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Densification of FL chains via residuated frames

Paolo Baldi and Kazushige Terui

Abstract. We introduce a systematic method for densification, i.e., embedding a
given chain into a dense one preserving certain identities, in the framework of FL
algebras (pointed residuated lattices). Our method, based on residuated frames, offers
a uniform proof for many of the known densification and standard completeness results
in the literature. We propose a syntactic criterion for densification, called semi-
anchoredness. We then prove that the semilinear varieties of integral FL algebras
defined by semi-anchored equations admit densification, so that the corresponding
fuzzy logics are standard complete. Our method also applies to (possibly non-integral)
commutative FL chains. We prove that the semilinear varieties of commutative FL
algebras defined by knotted axioms xm ≤ xn (with m,n > 1) admit densification.
This provides a purely algebraic proof to the standard completeness of uninorm logic
as well as its extensions by knotted axioms.

1. Introduction

Given a class K of ordered algebras and a chain A (i.e., a totally ordered

algebra) in it, we would like to embed A into a dense chain in the same class

K. This construction, referred to as densification, is important both on its

own and as a key step towards standard completeness of various fuzzy logics,

i.e., a completeness theorem with respect to the valuations of propositional

variables into the real unit interval [0, 1]. Many fuzzy logics fall into the class

of substructural logics, whose algebraic semantics are given by FL algebras

(or pointed residuated lattices) [19]. We thus consider densification of FL

chains and standard completeness of associated fuzzy logics. Some classes

of FL chains, such as Gödel chains, are well known to be densifiable, while

others, such as Boolean algebras, are clearly not densifiable; see, e.g., [21] for

background. However, there is no general criteria for classifying densifiable

and non-densifiable FL chains.

Our aim in this paper is not to prove a new result, but rather to provide a

uniform, algebraic account of densification. This is important since standard

completeness is often proved by a proof theoretic argument, known as den-

sity elimination in the hypersequent calculus [1, 26, 11, 12, 4]. While density
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elimination is no doubt an interesting application of proof theory, it obscures

the algebraic essence of densification. Even when densification is proved al-

gebraically (as in [23, 24, 21]), it is not clear to what extent the employed

technique generalizes. To fulfill our goal, we employ residuated frames [18],

that are effective devices to construct (complete) FL algebras with various

properties. They are also a key to connect proof theory with algebraic stud-

ies; for instance, one can naturally define a residuated frame W from the

sequent calculus FL, so that validity in the dual algebra W+ directly implies

cut-free derivability in FL. This strong connection allowed us to prove that

for a certain class of substructural logics, a strong form of cut-admissibility

(proof theory) is equivalent to closure under completions (algebra), thus pro-

moting a new approach to substructural logics, dubbed algebraic proof theory

for substructural logics [9, 10].

In this paper, we use residuated frames to densify a given FL chain, pre-

serving certain identities. Although our argument was originally inspired by

density elimination following the spirit of algebraic proof theory, the resulting

construction can be understood without any reference to proof theory: it pro-

vides a purely algebraic account. Further steps in a purely algebraic analysis

of densification can be found in [17].

The rest of this paper is organized as follows. Section 2 discusses densifica-

tion in a general setting, and Section 3 specializes it to FL algebras. Section 4

reviews residuated frames, and Section 5 applies them to densify integral FL

chains. This encompasses the standard completeness of monoidal t-norm logic

and its noncommutative variant [23, 24]. Section 6 then addresses a more

involved case: (possibly non-integral) commutative FL chains. It provides a

purely algebraic proof of the standard completeness of uninorm logic, for which

only proof theoretic arguments were previously known [26].

Section 7 recalls the concept of a substructural hierarchy [7, 8, 9, 10], that

is useful to classify equations in the language of FL. Based on the hierarchical

classification, we introduce the class of semi-anchored P3 equations in Sec-

tion 8, and prove a general result that every nontrivial semilinear variety of

integral FL algebras defined by semi-anchored P3 equations admits densifica-

tion and standard completeness. We then turn our attention to varieties of

commutative FL algebras in Section 9. We prove that every semilinear va-

riety of commutative FL algebras defined by knotted axioms xm ≤ xn with

m,n > 1 admits densification and standard completeness. These results are

again inspired by the proof theoretic arguments in [4, 2]. We conclude the

paper with some remarks and open problems.

