
Algebra Universalis

Loosely-abelian algebras

Jacek Krzaczkowski

Abstract. Abelianity has two different meanings in universal algebra. On the one
hand, the term “abelian” is used interchangeably with “commutative” whilst on the
other, an algebra is said to be abelian if for every term t(x, y) and for all elements a, b,

c, d we have the following implication: t(a, c) = t(a, d) ⇒ t(b, c) = t(b, d). These two
definitions are equivalent for groups but not generally. We will introduce the class of
loosely-abelian algebras which for finite algebras is a generalization of both kinds of
abelianity mentioned above. We will prove some basic properties of loosely-abelian
algebras and using the introduced concept, we will characterize the subreducts of
finite semilattices. Furthermore, we will present an algorithm which solves equations
over loosely-abelian algebras.

1. Introduction

Groups are one of the best known and studied algebraic structures. One

of the reasons is that group theory has many applications in numerous areas

of mathematics and other sciences, e.g., public key cryptography, algebraic

geometry, combinatorics, physics and chemistry. One of the most important

classes of groups is commutative groups, which generalize the arithmetic of

integer addition. Commutative groups are also called abelian groups.

There are two different generalizations of the commutative group concept.

The best known and intuitive generalization of commutative groups are com-

mutative semigroups, sometimes called abelian semigroups. The second gen-

eralization are abelian algebras, defined by a term condition, which are a gen-

eralization transferred from the concept of commutative groups into general

algebra. Abelianity in such a sense plays a crucial role in tame congruence

theory [6] and commutator theory [2]. A group is commutative iff it is abelian

(i.e., it fulfills the term condition). If we consider generalizations of abelian

groups, the weakness of abelianity, defined by the term condition, is the fact

that commutativity and abelianity are not the same for semigroups. There are

commutative semigroups which are not abelian and abelian semigroups which

are not commutative (for characterization of abelian semigroups see [14]). We

would like to have a language independent generalization of abelian groups

that is also a generalization of commutative semigroups and abelian algebras.
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In this paper, we will introduce the concepts of k-loosely-abelian and loosely-

abelian algebras. Speaking informally, an algebra A is k-loosely-abelian iff for

all term operations t of A we can divide the arguments of t into at most k

classes such that the arguments contained in any one class behave identically.

We say that the algebra is loosely-abelian if it is k-loosely-abelian for some k.

Finite loosely-abelian algebras are the common generalization of both finite

commutative semigroups and finite abelian algebras. Furthermore, for finite

monoids, we have that a monoid is commutative iff it is loosely-abelian. We

will also prove some other properties of loosely-abelian algebras.

An interesting question is which algebras are loosely-abelian. In the final

three sections, we try to characterize 1-loosely-abelian algebras. It turns out

that under one natural additional assumption, 1-loosely-abelian finite algebras

and subreducts of finite semilattices are essentially the same. An open problem

is to characterize, in a similar way, k-loosely-abelian algebras for k > 1 and

loosely-abelian algebras in general.

Loosely-abelian algebras are interesting from the algebraic point of view

but their idea is derived from studies into the computational complexity of

solving equations over finite algebras. An attempt to generalize the algorithms

for solving equations over abelian algebras and semiaffine algebras led to the

definition of the property, which later became the definition of loosely-abelian

algebras. We will show a polynomial time algorithm that solves equations over

finite loosely-abelian algebras. The technique used in this algorithm can be

used to solve other problems connected with equations over loosely-abelian

algebras.

This paper is organized as follows. Section 1 presents an introduction to

the subject. Section 2 contains some algebraic definitions. In Section 3, we

define the problem of solving equations and present some known results. In

Section 4, we introduce loosely-abelian algebras and prove some of their basic

properties. In Section 5, we show a polynomial time algorithm that solves

equations over finite loosely-abelian algebras. Sections 6 and 7 contain lemmas

which we need in Section 8. Finally, in Section 8, we characterize a large class of

finite 1-loosely-abelian algebras and discuss what other finite 1-loosely-abelian

algebras look like.

2. Definitions and notations

We use standard algebraic definitions, which the reader can find in, e.g.,

[1]. We only consider algebras with at least two elements. Note that the set

of fundamental operations of an algebra may not be finite.

If t is a term (polynomial), in which only the (distinct) variables from

{x1, . . . , xn} appear, then tA(x1, . . . , xn) describes the corresponding n-ary

term (polynomial) operation. We denote the set of term (polynomial) opera-

tions of A = (A,F ) by Clo(A) (Pol(A)). Note that Clo(A) and Pol(A) are
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the clones of operations on A, i.e., sets of operations on A, closed under com-

position, and containing the projection operations πn
i (x1, . . . , xn) = xi. We

denote the set of variables occurring in the term (polynomial) t by Var(t). We

define Term(A) ⊆ Clo(A) as the set of term operations tA(x1, . . . , xn) such

that Var(t) = {x1, . . . , xn} (the arity of tA is equal to the number of variables

occurring in term t). In a similar way we define Polyn(A) ⊆ Pol(A) as the set

of polynomial operations of arity equal to the number of variables occurring

in the corresponding polynomial. We write Termk(A) (Polynk(A)) to denote

the set of k-ary operations from Term(A) (Polyn(A)).

We say that algebra B is a reduct of algebra A iff A and B have the same

universe and Clo(B) ⊆ Clo(A). Subalgebras of reducts of algebra A are called

subreducts of A.

We say that an equation between terms over A in the form

t1(x1, . . . , xn) = t2(y1, . . . , ym),

where {x1, . . . , xn}∪ {y1, . . . , ym} = X, is satisfiable iff there exists a function

s : X → A, such that tA1 (s(x1), . . . , s(xn)) = tA2 (s(y1), . . . , s(ym)). Such a

function s is called a solution. Note that the intersection of sets {x1, . . . , xn}
and {y1, . . . , ym} may not be empty. We may similarly define the solution for

equations between polynomials.

We will now define a few important classes of algebras which we will gen-

eralize in the next section. Firstly, we will define the abelian algebras.

Definition 2.1. An algebraA = (A,F ) is called abelian if the following holds:

for every n + 1-ary term f of A and every u, v, x1, . . . , xn, y1, . . . , yn ∈ A we

have that:

f(u, x1, . . . , xn) = f(u, y1, . . . , yn) ⇔ f(v, x1, . . . , xn) = f(v, y1, . . . , yn).

