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Exponential lower bounds of lattice counts by
vertical sum and 2-sum

Jukka Kohonen

Abstract. We consider the problem of finding lower bounds on the num-
ber of unlabeled n-element lattices in some lattice family. We show that if
the family is closed under vertical sum, exponential lower bounds can be
obtained from vertical sums of small lattices whose numbers are known.
We demonstrate this approach by establishing that the number of mod-
ular lattices is at least 2.2726n for n large enough. We also present an
analogous method for finding lower bounds on the number of vertically
indecomposable lattices in some family. For this purpose we define a new
kind of sum, the vertical 2-sum, which combines lattices at two common
elements. As an application we prove that the numbers of vertically inde-
composable modular and semimodular lattices are at least 2.1562n and
2.6797n for n large enough.
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1. Introduction

One of the most elementary questions regarding a family of combinatorial
objects is: how many are they? For various lattice families this question has
been approached in two ways. Small lattices have been generated by compu-
tation, and counted exactly. Numbers of large lattices have been lower and
upper bounded by assorted methods.

The purpose of this note is to demonstrate that in some lattice families,
useful exponential lower bounds are obtained from vertical compositions of
small lattices, which have been counted by computation. By exponential we
mean cn, where c is a constant and n is the number of elements.
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We consider two kinds of vertical composition. First we show how the
ordinary vertical sum leads to exponential lower bounds in families that are
closed under vertical sum. As an application, we establish that the number
of unlabeled modular lattices is at least 2.2726n for n large enough. This
improves upon the previous bound 2n−3 by Jipsen and Lawless [4]. Our bound
is derived from the counts of vertically indecomposable modular lattices of
n ≤ 30 elements, computed by the author in [7]. Further computations are
likely to yield improved lower bounds.

Secondly we target the numbers of vertically indecomposable lattices,
which may be more interesting. To this end we define the vertical 2-sum, and
show that it yields exponential lower bounds on vertically indecomposable lat-
tices. As an application, we establish that the numbers of unlabeled, vertically
indecomposable modular and semimodular lattices are at least 2.1562n and
2.6797n for n large enough.

2. Vertical sum

All lattices in this work are finite, nonempty and unlabeled. If L and U are
lattices, their vertical sum L + U is defined by identifying the top element
of L with the bottom element of U . The vertical sum is associative, and the
vertical sum of several lattices is defined in the obvious way. In fact, lattices
with vertical sum are a monoid, with the singleton lattice as its neutral element.
For completeness we define the empty vertical sum to be the singleton.

A lattice X is vertically decomposable if it contains a knot, that is, an
element distinct from top and bottom and comparable to all elements. One
can then decompose X at the knot into two non-singleton lattices L and U ,
whose vertical sum is X. A lattice that has no knot is vertically indecomposable,
or a vi-lattice. It is well known that every finite nonempty lattice has a unique
vertical decomposition, that is, a representation as a vertical sum of non-
singleton vi-lattices [1].

Remark 2.1. The literature is varied on whether the singleton lattice is defined
as vertically indecomposable. In any case it needs some special treatment to
ensure that vertical decompositions are unique. Erné et al. [1] define the sin-
gleton to be vertically decomposable. Although this feels odd, it is analogous
to the now standard practice of excluding 1 from primes to make prime fac-
torization unique. Some other authors tacitly include the singleton among
vi-lattices [3,4]. We define it as a vi-lattice but exclude it explicitly when
necessary.

Notation 2.2. We will generally write f(n) for the number of n-element lattices
in some family, and fvi(n) for the corresponding number of vi-lattices. For
the numbers of modular lattices and modular vi-lattices, we write m(n) and
mvi(n). For semimodulars we write s(n) and svi(n).

Vertical sum and decomposition have become standard tools in lattice
counting, due to the following observation (cf. [3, Equation 1]).



