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Joanna Dutka and Aleksander Ivanov

Abstract. In this paper we study topologizability of structures. We extend
the method of Kotov of topologizability of countable algebras to uncount-
able structures. We also show that in the case of topologizable relational
countable structures the topology can be made metrizable.
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1. Introduction

Let L = {F ,R } be a countable language, where F is a family of functional
symbols and R is a family of relational symbols. We denote the arity of a
function f ∈ F by nf and the arity of a relation R ∈ R by nR respectively.
We admit that nf may be zero; this is the case of a constant function. Let
A = 〈A,L〉 be an L-structure. We will always assume that relations on A are
not empty and have non-empty complements. Atomic formulas over A are of
the form

t1(x̄1, ā1) = t2(x̄2, ā2) and R(t1(x̄1, ā1), . . . , tnR
(x̄nR

, ānR
)),

where x̄i are variables and āi are tuples from A. If ϕ(x̄, ā) is a formula, then
ϕ(A, ā) is the set of all realizations of ϕ(x̄, ā) in A.

Definition 1.1. The Zariski topology ZA on A is defined by a subbase of closed
sets which is the collection of all sets of the form ϕ(A, ā) where ϕ(x, ā) is an
atomic formula and depends on a single variable x.

Thus, the family of all sets of the form ¬ϕ(A, ā) is a subbase of open sets
of ZA. We will denote it by SA.
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Kotov has proved in [4], that a countable algebra A is topologizable if and
only if the Zariski topology of A is not discrete. This is a confirmation of the
claim of A.D. Taimanov from [11]. An easy modification of Kotov’s proof gives
the same statement in the case of arbitrary countable language (i.e. together
with relations), see Theorem 3.2 below. We remind the reader that a structure
A is topologizable if it admits a non-discrete Hausdorff topology such that all
operations of A are continuous and all relations are closed in the corresponding
powers of A.

The problem of topologizability of algebras was initiated by A. Markov
who proved in [5] a topologizability criterion for countable groups. In the sixties
and seventies the problem was considered for rings (Arnautov [1]), groupoids ,
semigroups and skew fields (Handson and Taimanov). At the moment this topic
has become well established, having well-known achievements (for example
[6,8]). Paper [2,4] have nice descriptions of the topic and rich bibliography.

Let (G, ·) be a group. For every finite system of equations W (x1, . . . , xn)
without parameters we introduce the corresponding relational symbol RW and
interpret it in G as the set of all solutions of W (x̄). We consider only equations
having solutions and non-solutions. The structure

GREL = (G, {RW | W is a finite system of parameter-free equations })

has the same Zariski topology with (G, ·). Thus if the group G is countable
it is topologizable if and only if so is the structure GREL. In particular if G
is a non-topologizable group (for example the group found in [6]), then GREL

is non-topolgizable too. Does this argument work in the uncountable case?
This motivates us to generalize the topologizability criterion for uncountable
structures with countable language. Note that in the case GREL the language
is still countable even if we assume that G is uncountable.

It looks likely that structures GREL can have Hausdorff non-trivial topolo-
gies which do not topologize the group G (even when it is countable and
topologized). Can these topologies be chosen with some additional properties,
for example metrizability? Are there generalizations of this approach to the
uncountable case? These questions are central in our paper.

In Section 3 we prove Theorem 3.2 which generalizes (and corrects the
proof of) the main result of [4]. Our generalization concerns the cardinality of
the structure and the presence of relations in the language. In Section 4 we
prove Proposition 4.1 which shows that in the case of topologized relational
countable structures the topology can be made totally disconnected.

2. Zariski topology

The following lemma is a folklore fact with an obvious proof. It generalizes
Lemma 3 of [4] to the case structures with relations in the language.