Note that a group is abelian iff it is commutative. For this purpose abelian-

ity is considered a generalization of the concept of commutative groups.

Affine algebras are another generalization of abelian groups. They can be

defined in the following way.

Definition 2.2. An algebra A = (A,F ) is called an affine algebra iff there is

an abelian group G = (A,+) such that

• the operation m(x, y, z) = x− y + z is a term operation of A,

• every polynomial of A may be expressed in the form:
∑n

i=1 ei(xi) + a,

where ei is an endomorphism of G and a ∈ A.

Note that every affine algebra is abelian.

An obvious generalization of abelian groups are commutative semigroups.

Unfortunately, not all commutative semigroups are abelian and not all abelian

semigroups are commutative.

Example 2.3. The semilattice (2,∧) is a commutative semigroup, but it is

not abelian. On the other hand, every set with a two-argument projection as

an operation forms an abelian semigroup which is not commutative.
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Semiaffine algebras are a common generalization of affine algebras and com-

mutative semigroups.

Definition 2.4. An algebra A = (A,F ) is called a semiaffine algebra iff there

is a commutative semigroup S = (A,+), such that any basic operation of A

may be expressed in one of the following two forms:

n∑
i=1

ei(xi) + a or

n∑
i=1

ei(xi),

where {e1, . . . , en} are endomorphisms of S and a ∈ A. Any operations which

can be expressed in one of the above two forms are called semiaffine operations.

In Section 4, we will introduce the concept of loosely-abelian algebras which,

in the case of finite algebras, seems to be an interesting generalization of

abelian groups containing both semiaffine and abelian algebras.

3. Solving equations over finite algebras

The most commonly considered problem connected with solving equations

over finite algebras is the following.

Definition 3.1. For a finite algebra A, the polynomial satisfiability problem

(POL-SAT(A)) is the decision problem with

Instance: A pair of polynomials (s, t) with the tables of the fundamental

operations of A corresponding to all function symbols occurring in s

and t.

Question: Does there exist a substitution of variables from A, such that

the values of functions sA and tA are the same?

In a similar way, we can define the systems of equations of the polynomial

satisfiability problem (SysPol(A)) and the satisfiability of the term equations

problem (TERM-SAT(A)).

Such definitions, originally stated in [4], are different from those use by

other authors. The difference is that our definitions allow algebras with an

infinite number of basic operations, and for this reason the tables of opera-

tions used in the equations are part of the instance (in this way we guarantee

that the problems are contained in NP). For algebras with a finite number

of basic operations these definitions are equivalent to the former ones (in the

sense that there are polynomial-time reductions from the new problem to the

corresponding old problem and from the former problem to the new one).

There are many results for the computational complexity for solving equa-

tions or systems of equations over well-known structures, e.g., groups [3], rings

[7], monoids [11] and lattices [13].

In [12], it is shown that the problem SysPol(A) for any algebra A is poly-

nomially equivalent to CSP(Γ) for some Γ (Constraint Satisfaction Problem
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for a relational structure Γ). One of the important results of an algebraic ap-

proach to CSP is the proof that the computational complexity of CSP(Γ) for

the finite relational structure Γ with a finite number of relations depends only

on the relational clone of Γ. Therefore, it seems natural to question whether

problems connected with solving equations over fixed algebra A depend only

on the clone of the term operation of A. As a result, from [12], we have that

the computational complexity of SysPol(A) for A of a finite type depends only

on Clo(A). On the other hand, we have the following example.

Example 3.2. Consider the smallest non-nilpotent, solvable group S3 =

(S3, ◦). Let s(x, y, z, w) = x ◦ [[[x, y], z], w]−1, where [x, y] = x−1 ◦ y−1 ◦ x ◦ y.
Obviously, Clo(S3, ◦)) = Clo(S3, ◦, s).

POL-SAT(S3, ◦) is in P ([8]) but POL-SAT(S3, s, ◦) is NP-complete (P.M.

Idziak’s result published in [5]).

Szabó and Horváth in [10] showed that group A4 is another example of

an algebra for which the complexity of POL-SAT does not only depend on

the term clone. Moreover, they proved that for every non-nilpotent solvable

finite group (G, ◦), we may choose operations f1, . . . , fk ∈ Clo(G, ◦) such that

POL-SAT(G, ◦, f1, . . . , fk) is NP -complete [9].

However, there are some big classes of algebras, e.g two-element algebras

[4] and preprimal algebras [5], for which the computational complexity of

TERM-SAT and POL-SAT depends only on Clo(A). In Section 5, we will

prove that loosely-abelian algebras are another such class of algebras.

4. Loosely-abelian algebras

In this section, we introduce the concept of loosely-abelian algebras, which is

a generalization of concepts of abelianity and commutativity in finite algebras.

To define loosely-abelian algebras, we will need the following definition.

Definition 4.1. For a k-ary operation p on set A, we define a relation ρp ⊂
{1, . . . , k}2 in the following way:

(i, j) ∈ ρp iff

∀a1,...,ak∈A p(a1, . . . , ai, . . . , aj , . . . , ak) = p(a1, . . . , aj , . . . , ai, . . . , ak).

Note that for any operation p, the relation ρp is an equivalence relation on

indexes of arguments of p. For a term t(x1, . . . , xk) over algebra A, we define

ρvar(t) = {(xi, xj) : (i, j) ∈ ρtA}. Obviously, ρvar(t) is an equivalence relation

on {x1, . . . , xk}.
We can now define loosely-abelian algebras.

Definition 4.2. Let A be an algebra. We say that A is k-loosely-abelian if

for every operation f ∈ Term(A), the relation ρf has at most k equivalence

classes. We say that A is loosely-abelian if it is k-loosely-abelian for some k.
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Note that if in the above definition we used polynomial operations of an

algebra instead of term operations, we would obtain the equivalent definition

of loosely-abelian algebras.

Loosely-abelian algebras have some useful properties.

Fact 4.3. Let A and B be algebras of the same type. If A is k-loosely-abelian

and B is l-loosely-abelian, then

• A is (k+1)-loosely-abelian,

• homomorphic images of A are k-loosely-abelian,

• subalgebras of A are k-loosely-abelian,

• A×B is k · l-loosely-abelian,
• A× · · · ×A is k-loosely-abelian,

• subreducts of A are k-loosely-abelian.