2. Densifiability

We begin with a general consideration of densification and standard com-

pleteness. In the sequel, we assume that every algebra A comes equipped with
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an order ≤A defined by equations (e.g., x ≤A y ⇔ x = x∧ y if A has a lattice

reduct).

Definition 2.1. Let A be a chain, i.e., ≤A is a total order, of cardinality

κ > 1; A is dense if g < h (g, h ∈ A) implies g < p < h for some p ∈ A.

Otherwise A contains a gap, that is, a pair of elements g, h ∈ A such that

g < h and there is no element p ∈ A with g < p < h.

A chain B fills a gap (g, h) of A if there is an embedding e : A −→ B and

an element p ∈ B such that e(g) < p < e(h). A nontrivial variety V is said to

be densifiable if every gap of a chain in V can be filled by another chain in V.

Notice that by filling a gap, one may introduce some undesirable elements

that have nothing to do with the gap. Nevertheless, densifiability is a sufficient

condition for densification.

Proposition 2.2. Let L be a language of algebras and V a densifiable variety

of type L. Then every chain A of cardinality κ > 1 in V is embeddable into a

dense chain of cardinality κ+ ℵ0 + |L| in V.

Proof. For simplicity, let us assume κ, |L| ≤ ℵ0; the argument below clearly

works also for an arbitrary κ > 1 and L, provided that one uses the axiom of

choice. Let X be a countable set of variables and T = T (X) the set of terms

in the language L over X. Let (t0, u0), (t1, u1), . . . be a countable sequence of

elements of T 2 such that each (t, u) ∈ T 2 occurs infinitely many times in it.

For each n ∈ N, we define a chain Bn in V as well as a partial function

fn : X ⇀ Bn. Let B0 := A and f0 be any surjective partial function onto A

such that X\ dom(f0) is infinite.

For n ≥ 0, if one of fn(tn), fn(un) is undefined or fn(tn) �< fn(un), then let

Bn+1 := Bn and fn+1 := fn.

Otherwise, let x be a variable taken from X\ dom(fn). If there is p ∈ Bn

such that fn(tn) < p < fn(un), then let Bn+1 := Bn. If not, let Bn+1 be

a chain in V that fills the gap (fn(tn), fn(un)) by p ∈ Bn+1. We assume

Bn ⊆ Bn+1 and define fn+1 : X ⇀ Bn+1 by extending fn with fn+1(x) := p.

Let B :=
⋃
Bn, f :=

⋃
fn, and C be the subalgebra of B generated by

f [X] (so that C = f [T ]). Clearly, C is a countable chain in V that has A

as subalgebra since A ⊆ f [X]. Moreover, C is dense since for every pair

(g, h) ∈ C2 with g < h, there is n ∈ N such that g = fn(tn) and h = fn(un),

so that we have g < fn+1(x) < h. �

Given a class K of algebras of the same type, the semantic consequence

relation |=K is defined as usual. Namely, given a set E ∪ {s = t} of equations

in the language of K, E |=K s = t holds if E entails s = t in every algebra

A ∈ K.

A variety V is semilinear if |=V = |=VC
, where VC consists of all chains in

V. This is equivalent to saying that every subdirectly irreducible algebra in V

is a chain (cf. [21]). We say V is (strongly) standard complete if |=V = |=V[0,1]
,
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where V[0,1] consists of all standard chains in V, namely those over the real unit

interval ([0, 1],≤). This conforms to the terminology in fuzzy logics under the

identification of an (algebraizable) logic with the corresponding variety. There

are actually two weaker notion of standard completeness. The finite strong

standard completeness defined as E |=V s = t iff E |=V[0,1]
for E a finite set

of equations and the weak standard completeness defined as ∅ |=V s = t iff

∅ |=V[0,1]
s = t. In the rest of this paper, we mean by standard completeness

the strongest version.