Lemma 2.1. Let A = 〈A,L〉 be an arbitrary structure. The Zariski topology
ZA is not discrete if and only if there exists an element d ∈ A such that any
finite system of negations of atomic formulas, whose solution is d, has more
than one solution.
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It is worth noting that following the general theory of algebraic geometry
in universal algebra, Kotov defines the Zariski topology by the subbase of all
sets of the form

⋃
i∈I ¬ϕi(A, ā), where I can be infinite. This is an equivalent

definition.
Let τ be a topology on a set X. We remind the reader that the pseu-

docharacter of τ at p ∈ X is defined as follows:

ψ(p, τ) = min
{

|U| | U ⊂ τ,
⋂

U = { p }
}

.

We will use some extension of this definition, see [2].

Definition 2.2. Let X be non-empty set, V ⊂ P(X), p ∈ X and Vp = {X } ∪
{V ∈ V | p ∈ V }. The pseudocharacter of V at p is the cardinal number

ψ(p,V) = min
{

|U| | U ⊂ Vp,
⋂

U =
⋂

Vp

}
.

The following lemma is a straightforward generalization of some standard
arguments, see [2,7,9].

Lemma 2.3. (1) Let τ be a topology on X defined by a subbase S and let p ∈ X
be a non-isolated point with respect to τ . Then the pseudocharacter of the
topology τ at p coincides with the pseudocharacter of S at p.

(2) Let A = 〈A,L〉 be an arbitrary structure and p ∈ A. The pseudocharacter
of the Zariski subbase at p ∈ A equals the least cardinality of a system of
negations of atomic formulas whose unique solution is p.

Corollary 2.4. Let A = 〈A,L〉 be a structure and p ∈ A. If p is not isolated in
the Zariski topology ZA, then ψ(p,SA) ≥ ℵ0.

Definition 2.5. An L-structure A is called topologizable if there exists a nondis-
crete Hausdorff topology τ on A such that all functions of L are continuous
and all relations of L are closed in τ .

In the following lemma we collect some easy folklore facts.

Lemma 2.6. Let A be an L-structure.
(1) If τ is a Hausdorff topology on A, then any set of the form ϕ(A, ā), where

ϕ is atomic, is closed in τ .
(2) If τ is a Hausdorff topology on A, then ZA ⊆ τ ⊆ 2A.
(3) If ZA is discrete, then structure A is not topologizable.

3. Topologizability

To prove that a structure A is topologizable we will use some strategy of
defining a base of the corresponding topology. The following lemma describes
this strategy. It is a generalization of Lemma 11 of [4].

Lemma 3.1. Let A = 〈A,L〉 be an L-structure, D ⊆ A and D 
= ∅. Let κ = |A|.
If the set of functional L-symbols is not empty let

d = { (fγ , āγ , Rγ , ā′
γ) }γ<κ
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be a sequence of all tuples of the form

(f, ā, R, ā′), where f ∈ F , ā ∈ Anf , R ∈ R, ā′ ∈ AnR\R.

We assume that every tuple occurs cofinaly in this sequence. We enumerate

āγ = (aγ,1, aγ,2, . . . , aγ,nf
) and ā′

γ = (aγ,nf+1, aγ,nf+2, . . . , aγ,nf+nR
).

If the language L is relational, then let d be a sequence of all tuples of the
form (aγ,1, Rγ , ā′

γ), where aγ,1 ∈ A, Rγ ∈ R, ā′
γ ∈ AnR\Rγ and ā′

γ =
(aγ,2, aγ,3, . . . , aγ,nR+1). In this case we also assume that every tuple occurs
cofinaly in d.

Suppose that {Vγ,i }γ<κ,1≤i≤nfγ +nRγ
is a family of subsets of A satisfying

the following properties:
(1) aγ,i ∈ Vγ,i,
(2) if β < γ and aγ,i ∈ Vβ,j, then Vγ,i ⊆ Vβ,j,
(3) if β < γ and fγ(āγ) ∈ Vβ,j, then fγ(Vγ,1 × Vγ,2 × · · · × Vγ,nfγ

) ⊆ Vβ,j,
(4) Vγ,nfγ +1 × Vγ,nfγ +2 × · · · × Vγ,nfγ +nRγ

∩ Rγ = ∅,
(5) if aγ,1 ∈ D, then |Vγ,1| > 1,
(6) if α < β < γ, aγ,1 = aα,1 and aγ,1 
= aβ,1, then Vβ,1 ∩ Vγ,1 = ∅.