The following corollary is the straightforward consequence of Fact 4.3.

Corollary 4.4. Let A be a k-loosely-abelian algebra. Then every algebra in

the variety generated by A is k-loosely-abelian.

It turns out that in the finite case, loosely-abelian algebras may be consid-

ered as a generalization of both commutativity and abelianity concepts.

Theorem 4.5. Let A be a semiaffine algebra over a finite semigroup. Then

A is loosely-abelian.

Proof. From the assumptions of the current lemma and the definition of semi-

affine algebras, we have that there exists a finite commutative semigroup S

such that every term operation p of A may be expressed in one of the follow-

ing two forms:
n∑

i=1

ei(xi) + a or

n∑
i=1

ei(xi),

where every variable occurs at most once, and {e1, . . . , en} are the endomor-

phisms of S.

There are only a finite number of endomorphisms of the finite semigroup S.

Let k be the number of endomorphisms of S. It is clear that if ei = ej , then

(i, j) ∈ ρp and consequently, we have that the number of equivalence classes of

the relation ρp is bounded by k. Note that k depends on algebra A only. This

implies that A is k-loosely-abelian and, as a result, it is loosely-abelian. �

The corollary for this theorem is the fact that every commutative semigroup

is loosely-abelian.

Theorem 4.6. Let A = (A,F ) be a finite abelian algebra. Then A is loosely-

abelian.

Proof. Let |A| = n, a, a2, . . . , ak, b2, . . . , bk ∈ A and let p ∈ Term(A) be a k-

ary operation. From the definition of abelian algebras, we have that the unary

operations ta2...,ak
(x) = p(x, a2, . . . , ak) and tb2...,bk(x) = p(x, b2, . . . , bk) are
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the same iff ta2...,ak
(a) = tb2...,bk(a). This means that ta2...,ak

(x) is determined

by two values: p(a, a2, . . . , ak) and x. Hence, we obtain that p(x1, . . . , xk) =

f1(p(a, x2, . . . , xk), x1) for some operation f1 : A
2 → A.

We can prove that p(x1, . . . , xk) = f1(f2(p(a, a, x3, . . . , xk), x2), x1) in a

similar way, and finally that

p(x1, . . . , xk) = f1(f2(. . . fk(p(a, . . . , a), xk) . . . , x2), x1). (4.1)

Note that in the construction of expression (4.1), the order of the arguments

under consideration is not important. Furthermore, the operations {fi}k−1
i=0

obtained as a result of this construction do not depend on the order in which

the arguments of p were considered. Therefore, for any permutation σ : k → k,

we have that:

p(x1, . . . , xk) = fσ(1)(fσ(2)(. . . fσ(k)(p(a, . . . , a), xσ(k)) . . . , xσ(2)), xσ(1)).

Note that if fi ≡ fj , then (i, j) ∈ ρp. Moreover, there are at most m = nn2

different binary operations on set A. Thus, the relation ρp has at most m

equivalence classes. Notice that m does not depend on operation p. From the

above facts, we have that A is m-loosely-abelian and consequently is loosely-

abelian. �

The next theorem gives us characterizations of loosely-abelian semigroups

and monoids.

Theorem 4.7. Let S = (S, ·) be a finite semigroup; then the following hold:

(1) S is loosely-abelian iff there exist k, m such that

x1 · . . . · xk · xk+1 · xk+2 · xk+3 · . . . · xk+m+2

= x1 · . . . · xk · xk+2 · xk+1 · xk+3 · . . . · xk+m+2. (4.2)

(2) If S is a monoid, then S is loosely-abelian iff it is commutative.

Proof. We will prove the first point and the second one will turn out to be a

simple consequence of the first one.

If expression 4.2 holds, then we can express any term operation t(x1, . . . , xw)

of S with (w > k +m) in the following form:

t(x1, . . . , xw) = x′
1 · . . . · x′

k · (x1,1)
1 · . . . · (x1,n1)

1 · (x2,1)
2 · . . . · (x2,n2)

2·

. . . · (x|A|,1)
|A| · . . . · (x|A|,n|A|)

|A| · x′′
1 · . . . · x′′

m,

where x′
i, xo,p, x

′′
j ∈ {x1, . . . , xw} and xi1,j1 , xi2,j2 are different if i1 �= i2 or

j1 �= j2. Hence, S is (k +m+ |A|)-loosely-abelian.
Now let us assume that semigroup S is l-loosely-abelian. Then for term

t(x1, . . . , xl+1) = x1·x2·. . .·xl+1, there exist i and j, such that (xi, xj) ∈ ρvar(t).

This implies that

x1 · . . . · xi−1 · xi · xi+1 · . . . · xj−1 · xj · xj+1 · . . . · xl+1

= x1 · . . . · xi−1 · xj · xi+1 · . . . · xj−1 · xi · xj+1 · . . . · xl+1.
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If i+1 = j, then expression 4.2 is true for k = i−1 and m = l− j+1. Assume

that j − i > 1. Set Xa,b = xa · xa+1 · . . . · xb. We now have

X1,i−1 · xi ·Xi+1,j−2 · xj−1 · xj · xj+1 ·Xj+2,l+2

= X1,i−1 · xj ·Xi+1,j−2 · xj−1 · xi · xj+1 ·Xj+2,l+2,

and from the associativity of “·”:

X1,i−1 · xj ·Xi+1,j−2 · xj−1 · xi · xj+1 ·Xj+2,l+2

= X1,i−1 · xj ·Xi+1,j−2 · (xj−1 · xi) · xj+1 ·Xj+2,l+2

= X1,i−1 · xj+1 ·Xi+1,j−2 · (xj−1 · xi) · xj ·Xj+2,l+2.

Finally,

X1,i−1 · xj+1 ·Xi+1,j−2 · (xj−1 · xi) · xj ·Xj+2,l+2

= X1,i−1 · xj+1 ·Xi+1,j−2 · xj−1 · xi · xj ·Xj+2,l+2

= X1,i−1 · xi ·Xi+1,j−2 · xj−1 · xj+1 · xj ·Xj+2,l+2.

This implies that expression 4.2 holds for k = j − 1 and m = l − j + 1.