Vol. 80 (2019) Exponential lower bounds of lattice counts Page 3 of 11 13

Lemma 2.3. Let F be a lattice family that is closed under vertical sum and
vertical decomposition, and contains the singleton lattice. Let f(n) and fvi(n)
be the numbers of n-element lattices and vi-lattices in F , respectively. Then
f and fvi are related by

f(n) =
n∑

k=2

fvi(k) f(n − k + 1), for n ≥ 2. (2.1)

Proof. Let n ≥ 2. Each n-element lattice X ∈ F can be uniquely represented
as a vertical sum X = L+U , where L is vertically indecomposable and |L| ≥ 2.
Because F is closed under vertical decomposition, we have L,U ∈ F . Note that
if X is vertically indecomposable, we still have X = L+U , where L = X, and
U is the singleton.

The sum (2.1) counts such vertical sums, with k iterating over the possible
cardinalities of L. For each value of k, there are fvi(k) choices for L, and
f(n−k +1) choices for U . In the boundary case k = n we have f(n−k +1) =
f(1) = 1 as we assumed that the singleton is in F . Also, each such vertical
sum gives a lattice in F , because F is closed under vertical sum. �

Modular, semimodular, distributive, and graded lattices are examples of
families where Lemma 2.3 applies. It is well known that (2.1) can be used
to reduce the workload when counting small lattices by exhaustive genera-
tion. The idea is to generate only the vi-lattices in F up to some maximum
size N , thus obtaining the values fvi(2), . . . , fvi(N), and then to calculate
f(2), . . . , f(N) by the recurrence. This method has been used with various
lattice families [1,2,3,4,7].

We must point out that Lemma 2.3 requires the family to be closed
both under vertical sum and under vertical decomposition. Being closed under
vertical sum is not enough: as a counterexample, consider the family “graded
lattices of even rank”. It contains lattices such as the 5-element chain that
are not accounted for by the sum (2.1), as their vi-components fall out of the
family. But being closed under vertical sum suffices for the inequality

f(n) ≥
n∑

k=2

fvi(k) f(n − k + 1), for n ≥ 2, (2.2)

which is enough for proving lower bounds on f(n).
We now proceed to demonstrate that besides exact counting of small

lattices, vertical sums are also useful for exponential lower bounds on f(n),
that is, bounds of the form

f(n) ≥ cn

with some constant c. The simplest way is to take vertical sums of constant-size
lattices; we begin with this method to illustrate its ease. (But we will prove
stronger bounds later.)
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Theorem 2.4. Let F be a lattice family that is closed under vertical sum,
and contains the 2-element chain. Let f(n) be the number of n-element lat-
tices in F , and N ≥ 2 an integer constant. Then f(n) ≥ Ω(cn), where
c = f(N)1/(N−1).

Proof. Let c be as stated. We first prove the case when n = (N − 1)h + 1,
where h ≥ 1 is an integer. Consider h-tuples (L1, L2, . . . , Lh) of N -element
lattices in F . There are f(N)h such tuples; each gives rise to a vertical sum

L1 + L2 + · · · + Lh = X,

which is a lattice of n = (N −1)h+1 elements and belongs to F by assumption.
Different tuples give rise to different lattices, because for each such X there
is only one way of breaking X into a vertical sum of h components of N
elements each. Thus the number of n-element lattices in F is lower bounded
by the number of the tuples:

f(n) ≥ f(N)h = f(N)(n−1)/(N−1) = cn−1.

For arbitrary n ≥ N we round n down to the nearest value where the
previous case applies. More precisely, let n′ be the largest integer of the form
n′ = (N − 1)h + 1 such that n′ ≤ n and h ≥ 1 is an integer. Note that
n′ ≥ n − N + 2. Because F contains the 2-element chain, f is nondecreasing
(any n-element lattice can be extended to n + 1 elements by adding the 2-
element chain on top). Thus

f(n) ≥ f(n′) ≥ cn
′−1 ≥ bcn,

where b = c1−N is a constant. This holds for all n ≥ N , so f(n) ≥ Ω(cn). �

Corollary 2.5. m(n) ≥ Ω(2.1332n).