Then A is topologizable and the pseudocharacter of this topology at any d ∈ D
equals cf(κ).

Proof. Assumption (1) implies
⋃

γ

⋃
i Vγ,i = A. Take any Vβ,i, Vγ,j and let

b ∈ Vβ,i ∩ Vγ,j . Choose α such that α > β, α > γ and aα,1 = b. It follows from
(1) that b ∈ Vα,1. Then (2) implies that Vα,1 ⊆ Vβ,i and Vα,1 ⊆ Vγ,j . We have
b ∈ Vα,1 ⊆ Vβ,i ∩ Vγ,j , so the family (Vγ,i) is a basis of a topology on A, say τ .

Now we show that in the case F 
= ∅ all L-functions are τ -continuous.
Let f ∈ F , ā ∈ Anf and f(ā) ∈ Vβ,i. Choose γ such that γ > β, f = fγ and
ā = āγ . Since āγ ∈ Vγ,1 × Vγ,2 × · · · × Vγ,nfγ

it follows from (3) that

f(Vγ,1 × Vγ,2 × · · · × Vγ,nfγ
) ⊆ Vβ,i.

We prove that all relations are closed in this topology. Take any R ∈ R
and let ā ∈ AnR\R. Choose γ such that Rγ = R and ā′

γ = ā. Then by (1) we
have ā′

γ ∈ Vγ,nfγ +1 × Vγ,nfγ +2 × · · · × Vγ,nfγ +nRγ
and by (4)

Vγ,nfγ +1 × Vγ,nfγ +2 × · · · × Vγ,nfγ +nRγ
∩ R = ∅.

This topology is Hausdorff. Indeed, let b1 
= b2. Choose γ, β, α such that
γ > β > α, aγ,1 = aα,1 = b1 and aβ,1 = b2. It follows from (1) that b1 ∈ Vγ,1

and b2 ∈ Vβ,1. Then (6) implies that Vγ,1 ∩ Vβ,1 = ∅.
Every element d ∈ D occurs cofinaly as aγ,1. By (2) there is a cofinal

subsequence {Vγδ,1 }δ<cf(κ) of the corresponding γ’s. As we already know it
is a descending sequence of neighbourhoods of d. By (5) each Vγδ,1 is not a
singleton. Since τ is T2, we have

⋂

δ<cf(κ)

Vγδ,1 = { d }.

If U is a family of τ -open sets such that |U| < cf(κ) and
⋂U = { d }, then

we may assume that U consists of sets Vγ,1. Thus, we can form a descending
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sequence of elements of U . Since |U| < cf(κ), there is γ0 such that Vγ0,1 ⊆⋂ U . Since by (5) |Vγ0,1| > 1, we have a contradiction. Therefore, ψ(d, τ) =
cf(κ). �

The following theorem is generalization of Lemma 12 from [4] to the
case of structures having relations in the language. Contrary to the Kotov’s
paper we do not assume that our structures are countable. This makes the
construction slightly more complicated.

Theorem 3.2. Let A = 〈A,L〉 be an L-structure, of cardinality κ. Let D be the
set of all elements of A which are not isolated in ZA. Assume that D 
= ∅ and
each d ∈ D satisfies ψ(d,ZA) = cf(κ).

Then A is topologizable so that the pseudocharacter of this topology at
each d ∈ D equals cf(κ).