We will now prove the second point. If S is commutative, then from Theo-

rem 4.5, S is loosely-abelian. On the other hand, if S is loosely-abelian, then

expression 4.2 holds and if we substitute in it the variables x1, . . . , xk and

xk+3, . . . , xk+m+2 with a neutral element of S, we obtain a new expression

xk+1 · xk+2 = xk+2 · xk+1. Thus, S is commutative. �

Lattices are one of the examples of algebras that are not loosely-abelian.

Example 4.8. Let A = (A,∨,∧) be a lattice. Then A is not loosely-abelian.

Proof. Let 0, 1 ∈ A be such that 0 ≤ 1 and 0 �= 1. Consider a family {fi}∞i=1

of term operations over A defined by

fi(x
1
1, x

1
2, x

2
1, x

2
2, . . . , x

i
1, x

i
2) = (x1

1 ∧ x1
2) ∨ (x2

1 ∧ x2
2) ∨ · · · ∨ (xi

1 ∧ xi
2),

and the family of assignments sik,l : {x1
1, x

1
2, x

2
1, x

2
2, . . . , x

i
1, x

i
2} → {0, 1} such

that

sik,l(x
j
h) =





1 k = j ∧ h = 1,

1 l = j ∧ h = 2,

0 otherwise.

It is easy to see that fi(s
i
k,l(x

1
1), s

i
k,l(x

1
2), . . . , s

i
k,l(x

i
1), s

i
k,l(x

i
2)) is equal to 1

iff k = l and equal to 0 otherwise. This implies that (xj
h, x

p
o) ∈ ρver(fi) iff j = p.

Hence, for every i, relation ρvar(fi) has i equivalence classes and consequently

A is not loosely-abelian. �

The following corollary is an obvious consequence of Example 4.8 and the

fact that homomorphic images and subreducts of loosely-abelian algebras are

loosely-abelian.
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Corollary 4.9. Let A be a finite loosely-abelian algebra. Then A omits types

3 and 4.

In the above corollary, we use the terms “type 3” and “type 4” as it is used

in Tame Congruence Theory [6].

5. TERM-SAT for loosely-abelian algebras

As mentioned in the introduction, the idea of loosely-abelian algebras is

derived from the studies on computational complexity of solving equations over

finite algebras. The definition of loosely-abelian algebras is the result of looking

for a common characteristic for algorithms solving equations over abelian and

semiaffine algebras. In this section, we show a polynomial time algorithm

solving TERM-SAT for loosely-abelian algebras that is a generalization of

both algorithms mentioned above. To show that the presented algorithm is

computable in polynomial time we will need two lemmas.

Lemma 5.1. Let p be an operation on a finite set A. There exists a polynomial

time algorithm that computes equivalence classes of ρp for a given table of

operation p.

Proof. For a given table of a k-ary operation p, we may compute equivalence

classes of ρp considering each argument of p and assigning equivalence classes

of ρp to each of them. If, when considering the i-th argument of p, it turns out

not to have an assigned equivalence class of ρp, we create a new equivalence

class containing i and compare the behavior of the i-th argument with the

behavior of the remaining arguments without an equivalence class. If the j-th

argument behaves in the same way as the i-th argument, we add j to class

[i]ρp . Note that to compare the behavior of the i-th and j-th arguments, it is

sufficient to compare the values of the operation p for the pairs of tuples from

the set

{((a1, . . . , ai, . . . , aj , . . . , ak), (a1, . . . , aj , . . . , ai, . . . , ak)) ∈ Ak ×Ak},

which can be done in polynomial time in the size of the table of p. Finally,

note that to compute all equivalence classes of ρ, it is sufficient to compare

the behavior of O(k2) pairs of arguments. This observation completes the

proof. �

The proof of the following lemma is obvious and we will omit it.

Lemma 5.2. Let A = (A,F ) be a finite algebra. There exists a polynomial

time algorithm that for a given polynomial p(x1, . . . , xk) over A, a1, . . . , ak ∈
A, and tables of fundamental operations of A occurring in p, computes the

value of pA(a1, . . . , ak) in polynomial time.

Next we prove the main theorem in this section. To do it, we need two

definitions. Let {x1, . . . , xk} be a set of variables, A an ordered set, and
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R ⊆ {x1, . . . , xk}2 an equivalence relation. Then function s : {x1, . . . , xk} → A

is called monotonic on the classes of R iff for all pairs (xi, xj) ∈ R, if i ≤ j,

then s(xi) ≤ s(xj). For a given s : {x1, . . . , xk} → A, we denote by sxi,xj
the

function sxi,xj
: {x1, . . . , xk} → A such that sxi,xj

(xi) = s(xj), sxi,xj
(xj) =

s(xi), and sxi,xj
(x) = s(x) for x �∈ {xi, xj}.

Theorem 5.3. Let A be a finite loosely-abelian algebra. There is a polynomial

time algorithm solving the problem TERM-SAT(A).

Proof. Let A = (A,F ) be an m-loosely-abelian algebra. Assume that the

given equation is in the form

t1(x1, . . . , xk) = t2(y1, . . . , yl). (5.1)

Let X = {x1, . . . , xk}, Y = {y1, . . . , yl}, and Z = X ∪ Y . Assume that

Z = {z1, . . . , zb} and fix a linear order ≤A on A.

Claim. There are polynomial time algorithms computing ρt1 and ρt2 .

From Lemma 5.1, we can compute the relation ρp for every fundamental

operation p of A occurring in t1 and t2. Obviously, if we have ρp, it is easy

to compute ρvar(t) for the term t(x1, . . . , xk) = p(x1, . . . , xk). We will prove

that for the given terms w(x1, . . . , xk) and h(y, x1, . . . , xk) and the relations

ρvar(w), ρvar(h), we can compute the relation ρvar(g) for

g(x1, . . . , xk) = h(w(x1, . . . , xk), x1, . . . , xk)

in polynomial time. Let ρ denote ρvar(h) ∩ {x1, . . . , xk}2. Notice that

ρ ∩ ρvar(w) ⊂ ρvar(g), and to obtain ρvar(g) it is sufficient to compare only the

behavior of the representatives of the equivalence classes of ρ ∩ ρvar(w). Note

that ρ ∩ ρvar(w) has at most m2 equivalence classes. Thus, we only need

O(m ·m2) = O(1) comparisons of the variables behavior to obtain ρvar(g) (we

compute one equivalence class of ρvar(g) using O(m2) comparisons of behavior

of the representative of one class of ρ∩ ρvar(w) with the behavior of other class

representatives, and ρvar(g) has at most m equivalence classes). Notice that

to determine if two variables xi and xj are in the relation ρvar(g), it is enough

to compare values of g(s(x1), . . . , s(xk)) and g(sxi,xj
(x1), . . . , sxi,xj

(xk)) for

assignments s monotonic on the classes of ρ ∩ ρvar(w). There are at most

O(((k + |A| − 1)|A|−1)m
2

) = O((k|A|−1)m
2

) = O(k(|A|−1)m2

) such assignments

of variables x1, . . . , xk, and there are polynomially many in the size of g. Hence,

we can compute ρvar(g) in polynomial time.