We need a few concepts concerning completions. Given an algebra A, a

completion of A consists of a complete algebra B together with an embedding

e : A −→ B. A completion (B, e) is join-dense if x =
∨
{a ∈ e[A] : a ≤B x}

and meet-dense if x =
∧
{a ∈ e[A] : x ≤B a}, for every x ∈ B. A join-dense

and meet-dense completion is called a MacNeille completion. It is known that

the lattice reduct of a MacNeille completion is uniquely determined (up to

isomorphism that fixes A) by join and meet density [5, 29]. For instance, the

MacNeille completion of the rational unit interval ([0, 1]Q,≤) is just ([0, 1],≤).

Proposition 2.3. Let L be a finite or countable language of algebras and V

a variety of type L. If V is semilinear, densifiable and every chain in V has a

MacNeille completion in it, then V is standard complete.

Proof. Let E ∪ {s = t} be a set of equations, and suppose that E �|=V s = t.

By semilinearity, there is a finite or countable chain A such that E �|=A s = t.

By Proposition 2.2, A is embeddable into a countable dense chain B in V. It

is well known that (B,≤B) is isomorphic to one of (0, 1)Q, (0, 1]Q, [0, 1)Q, and

[0, 1]Q, whose MacNeille completion is [0, 1]. Hence, B is embeddable into a

standard chain C in V[0,1], and we have E �|=V[0,1]
s = t. �

Hence, there are two key factors for standard completeness: densifiability

and closure under MacNeille completions.

3. FL algebras

In this section, we recall the concept of an FL algebra. A standard reference

on this topic is [19].

Definition 3.1. A residuated lattice is an algebra A = (A,∧,∨, ·, \, /, 1) such
that (A,∧,∨) is a lattice, (A, ·, 1) is a monoid, and for all x, y, z ∈ A,

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

An FL algebra is a residuated lattice A with a distinguished element 0 ∈ A.

The constant 0 is used to define negations: ∼x := x\0, −x := 0/x. A is

(e) commutative if x · y = y · x for all x, y ∈ A,

(c) contractive if x ≤ x · x for every x ∈ A,

(i) integral if 1 is the greatest element,

(o) 0-bounded if 0 is the least element.
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We remark that A is a chain if and only if the following communication

property holds for all x, y, z, w ∈ A:

x ≤ z and y ≤ w =⇒ x ≤ w or y ≤ z. (com)

Also important is the fact that if (g, h) is a gap in a FL chain, then we have

h\g < 1. Indeed, 1 ≤ h\g would imply h ≤ g.

The two divisions \ and / coincide in any commutative FL algebra. So we

write x → y := x\y = y/x in that case.

We write FL for the variety of FL algebras and use subscripts e, c, i, o to

indicate the properties (e), (c), (i), (o) above. For instance, FLei denotes the

variety of commutative integral FL algebras. It is known (cf. [19, 21]) that a

variety of FL algebras is semilinear if and only if it satisfies the four-variable

equation λa(x∨y\y)∨ρb(x∨y\x) = 1, where λa and ρb are conjugate operators

defined by: λa(x) := (a\xa) ∧ 1 and ρb(x) := (bx/b) ∧ 1.

Given a variety V of FL algebras, we denote by V� the subvariety obtained

by imposing the above equation. Notice that it is equivalent to the familiar

prelinearity axiom (x → y) ∨ (y → x) = 1 in FLei algebras.

Unfortunately, FL� is not standard complete (cf. [31, 21]). On the other

hand, it is not hard to see that every subvariety of FL�i defined by a combination

of (e), (c), (o) is densifiable and closed under MacNeille completions, so is

standard complete [23, 24].

A short proof of the densifiability of FL�i is as follows. Let A be an integral

FL chain with a gap (g, h). We insert a new element p between g and h: take

Ap := A ∪ {p}, with g < p < h. The meet and join operations are naturally

extended to Ap. To extend multiplication · and divisions \, /, note that for

every a ∈ A, either ah = h or ah ≤ g holds. For every a ∈ A, we define:

p · p := p if h2 = h, and p · p := h2, if h2 ≤ g;

a · p := p if ah = h, and a · p := ah, if ah ≤ g;

p\p := 1, and p\a := h\a;
a\p := p if ah = h, and a\p := a\g, if ah ≤ g.