Proof. Let d be a sequence defined in Lemma 3.1 when |A| = κ.
Suppose that there exists a family

{Uγ,i,δ | γ < κ, 1 ≤ i ≤ nfγ
+ nRγ

, δ < κ }
of subsets of A such that the following conditions hold:

(1) aγ,i ∈ Uγ,i,δ,
(2) if β < γ ≤ δ and aγ,i ∈ Uβ,j,δ, then Uγ,i,δ ⊆ Uβ,j,δ,
(3) if β < γ ≤ δ and fγ(āγ) ∈ Uβ,i,δ, then fγ(Uγ,1,δ ×· · ·×Uγ,nfγ ,δ) ⊆ Uβ,i,δ,
(4) if γ ≤ δ, then (Uγ,nfγ +1,δ × · · · × Uγ,nfγ +nRγ ,δ) ∩ Rγ = ∅,
(5) if γ ≤ δ and aγ,1 ∈ D, then |Uγ,1,δ| > 1,
(6) if α < β < γ ≤ δ, aγ,1 = aα,1 and aγ,1 
= aβ,1, then Uβ,1,δ ∩ Uγ,1,δ = ∅,
(7) if γ < β ≤ δ and aβ,1 
= aγ,1, then aγ,1 /∈ Uβ,1,δ,
(8) if δ < γ, then Uγ,i,δ = { aγ,i },
(9) if δ < η, then Uγ,i,δ ⊆ Uγ,i,η.

Put Vγ,i =
⋃

δ<κ Uγ,i,δ. Then it is easy to see that the family of these Vγ,i

satisfies all requirements of Lemma 3.1. This would prove the theorem. Let
us fix a well ordering of A: b0, b1, . . . , bα . . . , α < κ. We construct the family
{Uγ,i,δ | γ < κ, 1 ≤ i ≤ nfγ

+ nRγ
, δ < κ } by transfinite induction where we

use this ordering. We apply induction on δ.
At step 0 let Uγ,i,0 = { aγ,i } if γ 
= 0 or i 
= 1. Put U0,1,0 = { a0,1 }

if a0,1 
∈ D. If a0,1 ∈ D put U0,1,0 = { a0,1, b }, where b is the first element
of b0, b1, . . . , bα, . . . such that b 
= a0,1 and all U0,i,0 satisfy condition (4) for
δ = 0. The condition that a0,1 is not isolated in the Zariski topology implies
the existence of such b. As a result we see that conditions (1)–(8) are satisfied
for δ = 0.

The table in Figure 1 illustrates the induction process for δ > 0. Let
δ be an ordinal greater than 0 and assume that the family {Uγ,i,α | α <
δ and γ < κ } has been already constructed so as to satisfy conditions (1)–(8)
and Uγ,i,α1 ⊆ Uγ,i,α2 for all γ, i and α1 < α2 < δ. Let us define a family
{Uγ,i,δ | γ < κ } for which (1)–(8) hold and Uγ,i,α ⊆ Uγ,i,δ for all α < δ,
appropriate i and γ < κ.
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0 · · · δ′ · · · δ · · ·
(0, 1) {a0,1} . . . U0,1,δ′ · · · U0,1,δ · · ·
...

...
...

...
(β, i) {aβ,i} . . . Um,i,δ′ · · · Uβ,i,δ · · ·
...

...
...

...
(γ, j) {aγ,j} . . . Uγ,j,δ′ · · · Uγ,j,δ · · ·
...

...
...

...
(δ, 1) {aδ,1 ∈ D} . . . {aδ,1} · · · {aδ,1, b} · · ·
...

...
...

...
(δ, i) {aδ,i} . . . {aδ,i} · · · {aδ,i} · · ·
...

...
...

...

Figure 1. The induction process for δ > 0

Let aδ,1 
∈ D. If δ is a successor ordinal, then we put Uγ,i,δ = Uγ,i,δ−1 and
if δ is a limit ordinal, then let Uγ,i,δ =

⋃
δ′<δ Uγ,i,δ′ . It is easy to verify that

in both cases conditions (1)–(5) and (7)–(8) hold. If γ 
= δ, then (6) obviously
holds. Let α < β < γ = δ, aα,1 = aγ,1 and aβ,1 
= aδ,1. By (7) aδ,1 
∈ Uβ,1,δ

while Uδ,1,δ = { aδ,1 }. Then Uβ,1,δ and Uδ,1,δ are disjoint.
Let aδ,1 = d ∈ D. To satisfy that |Uδ,1,δ| > 1 we construct a system of

negations of atomic formulas depending on a single variable x and realized
by d. When we define it we put Uδ,1,δ = { d, b }, where b 
= d is the minimal
solution of this system in the ordering b0, b1, . . . , bγ , . . . which is outside all
Uα,i,β with max(α, β) < δ.