Notice that t1 and t2 consist of linearly many (in the size of polynomials)

function symbols. Therefore, we can compute ρvar(t1) and ρvar(t2) by a linear

number of iterations of the algorithm described in the previous paragraph.

Hence, ρvar(t1) and ρvar(t2) can be computed in polynomial time in the size of

the input. This completes the proof of the claim.

We can now define the relation

� = (ρvar(t1) ∩ (X \ Y )2) ∪ (ρvar(t2) ∩ (Y \X)2) ∪ (ρvar(t1) ∩ ρvar(t2)).
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Notice that � is an equivalence relation on the set Z with at most m ·m+2 ·m
equivalence classes. Moreover, observe that if (zi, zj) ∈ � and

(a1, . . . , ai, . . . , aj , . . . , ab) ∈ Ab

is a solution of Equation (5.1), then (a1, . . . , aj , . . . , ai, . . . , ab) ∈ Ab is another

solution of this equation.

Therefore, to determine if Equation (5.1) has a solution, it is enough to

check if any assignments monotonic on classes of � is a solution. This implies

that it is sufficient to check O(((b+|A|−1)|A|−1)m
2+2m) = O(b(|A|−1)·(m2+2m))

assignments and obviously it may be done in polynomial time in the size of

the input. �

From the proof of Theorem 5.3, we have that loosely-abelian algebras are a

class of algebras for which TERM-SAT is in P for the whole clones.

6. Polynomial operations over 1-loosely-abelian algebras

In the next two sections, we will introduce tools needed to prove the main

theorem of Section 8. In this section, we will prove three lemmas that together

characterize the behavior of polynomial operations over 1-loosely-abelian al-

gebras.

Concepts of unseparative and separative algebras will play an important

role in the last three sections.

Definition 6.1. Let A = (A,F ) be an algebra. We say that b, c ∈ A are

indistinguishable in A if for every f ∈ Term(A) of arity n (for n > 1), every

i ∈ {1, 2, . . . , n} and a1, . . . , an ∈ A,

f(a1, . . . , ai−1, b, ai+1, . . . , an) = f(a1, . . . , ai−1, c, ai+1, . . . , an).

We say that algebra A = (A,F ) is unseparative if there exist a, b ∈ A that are

indistinguishable in A. An algebra is separative if it is not unseparative.

The following Lemma turns out to be very useful.

Lemma 6.2. Let A = (A,F ) be a 1-loosely-abelian algebra. Then every f ∈
Polyn(A) of arity at least 3 satisfies

f(x, y, y, z4, . . . , zk) = f(x, x, y, z4, . . . , zk).

Proof. Let g(x, y, z4, . . . , zk) = f(x, y, y, z4, . . . , zk). Obviously, g ∈ Polyn(A)

and from the fact that A is 1-loosely-abelian, we have that

f(x, y, y, z4, . . . , zk) = g(x, y, z4, . . . , zk) = g(y, x, z4, . . . , zk)

= f(y, x, x, z4, . . . , zk) = f(x, x, y, z4, . . . , zk). �

Lemma 6.3 will be used a few times in the next two sections.
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Lemma 6.3. Let A = (A,F ) be a finite separative 1-loosely-abelian algebra

and f ∈ Polyn(A). Then

f(f(x1, x2, . . . , xk), . . . , f(x1, x2, . . . , xk)) = f(x1, x2, . . . , xk).

Proof. Before proceeding with the main part of the proof, we will prove two

claims.

Claim 1. Let p ∈ Polyn1(A) and a, b, c ∈ A. If p(a) = b, p(b) = c, and

p(c) = c, then b = c

Suppose, contrary to our claim, that b �= c. The fact that A is separative

implies there exist g0 ∈ Termk(A) (for k > 1) and d2, . . . , dk ∈ A such that

g0(b, d2, . . . , dk) �= g0(c, d2, . . . , dk). Then for the same reasons, there exist

h ∈ Terml(A)) (for l > 1) and d′2, . . . , d
′
l ∈ A, such that

h(g0(b, d2, . . . , dk), d
′
2, . . . , d

′
l) �= h(g0(c, d2, . . . , dk), d

′
2, . . . , d

′
l).

Let g1(x1, . . . , xk+l−1) = h(g0(x1, . . . , xk), xk+1, . . . , xk+l−1). Observe that g1
distinguishes b and c, and has arity bigger than g0.

In this way, we can define the sequence (gi)
∞
i=0 of operations contained in

Term(A) so that for all i ≥ 0, operation gi distinguishes b and c and the arity

of gi+1 is greater than that of gi. Clearly, there is j such that arity of gj is

t > |A|+ 1.

Assume that e2, . . . , et ∈ A such that gj(b, e2, . . . , et) �= gj(c, e2, . . . , et).

Since t > |A| + 1, at least two of the values e2, . . . , et are equal. Assume,

without loss of generality, that e2 = e3. From Lemma 6.2, we have that

gj(b, e2, e3, e4 . . . , ek) = gj(b, e2, e2, e4 . . . , ek) = gj(b, b, e3, . . . , ek).

Now using the fact that A is 1-loosely-abelian we obtain that

gj(b, e2, . . . , ek) = gj(b, b, e3, . . . , ek) = gj(p(a), p(a), e3, . . . , ek)

= gj(p(p(a)), a, e3, . . . , ek) = gj(c, a, e3, . . . , ek) = gj(p(p(c)), a, e3, . . . , ek)

= gj(p(p(a)), c, e3, . . . , ek) = gj(c, c, e3, . . . , ek).

By Lemma 6.2, gj(b, e2, . . . , ek) = gj(c, c, e3, . . . , ek) = gj(c, e2, e3, . . . , ek),

which is a contradiction because gj(b, e2, . . . , et) �= gj(c, e2, . . . , et). This com-

pletes the proof of the claim.