The other cases p · a, p/p, a/p, and p/a are defined analogously.

This gives rises to a new algebra Ap in FL�i that fills the gap (g, h) of A.

While it is possible to check the correctness manually, our approach is rather

to derive Ap by a general residuated frame construction (Section 5). Our

approach will explain the rationale behind Ap, and provide a generic recipe

for proving further standard completeness results. It also leads to an algebraic

proof of the standard completeness of uninorm logic [26] in Section 6.

4. Residuated frames and MacNeille completions

Just as Kripke frames are useful devices to build various Heyting and modal

algebras, residuated frames are useful devices to build various FL algebras. In
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this section, we introduce residuated frames and recall some relevant facts

from [18, 9].

Definition 4.1. A frame W (for FL algebras) is a tuple (W,W ′, N, ◦, ε, ε)
where (W, ◦, ε) is a monoid, N ⊆ W ×W ′, and ε ∈ W ′. It is residuated if there

are functions � : W ×W ′ −→ W ′ and � : W ′ ×W −→ W ′ such that

x ◦ y N z ⇐⇒ y N x�z ⇐⇒ x N z�y.
We often omit ◦ and write xy for x ◦ y.

Given a frame W = (W,W ′, N, ◦, ε, ε), there is a canonical way to make it

residuated: let W̃ ′ := W ×W ′ ×W and define Ñ ⊆ W × W̃ ′ by

x Ñ (v1, z, v2) ⇐⇒ v1xv2 N z.

Then W̃ := (W, W̃ ′, Ñ , ◦, ε, (ε, ε, ε)) is a residuated frame, since

x ◦ y Ñ (v1, z, v2) ⇐⇒ v1xyv2 N z

⇐⇒ y Ñ (v1x, z, v2) ⇐⇒ x Ñ (v1, z, yv2).

As we have said at the beginning, the primary purpose of residuated frames

is to build residuated lattices. We now describe the construction. Let W =

(W,W ′, N, ◦, ε, ε) be a residuated frame. Given X,Y ⊆ W and Z ⊆ W ′, let

X ◦ Y := {x ◦ y : x ∈ X, y ∈ Y },
X� := {z ∈ W ′ : X N z},
Z� := {x ∈ W : x N Z},

where X N z iff x N z for every x ∈ X, and x N Z iff x N z for every z ∈ Z.

We write x� and z� instead of {x}� and {z}�. The pair (�,�) forms a

Galois connection: X ⊆ Z� ⇐⇒ X� ⊇ Z, so that γ(X) := X�� defines a

closure operator on P(W ) (the powerset of W ):

(1) X ⊆ γ(X),

(2) X ⊆ Y =⇒ γ(X) ⊆ γ(Y ),

(3) γ(γ(X)) = γ(X).

Furthermore, γ is a nucleus, namely it satisfies

(4) γ(X) ◦ γ(Y ) ⊆ γ(X ◦ Y ).

It is for this property that a frame has to be residuated.

Let P(W ) be the powerset ofW and γ[P(W )] ⊆ P(W ) be its image under γ.

Then a set X belongs to γ[P(W )] iff it is Galois-closed, namely X = γ(X) iff

X = Z� for some Z ⊆ W ′. For X,Y ∈ P(W ), let

X ◦γ Y := γ(X ◦ Y ), X ∪γ Y := γ(X ∪ Y ),

X\Y := {y : X ◦ {y} ⊆ Y }, Y/X := {y : {y} ◦X ⊆ Y }.

Proposition 4.2 ([18]). Let W = (W,W ′, N, ◦, ε, ε) be a residuated frame.

Then the dual algebra defined by W+ := (γ[P(W )],∩,∪γ , ◦γ , \, /, γ({ε}), ε�)
is a complete FL algebra.
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As an example, let A = (A,∧,∨, ·, \, /, 1, 0) be an FL algebra. Then we

may define a frame by WA := (A,A,N, ·, 1, 0), where N is the lattice ordering

≤ of A. WA is residuated precisely because A is residuated:

a · b N c ⇐⇒ b N a\c ⇐⇒ a N c/b.