We start with a family of sets of terms (depending on x)

{Uγ,i,δ(x) | γ < κ, 1 ≤ i ≤ nfγ
+ nRγ

}.

Put Uγ,i,δ(x) = { aγ,i } for γ > δ. If γ ≤ δ and d 
∈ ⋃
δ′<δ Uγ,i,δ′ then let

Uγ,i,δ(x) =
⋃

δ′<δ Uγ,i,δ′ . If aδ,i = aδ,1 let Uδ,i,δ(x) = { aδ,1, x }.
The remaining sets are constructed as follows. For every finite sequence

of ordinals ᾱ = {α1 < · · · < αk = δ } define Uᾱ,i,j(x) by induction in order of
decreasing j ≤ k. Let Uᾱ,i,k(x) = Uδ,i,δ(x). Suppose that all sets Uᾱ,i,j(x) for
m < j ≤ k are already defined. Put

Uᾱ,i,m(x) =

(
⋃

δ′<δ

Uαm,i,δ′

)

∪
⋃

m<j≤k
aαj,l∈

⋃
δ′<δ Uαm,i,δ′

Uᾱ,l,j(x)∪

∪
⋃

m<j≤k
fαj

(āαj
)∈⋃

δ′<δ Uαm,i,δ′

fαj
(Uᾱ,1,j(x) × · · · × Uᾱ,nfαj

,j(x)).

Let us define Uγ,i,δ(x) to be the union of all Uᾱ,i,j(x) for all possible finite
sequences ᾱ = { γ = α1 < · · · < αk = δ }.
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Assume that b ∈ A\{ d } satisfies the condition that for any finite
sequence ᾱ as above and any non-constant term t(x) from any

⋃

m<j≤k
aαj,l∈

⋃
δ′<δ Uαm,i,δ′

Uᾱ,l,j(x)∪

∪
⋃

m<j≤k
fαj

(āαj
)∈⋃

δ′<δ Uαm,i,δ′

fαj
(Uᾱ,1,j(x) × · · · × Uᾱ,nfαj

,j(x))

if γ ≤ δ and t(d) 
= aγ,i then t(b) 
= aγ,i. Then for all γ ≤ δ and such a b,

Uγ,i,δ(b) ∩
⋃

j

⋃

δ′<δ

⋃

β≤δ

Uβ,j,δ′ =
⋃

δ′<δ

Uγ,i,δ′ .

To see this note that when t(d) equals to some aγ,i as above, any its subterm
of the form fδ(āδ) belongs to some

⋃
δ′<δ Uβ,j,δ′ with β < δ and aγ,i is the

value of some fα, α < δ, with a substituted tuple from
⋃

j

⋃

δ′<δ

⋃

β<δ

Uβ,j,δ′ .

Thus the membership of aγ,i to the corresponding Vβ,j , β < δ, was already
decided at previous steps.

We set Uγ,i,δ = Uγ,i,δ(b) for all γ ≤ δ. It is easy to see that conditions
(1)–(3), (5) and (8) hold for our Uγ,i,δ’s. For example let β < γ ≤ δ and
aγ,i ∈ Uβ,j,δ(b). Note that by the choice of b

aγ,i ∈
⋃

j

⋃

δ′<δ

⋃

β≤β′<γ

Uβ′,j,δ′ .

If aγ,i ∈ ⋃
δ′<δ Uβ,j,δ′ , then considering finite sequences ᾱ where α1 = β,

α2 = γ, we see that the definition guarantees that Uγ,i,δ(b) ⊆ Uβ,j,δ(b). Similar
arguments work for the case when aγ,i ∈ ⋃

δ′<δ Uβ′,j,δ′ for some β′ > β with
β′ < γ.