Proof. Apply Theorem 2.4 with N = 30 and m(30) = 3 485 707 007 [7]. �

Corollary 2.6. s(n) ≥ Ω(2.5080n).

Proof. Apply Theorem 2.4 with N = 25 and s(25) = 3 838 581 926 [7]. �

Stronger lower bounds are obtained by applying the recurrence (2.2). Let
N ≥ 2 be a constant, and suppose that fvi(1), fvi(2), . . . , fvi(N) are known.
Then we can lower bound f(n) by a constant-coefficient recursive sequence as
follows.

Theorem 2.7. Let F be a lattice family closed under vertical sum, containing
the singleton. Let f(n) and fvi(n) be the numbers of n-element lattices and
vi-lattices in F . Let f : N+ → N

+ be the sequence defined by f(1) = 1,

f(n) =
n∑

k=2

fvi(k) f(n − k + 1) (2.3)

when n = 2, 3, . . . , N , and

f(n) =
N∑

k=2

fvi(k) f(n − k + 1) (2.4)
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when n ≥ N + 1. Then f(n) ≥ f(n) for all n ≥ 1. Furthermore, the infinite
sequence f is determined by fvi(1), fvi(2), . . . , fvi(N) through a homogeneous
linear recurrence relation of order N − 1.

Proof. For n = 1, we have f(n) = f(n) = 1. For n = 2, 3, . . . , N , the claim
f(n) ≥ f(n) holds by (2.2). For n ≥ N + 1 it holds because the right hand
side of (2.4) is a truncated form of the right hand side of (2.2).

Let us substitute i = k − 1 and write fvi(i + 1) = ai to emphasize that
these are known constants. The recurrence 2.4 now becomes

f(n) =
N−1∑

i=1

ai f(n − i). (2.5)

This is a homogeneous linear recurrence relation of order N − 1 with constant
coefficients. The values of fvi(1), fvi(2), . . . , fvi(N) determine both the initial
values of f(n) up to n = N , and the coefficients of the recurrence. Thus they
also determine the whole sequence f . �

The remaining task is to find an exponential lower bound for f(n). A stan-
dard method for solving recurrence relations such as (2.5) begins by finding
the roots of the auxiliary equation

xN−1 =
N−1∑

i=1

ai x
N−1−i. (2.6)

We refer to [9, § 7.7] for details. Let r be the root of (2.6) whose absolute value
is the largest. If r is a single root, then a solution to the recurrence (2.5) is of
the form brn + o(rn), where b is a constant. Generally we will have to find the
roots numerically. In order to obtain a rigorous lower bound, one which is not
subject to floating point errors, we will choose c slightly smaller than r, and
then prove directly that f(n) ≥ cn for n large enough.

Proposition 2.8. m(n) ≥ 2.2726n for all n large enough.

Proof. Let N = 30, and define f as in Theorem 2.7, with the values of
fvi(1), fvi(2), . . . , fvi(30) taken from the “modular vi” column of [7, Table 1].
By Theorem 2.7 we have m(n) ≥ f(n) for all n ≥ 1.

The auxiliary equation (2.6) is now

x29 = x28 + x26 + x25 + 2x24 + 3x23 + 7x22 + 12x21 + 28x20 + 54x19

+127x18 + 266x17 + 614x16 + 1356x15 + 3134x14 + 7091x13

+16482x12 + 37929x11 + 88622x10 + 206295x9 + 484445x8 + 1136897x7

+2682451x6 + 6333249x5 + 15005945x4 + 35595805x3 + 84649515x2

+201560350x + 480845007.