Hence, by the previous proposition, W+
A is a complete FL algebra. We want

W+
A to be commutative (resp. contractive, integral, 0-bounded, totally or-

dered) whenever A is. The following rules ensure that.

xy N z

yx N z
(eN )

xx N z
x N z

(cN )
ε N z
x N z

(iN )

x N ε
x N z

(oN )
x N z and y N w

x N w or y N z
(comN )

It is clear thatWA satisfies (eN ) (resp. (cN ), (iN ), (oN ), (comN )), whenever

A is commutative (resp. contractive, integral, 0-bounded, totally ordered).

These properties are in turn propagated to the dual algebra W+
A. This holds

for any residuated frame.

Lemma 4.3. Let W be a residuated frame. If W satisfies (eN ) (resp. (cN ),

(iN ), (oN ), (comN )), then W+ is commutative (resp. contractive, integral,

0-bounded, totally ordered).

Proof. Let us only prove that (comN ) implies W+ being totally ordered. Sup-

pose that there are X,Y ∈ γ[P(W )] for which X �⊆ Y and Y �⊆ X. The former

means that there are x ∈ X and w ∈ Y � such that x N w does not hold (since

Y = Y ��). Similarly, the latter means that there are y ∈ Y and z ∈ X� such

that y N z does not hold. On the other hand, we have x N z and y N w

by definition of X�, Y �. Hence, the rule (comN ) implies that at least one of

x N w and y N z should hold, a contradiction. �

Note also that W+ is complete, hence it is always a bounded FL algebra.

Finally, we would like to have an embedding ofA intoW+
A. More generally, let

A be an FL algebra and W = (W,W ′, N, ◦, ε, ε) a residuated frame. Suppose

that there are injections i : A −→ W and i′ : A −→ W ′ by means of which we

identify A with a subset of W and of W ′. In such a situation, the rules in

Figure 1, called Gentzen rules, ensure the existence of a homomorphism.

Lemma 4.4 ([18]).

(1) If (W,A) satisfies the Gentzen rules for every x ∈ W , z ∈ W ′ and

a, b ∈ A, then e(a) := γ({a}) defines a homomorphism e : A −→ W+.

(2) Furthermore, if a N b implies a ≤A b for every a, b ∈ A, then e is an

embedding.

When A is bounded, the homomorphism e preserves both the least and

greatest elements. It should be remarked that Lemma 4.4 actually holds for

much more general situations. For instance, A can be an arbitrary, even
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x N a a N z
x N z

(Cut)
a N a

(Id)

x N a b N z
a\b N x�z (\L)

x N a�b
x N a\b

(\R)

x N a b N z
b/a N z�x (/L)

x N b�a
x N b/a

(/R)

a ◦ b N z
a · b N z

(·L)
x N a y N b

x ◦ y N a · b (·R)

a N z
a ∧ b N z

(∧L�) b N z
a ∧ b N z

(∧Lr) x N a x N b
x N a ∧ b

(∧R)

a N z b N z
a ∨ b N z

(∨L) x N a
x N a ∨ b

(∨R�) x N b
x N a ∨ b

(∨Rr)

ε N z
1 N z

(1L)
ε N 1

(1R)
0 N ε

(0L) x N ε
x N 0

(0R)

Figure 1. Gentzen rules

partial, algebra in the language of FL, and i, i′ need not be injections as long

as the Gentzen rules are satisfied.

Since (WA,A) trivially satisfies the Gentzen rules, we see that (W+
A, e) is

a completion of A. Moreover, it is join-dense and meet-dense since

X =
⋃

γ{γ(a) : a ∈ X} =
⋃

γ{e(a) : e(a) ⊆ X}
=

⋂
{a� : X N a} =

⋂
{e(a) : X ⊆ e(a)}

(∗)

holds for every Galois-closed set X. The last equality holds because e(a) =

a�� = a� and X N a iff X ⊆ a�.

Corollary 4.5. (W+
A, e) is a MacNeille completion of A. Hence, for every

x ⊆ {e, c, i, o}, every chain A ∈ FL�x has a MacNeille completion in FL�x.