To satisfy (4), (6), (7) and the choice of b as above we form a system of
inequations S which consists of the following system:

⋃

α<β≤δ
aα,1 �=aβ,1

t(x)∈Uβ,1,δ(x)

{ aα,1 
= t(x) } ∪
⋃

α<β<γ≤δ
aα,1=aγ,1
aα,1 �=aβ,1

t1(x)∈Uβ,1,s(x)
t2(x)∈Uγ,1,s(x)

{ t1(x) 
= t2(x) }∪

∪
⋃

γ≤δ

¬Rγ(Uγ,nfγ +1,s(x) × · · · × Uγ,nfγ +nRγ ,δ(x))

and

{ t(x) 
= aγ,j | γ ≤ δ and for some i the term t(x) belongs to
⋃

m<j≤k
aαj,l∈

⋃
δ′<δ Uαm,i,δ′

Uᾱ,l,j(x)∪
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∪
⋃

m<j≤k
fαj

(āαj
)∈⋃

δ′<δ Uαm,i,δ′

fαj
(Uᾱ,1,j(x) × · · · × Uᾱ,nfαj

,j(x))

and does not satisfy t(d) = aγ,j } .

Conditions (4),(6) and (7) are met for the family Uγ,1,δ(b) if we take as b any
solution of S which is outside all Uα,i,β with max(α, β) < δ. Since for any α

Uα,i,δ(d) =
⋃

δ′<δ

Uα,i,δ′ ,

the inductive assumptions imply that d is one of the solution of this system.
Since |S| < cf(κ) by Lemma 2.3(2) this system has a solution bσ 
= d with
σ < κ such that bσ 
∈ ⋃{Uα,i,β | max(α, β) < δ }. The rest of the argument is
clear. �

Remark 3.3. The proof of the corresponding place presented in [4, Lemma 12]
is not complete. The choice of b so that it realizes all inequalities over

⋃

j

⋃

δ′≤δ

⋃

β≤δ

Uβ,j,δ′

realized by d is an essential element of the proof. For example we cannot verify
condition (2) at step δ without this property.

The assumption of the theorem, that the pseudocharacter of the Zariski
topology is cf(κ) at any non-isolated point is essential. Let us assume CH
and consider the non-topologizable group M of cardinality 2ω constructed by
Shelah [8].

Proposition 3.4. The pseudocharacter of any element of M in the Zariski topol-
ogy of M is equal to ω.

Proof. The pseudocharacter of 1 in the Zariski topology of M is infinite.
This follows from non-topologizability of M and a general observation which
appears in Lemma 1 of [10]. Note that for every inequation W (x) 
= 1 with
solution 1 any element a ∈ M is a solution of the inequation W (x · a−1) 
= 1.
Thus the pseudocharacter of any element a ∈ M in the Zariski topology of
M is infinite and is the same with 1. If it is 2ω, then M is ungebunden in the
sense of Podewski and thus topologizable, see [7]. As a result we see that the
peudocharacter is equal to ω. �

Remark 3.5. Let J be the uncountable hereditarily non-topologizable group
found in [3]. The term hereditarily non-topologizable means that for any H < J
any quotient of H is non-topologizable. It is shown in Theorem 2.5 of [3] that
there is a natural number n0 and an element g ∈ J such that the set of non-
solutions of the equation (ggx)n0 = 1 is finite and contains 1. Thus for any
a ∈ J the equation (ggx·a−1

)n0 = 1 is not satisfied by a. In particular any a is
isolated in the Zariski topology of J . This in particular implies that the group
J is not topologizable even as a relational structure JREL.



Vol. 79 (2018) Topologizable structures and Zariski topology Page 9 of 11 72

4. Metrizability

In the case of a countable relational structure the construction of the previous
section gives a totally disconnected space.

Proposition 4.1. Assume that A = 〈A,L〉 is a countable L-structure and the
language L is relational. If the Zariski topology ZA is not discrete, then the
structure A is topologizable by a topology τ which is zero dimensional, metriz-
able and satisfies the following property:

if D is the set of all elements of A which are not isolated in ZA,
then all elements of D are not isolated with respect to τ .

