Fσa)(q)

= F (π1 ◦ σa)(q)

= (FcA2
a )(q)

= c
F (A2)
ιA1 (a)(q)

= ιA1(a)

and similarly

(Fπ2 ◦ τ)(a) = F (π2)((Fσa)(q))

= F (π2 ◦ σa)(q)

= F (idA2)(q)

= idF (A2)(q)
= q

whence (Fπ2 ◦ τ) is the constant map cA1
q : A1 → F (A2). �

With these lemmas in place, we can finish the proof of Theorem 2.1. We
set

t := (μA1×A2 ◦ Fτ)(p)

and claim:

(Fπ1)(t) = p (5.1)

(Fπ2)(t) = q. (5.2)

In order to show (5.1), we calculate, using naturality of μ, for i = 1, 2 :

(Fπi)(t) = (Fπi)((μA1×A2 ◦ Fτ)(p))

= (Fπi ◦ μA1×A2 ◦ Fτ)(p)

= (μAi
◦ FFπi ◦ Fτ)(p)

= (μAi
◦ F (Fπi ◦ τ))(p).

Then for i = 1 we continue, using Lemma 5.1 and the first monad law:

(μA1 ◦ F (Fπ1 ◦ τ))(p) = (μA1 ◦ FιA1)(p)

= idF (A1)(p)
= p,
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whereas for i = 2 we obtain, using Lemmas 5.1 and 3.1 as well as the second
monad law:

(μA2 ◦ F (Fπ2 ◦ τ))(p) = (μA2 ◦ F (cA1
q ))(p)

= (μA2 ◦ c
F (A1)
ιF (A2)(q)

)(p)

= μA2(ιF (A2)(q))

= (μA2 ◦ ιF (A2))(q)
= q.

Corollary 5.2. Let α = Ker π1 and β = Ker π2, then

F (A × B)/α ∧ β ∼= F (A) × F (B).

6. Conclusion

We have shown that a key observation in the work of Dent, Kearnes and
Szendrei [2] results from a weak limit preservation property which results from
the free-algebra functor FV being a (not necessarily associative) monad. Such
weak limit preservation properties of Set−functors are highly relevant when
using such functors as type functors for coalgebras.

Indeed, in a forthcoming paper [10] weak preservation of kernel pairs and
preservation of preimages by FV will be characterized by syntactic criteria for
the equations Σ defining the variety V.
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