The following second claim is needed in the main part of the proof of the

lemma.

Claim 2. Let p ∈ Polyn1(A) and a ∈ A. If pk(a) = a, then p(a) = a.

To prove this claim, we only need to show that a and p(a) are indistin-

guishable. This may be shown by a similar method to the proof of Claim 1.

If a �= p(a), then we can construct the sequence (gi)
∞
i=0 of operations distin-

guishing a and p(a) such that for all i ≥ 0, the arity of gi+1 is greater than

that of gi. This implies that there is j such that l the arity of gj is greater
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than |A| + k. Then from Lemma 6.2, for all b2, . . . , bl, b
′
k+1, . . . , b

′
l such that

{b2, . . . , bl} = {b′k+1, . . . , b
′
l}, we have that

gj(a, b2, . . . , bl) = gj(a, . . . , a︸ ︷︷ ︸
k

, b′k+1, . . . , b
′
l) = gj(p

k(a), a, . . . , a︸ ︷︷ ︸
k

, b′k+1, . . . , b
′
l)

= gj(p(a), . . . , p(a)︸ ︷︷ ︸
k

, b′k+1, . . . , b
′
l) = gj(p(a), b2, . . . , bl).

This contradicts the fact that gj distinguishes a and p(a) and completes the

proof of Claim 2.

We are now ready to present the main part of the proof. First, we will

consider the case where f is a unary function. If f(x) = x, then assertion of

the current lemma is obvious. Assume that there exist a0, a1 ∈ A such that

f(a0) = a1 and a0 �= a1. Let ai = f i(a0). From the fact that A is finite, there

exist i and j, such that i < j and ai = aj . Hence, from Claim 2, f(ai) = ai.

From multiple use of Claim 1, we obtain that f(a0) = ai, and consequently

f(f(a0)) = f(a0).

Now assume that the arity of f is k > 1. Let a1, . . . , ak ∈ A and f ′(x) =

f(x, a2, . . . , ak). To shorten the notation, we will denote ai, ai+1, . . . , ak by

Ai,k. From the definition of 1-loosely-abelian algebras, we have that

f(f(A1,k), f(A1,k), f(A1,k), . . . , f(A1,k))

= f(f(f(A1,k), A2,k), a1, f(A1,k), . . . , f(A1,k))

= f(f(f(f(A1,k), A2,k), A2,k), a1, a1, f(A1,k), . . . , f(A1,k))

...

= f(f(f(· · · f(f(A1,k), A2,k), . . . ), A2,k), a1, . . . , a1).

Now, from Lemma 6.2, we obtain

f(f(f(· · · f(f(A1,k), A2,k), . . . ), A2,k), a1, . . . , a1)

= f(f(f(· · · f(f(A1,k), A2,k), . . . ), A2,k), A2,k).

Finally, using that we have proven the lemma for unary functions, we have

f(f(f(· · · f(f(A1,k), A2,k), . . . ), A2,k), A2,k)

= f ′(· · · f ′(f ′(a1)) . . . ) = f ′(a1) = f(a1, . . . , ak). �

The last lemma in this section describes the relationships between different

unary polynomials over the same 1-loosely-abelian algebra.

Lemma 6.4. Let A = (A,F ) be a separative 1-loosely-abelian algebra and

f, g ∈ Polyn1(A). Then, f(g(x)) = g(f(x)).

Proof. To obtain a contradiction, suppose that f(g(a)) �= g(f(a)) for some

a ∈ A. Then there exists h ∈ Clo(A) of arity k ≥ 2 such that

h(g(f(a), a2, . . . , ak) �= h(f(g(a)), a2, . . . , ak)
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for some a2, . . . , ak ∈ A. On the other hand, from properties of 1-loosely-

abelian algebras, we have the following:

h(g(f(a), a2, a3, . . . , ak) = h(g(a2), f(a), a3, . . . , ak)

= h(a, f(g(a2)), a3, . . . , ak) = h(a2, f(g(a)), a3, . . . , ak)

= h(f(g(a)), a2, a3, . . . , ak).

This contradicts that h distinguishes f(g(a)) and g(f(a)). �

7. Order on elements of a 1-loosely-abelian algebra

To show that any finite separative 1-loosely-abelian algebra A = (A,F ) is

a subreduct of a finite semilattice with constant operations, we will construct

a semilattice (A+,≤A+) such that A ⊆ A+ and prove that A is a subreduct of

(A+, {sup≤A+
} ∪ constA+), where constA+ is a set of constant operations on

A+. This section covers the first step of the construction. We define the order

≤A on the set A and prove some simple properties of ≤A.

Definition 7.1. Let A be a separative 1-loosely-abelian algebra. Define

≤A = {(a, b) ∈ A2 | a = b or ∃f∈Polyn1(A)f(a) = b}.

Firstly, we have to show that ≤A is an order on the set A.

Lemma 7.2. Let A = (A,F ) be a finite separative 1-loosely-abelian algebra.

The relation ≤A is an order on the set A.

Proof. We only need to show that ≤A is reflexive, antisymmetric and transi-

tive.

(1) Reflexivity of ≤A is obvious.

(2) Antisymmetry: We need to show that if a ≤A b and b ≤ a, then a = b.

Assume that a ≤A b, b ≤A a, and a �= b. From the definition of ≤A, we

have that there exist f1, f2 ∈ Polyn1(A) such that f1(a) = b and f2(b) = a.

From Lemmas 6.3 and 6.4, it follows that a = f2(f1(a)) = f2(f1(f1(a))) =

f1(f2(f1(a))) = f1(a) = b.

Transitivity: We will now show that if a ≤A b and b ≤A c, then a ≤A c.

Assume that a ≤A b, b ≤A c, and a, b, c are pairwise different. If a = b, b = c

or a = c, then the transitivity for a, b and c is obvious.

From the definition of ≤A, we have that there exist f1, f2 ∈ Polyn1(A)

such that f1(a) = b and f2(b) = c. Consider h(x) = f2(f1(x)). Obviously,

h ∈ Polyn1(A) and h(a) = f2(f1(a)) = c. This, from the definition of ≤A,

implies that a ≤A c. �

We will now prove a few lemmas that will help us embed a given separative

1-loosely-abelian algebra into some semilattice.