Proof. We start with some observations concerning the proof of Theorem 3.2 in
the case of a countable relational structure. The sequence d defined in Lemma
3.1 consists of all tuples of the form (am,1, Rm, ā′

m), where am,1 ∈ A, Rm ∈ R,
ā′

m ∈ AnR\Rm and ā′
m = (am,2, am,3, . . . , am,nR+1). We may assume that any

element of the tuple ā′
m appears in this sequence as as,1 for some s < m. This

can be obtained by a small modification of the construction by duplications of
some tuples ā′

m at some steps and introducing several steps in the beginning
where we do nothing.

When as,1 
∈ D and as,1 was not used before step s as some b in order to
satisfy condition (5), then the construction of Theorem 3.2 ensures that all Vn,i

containing as,1 are singletons. Moreover note that any element as,1 
∈ D first
appearing as such a b defines singletons Vn,i for an,i = as,1 from the moment
of the second appearance.

Let us consider the corresponding Vn,i for elements of D. Since L is
relational the procedure of Theorem 3.2 in this case can be equivalently refor-
mulated in a more convenient way. We now describe it.

Let as,1 = d ∈ D. To satisfy that |Us,1,s| > 1 we construct a system of
negations of atomic formulas depending on a single variable x and realized
by d. When we define it we put Us,1,s = { d, b }, where b 
= d is the minimal
solution of this system in the enumeration b0, b1, . . . , bn, . . . which is outside
all Uk,i,l with max(k, l) < s. The assumptions of the beginning of the proof
guarantee that b does not belong to the set { as,i | i ≤ nRs

+ 1 }.
The sets {Um,i,s(x) | m ∈ N, 1 ≤ i ≤ nRm

+1 } are constructed according
the following rules. Put Um,i,s(x) = Um,i,s for m > s. If m ≤ s and d 
∈ Um,i,s−1

then Um,i,s = Um,i,s−1. If d ∈ Um,i,s−1 then let Um,i,s(x) = Um,i,s−1 ∪ {x }.
It is easy to see that these rules agree with the corresponding procedure of
Theorem 3.2.

Let us consider the following system:

S =
⋃

m≤s

¬Rs(Um,2,s(x) × · · · × Um,nRs+1,s(x)).

Since Um,i,s(d) = Um,i,s−1, the inductive assumptions imply that d is one of
the solution of this system. By Lemma 2.3(2) this system has a solution b 
= d.
Any solution b 
= d which is outside all Um,i,k with max(m, k) < s realizes all
conditions (1), (2), (4)–(8) for the corresponding Um,i,s(b).
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As a result we see that in the case as,1 ∈ D the procedure of step s only
extends the sets Um,i,s−1 which contain as,1. Moreover these sets are extended
by the same element which is outside all Um,i,k with m ≤ s and k < s.

Applying easy induction we obtain that for any (m, i, k) and (n, j, k) with
m < n and k ≤ s if the intersection Um,i,k ∩ Un,j,k is not empty, then Um,i,k

contains Un,j,k. This implies the following claim.
Claim. For any (m, i) and (n, j) with m < n if the intersection Vm,i ∩Vn,j

is not empty, then Vm,i contains Vn,j .
To see that the topology is zero dimensional it suffices to show that all

sets of the form Vn,1 are clopen. Let F be the complement of some Vn,1. Any
a ∈ F coincides with some am,1 with m > n. By our claim the corresponding
Vm,1 has empty intersection with Vn,1.

Thus the set F can be presented as a union of basic open sets, i.e. F is
clopen.

Since the family of all Vm,i is countable, by the Urysohn’s metrization
theorem we have that the topology τ is metrizable. The rest of the formulation
follows from Theorem 3.2. �

Let us mention that in the situation when G is a countable topological
group we cannot state that the topology obtained for GREL by the method
of Proposition 4.1 topologizes the group G. This is because the construction
from the proof does not take care of continuity of multiplication.
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