Numerically we find that the root with the largest absolute value is a single
real root r ≈ 2.272651. For a lower bound, we take c = 2.2726 and claim
that f(n) ≥ cn for n ≥ 150 000. We prove this by induction. Applying (2.4)
recursively, we see that the claim holds for 150 000 ≤ n ≤ 150 028, which serves
as the base case. We then observe that if f(k) ≥ 2.2726k for 29 consecutive
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values from k = n − 29 to k = n − 1, then by applying these inequalities in
(2.4) we have f(n) ≥ 2.2726n. This completes the induction. �

The new bound improves upon the bound m(n) ≥ 2n−3 by Jipsen and
Lawless [4], but still falls short of the empirical growth rate. The ratios m(n)

m(n−1)

and mvi(n)
mvi(n−1) for n ≤ 30 look like m(n) and mvi(n) are growing roughly as

2.4n [7]. If the values of mvi are computed further, Proposition 2.8 is likely to
yield improved lower bounds. For example, if further computations reveal that
mvi(31) ≥ 2.35mvi(30), which seems likely, then the constant c in our lower
bound will increase by about 0.0060.

For semimodular lattices, no previous lower bound seems to be known,
other than that of modulars. Using the values of svi(n) for n ≤ 25 from [7],
Theorem 2.7 yields a lower bound s(n) ≥ 2.6459n for n large enough. We
omit the details because the bound is superseded by a stronger lower bound
on semimodular vi-lattices in the next section. However, even the stronger
bound is only exponential. We note that the ratios of the consecutive values
svi(22), svi(23), svi(24), and svi(25) are 3.5082, 3.5579 and 3.6057 [7]. Since the
ratios are steadily increasing, we suspect that the growth of s(n) may be faster
than exponential.

We can try applying Theorem 2.7 to other lattice families. For distributive
lattices, using the data for n ≤ 49 by Erné et al. [1], we get a lower bound of
1.8388n, which does not improve upon their results. For graded lattices, using
the data for n ≤ 21 by the author [7], we get a lower bound of 3.4015n, but
this is not really useful, because it is already known that their growth is faster
than exponential. From Klotz and Lucht [6] and Kleitman and Winston [5] we
have lower and upper bounds of the form cn

3/2+o(n3/2) both for graded lattices
and for all lattices.

Let us conclude this section with a brief qualitative comparison. From
subset relations between families, we have

d(n) ≤ m(n) ≤ s(n) ≤ g(n) ≤ �(n),

where d(n), g(n), and �(n) are the numbers of distributive lattices, graded
lattices, and all lattices of n elements. For d(n), exponential lower and upper
bounds are known [1]. For m(n) we have an exponential lower bound, and
the empirical growth seems exponential, but an exponential upper bound is
lacking; the only known upper bound on (semi)modulars seems to be that of
all lattices [4]. For s(n) we have an exponential lower bound, but empirically
the growth seems faster. The growths of g(n) and �(n) are known to be faster
than exponential. It remains a topic of further study to better separate the
growth rates of different lattice families.

3. Vertical 2-sum

We now turn our attention to the numbers of vertically indecomposable lat-
tices. Our method is similar to the previous section: arbitrarily large lattices
are constructed from smaller lattices, whose number is known.
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Figure 1. Two semimodular lattices (left and center) and
their vertical 2-sum, which is also semimodular (right)

Let L and U be lattices such that L has two coatoms and U has two
atoms. Then a vertical 2-sum of L and U is a poset obtained by removing 1̂L
(the top of L) and 0̂U (the bottom of U), and identifying the coatoms of L
with the atoms of U . The operation is illustrated in Figure 1.

Remark 3.1. The choice of which coatom is identified with which atom may
give rise to two nonisomorphic vertical 2-sums, but we will not delve further
into that issue here. For our purposes it suffices that for any L and U there is
at least one vertical 2-sum, which we denote by L +2 U , by a slight abuse of
notation. Vertical 2-sums of several lattices can be defined in the obvious way
by associativity.

Remark 3.2. L +2 U has |L| + |U | − 4 elements.

Lemma 3.3. A vertical 2-sum of two lattices is a lattice.

Proof. Let V = L +2 U , and write for brevity L′ = L\1̂L and U ′ = U\0̂U .
Furthermore let a, b be the two common elements of L′ and U ′. We claim that
every pair of distinct elements s, t ∈ V has a least upper bound. We consider
three cases.