Lemma 7.3. Let A = (A,F ) be a finite separative 1-loosely-abelian alge-

bra, f ∈ Polyn(A) and a, b, c2, . . . , ck ∈ A. If f(a, c2, . . . , ck) = b, then

f(d1, . . . , dk) = b for every {d1, . . . , dk} ⊆ {a, b} such that b ∈ {d1, . . . , dk}.
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Proof. Consider h(z) = f(a, z, c3, . . . , ck). From the facts that h ∈ Polyn1(A)

and h(c2) = b from Lemma 6.3, we have b = h(c2) = h(h(c2)) = h(b), and

consequently f(a, b, c3, . . . , ck) = b. In a similar way, we can show that

f(a, b, b, c4, . . . , ck) = f(a, b, b, b, c5, . . . , ck)

= · · · = f(a, b, . . . , b) = f(b, . . . , b) = b.

From Lemma 6.2 and the fact that A is 1-loosely-abelian, we have that

f(d1, . . . , dk) = b for b ∈ {d1, . . . , dk} ⊆ {a, b}, which completes the proof. �

Lemma 7.4. Let A = (A,F ) be a finite separative 1-loosely-abelian algebra,

f ∈ Polyn(A), and a, b ∈ A. If a ≤A b and f(a, . . . , a) = a, then for every

{d1, . . . , dk} ⊆ {a, b} such that b ∈ {d1, . . . , dk}, it holds that f(d1, . . . , dk) = b.

Proof. If a = b, then the assertion of the current Lemma is obvious. Assume

that a ≤A b, f(a, . . . , a) = a, and a �= b.

From the definition of ≤A and Lemma 7.3, there exists h ∈ Polyn1(A)

such that h(a) = h(b) = b. Let us set f ′(x) = f(x, a, . . . , a). Notice that

b = h(a) = h(f(a, . . . , a)) = h(f ′(a)). Now, from Lemma 6.4, we see that

b = h(f ′(a)) = f ′(h(a)) = f(h(a), a, . . . , a) = f(b, a, . . . , a)

Thus, from the definition of 1-loosely-abelian algebras and Lemma 7.3, the

proof is complete. �

The next lemma gives us a connection between the separative 1-loosely-

abelian algebras, relation ≤A defined in Definition 7.1, and semilattices.

Lemma 7.5. Let A = (A,F ) be a finite separative 1-loosely-abelian algebra,

f ∈ Polyn(A), and a1, . . . , ak ∈ A. If there exists i ∈ {1, . . . , k} such that

f(ai, . . . , ai) = ai, then f(a1, . . . , ak) = sup≤A
{a1, . . . , ak}.

Proof. Let f(a1, . . . , ak) = a. Moreover, let us assume without loss of gener-

ality, that f(a1, . . . , a1) = a1. Note that for all i ∈ {1, . . . , k}, ai ≤A a. We

will prove that a = sup≤A
{a1, . . . , ak}.

Let b ∈ A such that for all i ∈ {1, . . . , k}, there is ai ≤A b. We need only

to show that a ≤A b.

From the definition of ≤A and Lemma 7.3, for all i ∈ {1, . . . , k}, either there
exists hi such that hi(ai) = hi(b) = b or b = ai.

If b = ai for all i ∈ {1, . . . , k}, then from the assumptions of the lemma, we

have that a = f(a1, . . . , ak) = f(a1, . . . , a1) = a1 = b and so a ≤A b.

Let us assume, without loss of generality, that there exists j ∈ {1, . . . , k}
such that aj �= b. Then there exists hj such that hj(aj) = hj(b) = b. Therefore,

for all i ∈ {i, . . . , k}, we have that there exists hi fulfilling hi(ai) = hi(b) = b.

If ai �= b, such an hi exists from Lemma 7.3 and the fact that ai ≤A b. If
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ai = b, we get hi = hj . Hence,

f(a, b, . . . , b) = f(f(a1, . . . , ak), h2(b), . . . , hk(b))

= f(f(a1, b, . . . , b), h2(a2), . . . , hk(ak)) = f(f(a1, b, . . . , b), b . . . , b)

= f(f(a1, h1(b), b, . . . , b), b . . . , b) = f(f(h1(a1), b, . . . , b), b, . . . , b)

= f(f(b, . . . , b), b, . . . , b).

From Lemma 7.4, it follows that f(b, . . . , b) = b, and consequently

f(a, b, . . . , b) = f(f(b, . . . , b), b, . . . , b) = f(b, . . . , b) = b.

This implies that a ≤A b. From an arbitrary choice of b, we have that a =

f(a1, . . . , ak) = sup≤A
{a1, . . . , ak}, and the lemma follows. �

8. 1-loosely-abelian algebras and semilattices

In this section, we will prove that every finite separative 1-loosely-abelian

algebra is a subreduct of a semilattice with constants. We will then discuss

the various finite unseparative 1-loosely-abelian algebra cases.

Lemma 8.1. Let A = (A,F ) be a finite separative 1-loosely-abelian algebra.

Then there exists the set A′ and an order ≤A′ such that A ⊆ A′, ≤A′⊂ A′×A′,

and for every operation f ∈ F , one of the following holds:

• ∀a1,...,ak∈A f(a1, . . . , ak) = sup≤A′ {a1, . . . , ak},
• ∃b∈A′∀a1,...,ak∈A f(a1, . . . , ak) = sup≤A′ {a1, . . . , ak, b}.

Proof. To extend A, we will need the following notation:

const(f) = {a ∈ A | f(a, . . . , a) = a}.

Notice that if f(x1, . . . , xk) = sup{x1, . . . , xk, b}, then b is the only minimal

element of const(f). Hence, to be able to express any fundamental operation

of A as a supremum, we have to add, for every operation f ∈ F such that

const(f) � A and the number of minimal elements of const(f) greater than 1,

some extra element to A. We will now introduce some new notions and define

the set A′:

minim(f) = {a ∈ A | a is minimal in the set const(f)},
minim(A) = {B ⊂ A | ∃f∈FB = minim(f) and 1 < |B| ≤ | const(f)| < |A|}.

Finally, A′ = A ∪minim(A).

We extend ≤A to A′ in the following way:

≤A′ = ≤A ∪
{
(B,B) ∈ minim(A)×minim(A)

}

∪
{
(B, c) ∈ minim(A)×A

∣∣ ∃b∈Bb ≤A c
}
.

It is easy to see that ≤A′ is an order on the set A′ and that ≤A′ restricted to

A is equal ≤A.