(1) Case s, t ∈ U ′. The claim holds because U is a lattice.
(2) Case s ∈ L′ and t ∈ U ′. If s ≤ t, the claim is clear. Otherwise, without

loss of generality, let s ≤ a �≤ t and s �≤ b ≤ t. Now w = a ∨ t is an upper
bound of s and t. If u ∈ U ′ is an upper bound of s and t, we must have a ≤ u
(because s �≤ b), thus u is an upper bound of a∨ t = w. So w is the least upper
bound of s and t in V .

(3) Case s, t ∈ L′. Let w be their least upper bound in L. If w = 1̂L, then
a ∨ b is the least upper bound of s, t in V . Now suppose w �= 1̂L, and let u be
any upper bound of s and t. If u ∈ L′, we have w ≤ u because L is a lattice.
Let then u ∈ U ′. If a, b ≤ u, then w ≤ u. Otherwise, without loss of generality,
let a ≤ u and b �≤ u. Because s, t ≤ u, we have s, t ≤ a. Then w ≤ a ≤ u. Thus
w is the least upper bound of s, t in V .

We have shown that V is a join-semilattice. Since it has a bottom element
0̂ = 0̂L, it is also a lattice. �

Remark 3.4. A vertical 2-sum of two vi-lattices is a vi-lattice, and a vertical
2-sum of two graded lattices is graded.
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Lemma 3.5. A vertical 2-sum of two semimodular lattices is semimodular.

Proof. Let L,U be semimodular, V = L+2U , and L′ = L\1̂L and U ′ = U\0̂U .
Let s, t ∈ V such that s, t 	 (s ∧ t). Then either s, t ∈ U ′ or s, t ∈ L′\U ′. In
the first case, s, t ≺ (s ∨ t) because U is semimodular. In the second case,
s, t ≺ (s ∨ t) because L is semimodular. �

Lemma 3.6. A vertical 2-sum of two modular lattices is modular.

Proof. Apply Lemma 3.5 to both the vertical 2-sum and its dual. �

For families of graded vi-lattices, vertical 2-sum leads to a recurrence
analogous to Lemma 2.3. Let us first define the building blocks that we are
going to use. If X is a graded lattice, we say that two elements of X are a neck
if (1) they have the same rank, (2) they are the only elements having that
rank, and (3) they are not atoms or coatoms. We say that a graded vi-lattice
is a piece if it has two atoms, two coatoms and no neck, and its rank is at least
three. It follows that a piece has at least six elements.

We can now state the recurrence. For simplicity we state it as a lower
bound only; in particular, this implies that we need not separate the cases
where there are two nonisomorphic vertical 2-sums.

Theorem 3.7. Let F be a family of graded vi-lattices that is closed under vertical
2-sum. Let fvi(n) and fpc(n) be the numbers of n-element lattices and pieces
in F , respectively. Let N ≥ 6 be an integer constant, and let f : N+ → N

+ be
the sequence defined by

f(n) = fpc(n)

when 1 ≤ n ≤ 6,

f(n) = fpc(n) +
n−1∑

k=6

fpc(k)f(n − k + 4), (3.1)

when 7 ≤ n ≤ N , and

f(n) =
N∑

k=6

fpc(k)f(n − k + 4) (3.2)

when n ≥ N + 1. Then fvi(n) ≥ f(n) for all n ≥ 1.

Proof. We prove by induction a stronger claim: that F contains at least f(n)
lattices of n elements that have two coatoms and two atoms. For n ≤ 6 the
claim is clear.

Let then n ≥ 7. For each k such that 6 ≤ k ≤ n − 1, there are fpc(k)
ways to choose a k-element piece L ∈ F and, by the induction assumption, at
least f(n − k + 4) ways to choose an (n − k + 4)-element lattice U ∈ F that
has two coatoms and two atoms. For each choice of L and U , if X = L +2 U ,
then X is in F , has two coatoms and two atoms, and has n elements.

We claim that different choices of the pair (L,U) cannot yield the same
lattice X. Suppose that X = L +2 U , with L and U chosen as above. Let
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a and b be the neck of lowest rank in X. The only way to represent X as
X = L′ +2 U ′, so that L′ is a piece, is that L′ = L and U ′ = U .