Later in the the proof, we will need the following claim.
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Claim. Let g ∈ Pol(A), a, c ∈ A, and a ≤A′ c. If one of the following holds

• ∃b∈minim(g) b ≤A′ c,

• 1 < |minim(g)| ≤ | const(g)| < |A| and minim(g) ≤A′ c,

then g(a, . . . , a) ≤A′ c.

Firstly, we will prove the case when b ≤A′ c. Note that Lemma 7.4 and

the fact that g(b, . . . , b) = b give g(c, . . . , c) = c. From the definition of ≤A,

we have that there exists f1 ∈ Polyn1(A) such that f1(a) = c, and from

Lemma 7.3, that f1(c) = c. Let f2(x) = g(x, . . . , x). From Lemma 6.4, we

have that

c = f2(f1(a)) = f1(f2(a)) = f1(g(a, . . . , a)),

and hence g(a, . . . , a) ≤A′ c.

Now assume that 1 < |minim(g)| ≤ | const(g)| < |A| and minim(g) ≤A′ c.

From the fact that minim(g) ≤A′ c, there exists d ∈ minim(g) such that

d ≤A′ c. From the previous paragraph, we have g(a, . . . , a) ≤A′ c. This

completes the proof of the claim.

Let a1, . . . , ak ∈ A and f ∈ F . To prove the lemma, it is enough to prove

the following:

• if const(f) = A, then f(a1, . . . , ak) = sup≤A′ {a1, . . . , ak};
• if minim(f) = {b}, then f(a1, . . . , ak) = sup≤A′ {a1, . . . , ak, b};
• if minim(f) = B and 1 < |B| ≤ | const(g)| < |A|, then f(a1, . . . , ak) =

sup≤A′ {a1, . . . , ak, B}.
Note that the first case is trivial if the arity of f is 1; otherwise, it is an

easy consequence of Lemma 7.5. We will consider the second and third case

simultaneously. Let d = minim(f) if 1 < |minim(f)| ≤ | const(f)| < |A|, and
d = b if minim(f) = {b}. Notice that f(a, . . . , a) ∈ const(f) for a ∈ A, and

consequently, from the definition of ≤A′ , we have d ≤A′ f(a, . . . , a) for a ∈ A.

Moreover, by the above claim for all c ∈ A such that d ≤A′ c and a ≤A′ c, we

have f(a, . . . , a) ≤A′ d. Hence, f(a, . . . , a) = sup≤A′ {a, d} for all a ∈ A (this

completes the proof if f is a unary function).

Therefore, from Lemma 6.3, Lemma 7.5, and the fact that A is 1-loosely-

abelian, it follows that

f(a1, . . . , ak) = f(f(a1, . . . , ak), . . . , f(a1, . . . , ak))

= f(f(a1, . . . , a1), f(a2, . . . , a2), . . . , f(ak, . . . , ak))

= sup≤A′ {sup≤A′ {d, a1}, . . . , sup≤A′ {d, ak}} = sup≤A′ {d, a1, . . . , ak}.

This completes the proof of the lemma. �

We will now show that every order can be embedded in some join-semilattice

in such a way that all supremums existing with respect to the order have the

same value in the join-semilattice.



348 J. Krzaczkowski� Algebra Univers.18 J. Krzaczkowski Algebra univers.

Lemma 8.2. Let (O,≤) be a finite ordered set. Then there exists a join-

semilattice (S,≤′) such that O ⊆ S and for all A ⊆ O, if there exists sup≤ A,

then sup≤′ A = sup≤ A.

Proof. Let S be the join-semilattice of upward closed subsets of O ordered by

reverse inclusion. Embed O into S by the map taking an element to the upset

it generates. It is easy to see that such the embeding preserves all existing

supremums. �

The main theorem of this section is a straightforward consequence of Lem-

mas 8.1 and 8.2.

Theorem 8.3. Let A be a finite separative algebra. The following are equiv-

alent:

• A is a 1-loosely-abelian algebra.

• A is a subreduct of a semilattice with constant operations.

Proof. Let A = (A,F ) be 1-loosely-abelian. From Lemma 8.1, we have that

there exists a set A′ ⊇ A and an order on A′ such that every operation f ∈ F

can be expressed as a supremum with respect to this order. Now, Lemma 8.2

allows us to extend A′ to a semilattice A′′ that preserves all supremums existing

in A′. This preservation shows how the operations from F can be extended to

A′′. On the other hand, every semilattice is 1-loosely-abelian. Therefore, every

subreduct of a semilattice and every subreduct of a semilattice with constant

operations is 1-loosely-abelian. �

Notice that there are finite separative 1-loosely-abelian algebras that are

not polynomially equivalent to any semilattice.

Figure 1. Hasse diagram of the semilattice A from Example 8.4

Example 8.4. Let A = ({a, b, c, d, e}, sup≤), where ≤ is an order whose Hasse

diagram is in Figure 1.

Then B = ({b, c, d, e}, sup≤, f), where f(x, y) = sup≤{a, x, y}, is a sep-

arative 1-loosely-abelian algebra that is not polynomially equivalent to any

semilattice.

We characterized in Theorem 8.3 separative 1-loosely-abelian algebras. If

a 1-loosely-abelian algebra A is unseparative, there are many possibilities.

Firstly, A may be a subreduct of some semilattice with constant operations.
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Example 8.5. Let A = ({0, 1, 2}, f) and f(x, y) = sup≤{1, x, y}, where ≤ is

the usual order on numbers. Then

• A is a subreduct of a semilattice with constants,

• A is 1-loosely-abelian, and

• A is unseparative (0 and 1 are indistinguishable).

The second important case, in which every two elements are indistinguish-

able, is the class of unary algebras.

Example 8.6. Let A be a unary algebra. Then A is 1-loosely-abelian.

Finally, as the following example illustrates, there are many more compli-

cated cases.

Example 8.7. Let A = ({0, 1, 2}, f1, f2), f1(x, y) = sup≤{1, x, y}, where ≤ is

the usual order on numbers and f2 is given by the table below.

x 0 1 2

f2(x) 1 0 2

Then

• A is 1-loosely-abelian and unseparative,

• A is not a subreduct of any semilattice, and

• A/θ, where θ = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)}, is a separative 1-loosely-
abelian algebra (so it is a subreduct of a semilattice).
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