Adding up the choices, and including the fpc(n) pieces of n elements, we
observe that in F there are at least

fpc(n) +
n−1∑

k=6

fpc(k)f(n − k + 4)

n-element lattices that have two coatoms and two atoms. For n > N this can
be further lower bounded by leaving out the first term and stopping the sum
at k = N . This concludes the induction. �

Since f in Theorem 3.7 is defined by a homogeneous linear recurrence
with constant terms, it can be lower bounded by the same method as in the
previous section, if fpc is known up to fpc(N). Modular vi-lattices of n ≤ 30
elements and semimodular vi-lattices of n ≤ 25 elements were generated in [7],
and the listings are available in [8]. With a short program we can check which
of those vi-lattices are pieces (as defined above), and count them. From the
counts we obtain the following results.

Proposition 3.8. mvi(n) ≥ 2.1562n for all n large enough.

Proof. The numbers of modular n-element pieces, for n = 6, 7, . . . , 30, are

1, 0, 0, 3, 3, 4, 15, 27, 52, 117, 259, 554, 1253, 2802, 6366, 14429, 33150,

76090, 175799, 406851, 946151, 2204246, 5153946, 12076517, 28375409.

Applying Theorem 3.7 with these values, we obtain a sequence f such that
mvi(n) ≥ f(n) for all n ≥ 1. Numerically we find that the root of the auxiliary
equation is a single real root r ≈ 2.156295. For a lower bound, we take c =
2.1562 and claim that f(n) ≥ cn for n ≥ 150 000. This follows by induction as
in the proof of Proposition 2.8. �

Proposition 3.9. svi(n) ≥ 2.6797n for all n large enough.

Proof. The numbers of semimodular n-element pieces, for n = 6, 7, . . . , 25, are

1, 0, 0, 5, 6, 9, 40, 122, 323, 964, 2999, 9374, 30292, 100539,
339046, 1159101, 4018137, 14116920, 50263399, 181341142.

Applying Theorem 3.7 with these values, we obtain a sequence f such that
svi(n) ≥ f(n) for all n ≥ 1. Numerically we find that the root of the auxiliary
equation is a single real root r ≈ 2.679797. For a lower bound, we take c =
2.6797 and claim that f(n) ≥ cn for n ≥ 200 000. This follows by induction as
in the proof of Proposition 2.8. �

4. Concluding remarks

This work was motivated by two empirical observations. The first is that mod-
ular vi-lattices are usually long and narrow (cf. [7, Figs. 4 and 5]). The second
is that the numbers of modular (vi-)lattices exhibit a rather stable exponential
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growth, at least up to n = 30. Together these observations suggest that much
of that growth could be attributed to a “Cartesian” vertical combination of
independently chosen parts.

In contrast, the vertical sum and 2-sum are not likely to be very useful
with lattice families whose members tend to be short and wide; for example,
with graded lattices, exponential bounds are superseded by the already known
bounds of the form cn

3/2
.

The notion of constructing vi-lattices by some kind of vertical compo-
sition bears similarity to the work of Erné et al. on distributive lattices [1];
however, their vertical construction is different, and seems specific to distribu-
tive lattices, as it works on finite posets that are in one-to-one correspondence
with finite distributive lattices (by a theorem of Birkhoff). Our vertical 2-sum
works on lattices directly, and is applicable to several lattice families.

It is tempting to extend the idea of the vertical 2-sum to lattices that
have more than two atoms and coatoms, but the result may not be a lattice.
Consider, for example, defining vertical 3-sum (+3) as the obvious analogue
of the vertical 2-sum. Then the analogue of Lemma 3.3 does not hold: for a
counterexample, if B3 is the Boolean lattice of order 3, then B3 +3 B3 is not
a lattice. In order to use such generalized vertical sums for counting purposes,
one needs an efficient method of filtering out the non-lattices. We leave such
studies for future research.
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