The varieties FL�x with x ⊆ {e, c, i, o} are just a few examples. We will see

in Section 8 that the same holds for many more subvarieties of FL.

5. Densification of integral FL chains

Residuated frames are useful not just for completion, but also for densifica-

tion. In this section, we prove the densifiability of FL�x with {i} ⊆ x ⊆ {e, c, i, o}
by using residuated frames. Our proof gives a rationale behind the concrete

definition of Ap in Section 3, and moreover serves as a warm-up before the

more involved case of (non-integral) commutative FL chains in the next sec-

tion.
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Let us fix an integral FL chain A, a gap (g, h) in it, and a new element p.

Our purpose is to define a residuated frame whose dual algebra fills the gap

(g, h) by p.

We define a frame Wp
A = (W,W ′, N, ◦, ε, ε) as follows.

• (W, ◦, ε) is the free monoid generated by A ∪ {p}.
• W ′ := A ∪ {p}, ε := 0 ∈ A. N is defined below.

Thus, each element x ∈ W is a finite sequence of elements from A ∪ {p}. We

denote by A∗ the subset of W that consists of finite sequences of elements

from A (without any occurrence of p). Also, given x ∈ W , we denote by x the

product (in A) of all elements of x where p is replaced by h. For instance, if

x = papb ∈ W with a, b ∈ A, then x = hahb ∈ A.

Let us now define N . Under the intuition that g < p < h should hold and N

should be an extension of ≤A, it is natural to require that a N p iff a ≤ g, and

p N a iff h ≤ a for every a ∈ A. We also require that p N p. The definition

below embodies these requirements. For every x ∈ W and a ∈ A:

x N a ⇐⇒ x ≤A a,

x N p ⇐⇒ x ≤A g (if x ∈ A∗),

x N p always holds (otherwise).

As explained in Section 4, the frame Wp
A induces a residuated frame W̃p

A.

Notice that since A is an integral chain, Wp
A satisfies

uv N z
uxv N z

for every u, x, v ∈ W and z ∈ W ′. Hence, W̃p
A satisfies the rule (iN ), so the

dual algebra W̃p+
A is integral by Lemma 4.3.

To have a closer look at the residuated frame W̃p
A, it is convenient to

partition the set W̃ ′ = W ×W ′ ×W into three, in accordance with the case

distinctions in the definition of N :

W̃ ′
1 := {(u, a, v) ∈ W̃ ′ : a ∈ A and u, v ∈ W},

W̃ ′
2 := {(u, p, v) ∈ W̃ ′ : u, v ∈ A∗},

W̃ ′
3 := {(u, p, v) ∈ W̃ ′ : u �∈ A∗ or v �∈ A∗}.

Just as we associated an element x ∈ A to each x ∈ W , we associate an element

z ∈ A to each z ∈ W̃ ′ as follows:

z :=




u\a/v, if z = (u, a, v) ∈ W̃ ′
1;

u\g/v, if z = (u, p, v) ∈ W̃ ′
2;

1, if z = (u, p, v) ∈ W̃ ′
3.

Finally, we define A◦ := W̃ ′
1 ∪ W̃ ′

3. A pair (x, z) ∈ W × W̃ ′ is said to be

stable if either x ∈ A∗ or z ∈ A◦. We also say that a statement x Ñ z is stable

if (x, z) is.
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The following lemma explains why we have defined the sets A∗, A◦, and the

concept of stability.

Lemma 5.1.

(1) If (x, z) is stable, then x Ñ z iff x ≤A z. If not, x Ñ z always holds.

(2) If x �∈ A∗, then x ≤A h.

(3) If z �∈ A◦, then g ≤A z.

Proof. (1): When z = (u, a, v) ∈ W̃ ′
1, we have x Ñ z iff uxv N a iff uxv ≤ a

iff x ≤ z. When z = (u, p, v) ∈ W̃ ′
3, both uxv N p and x ≤ 1 = z hold. When

z = (u, p, v) ∈ W̃ ′
2 and x ∈ A∗, x Ñ z iff uxv N p iff uxv ≤ g iff x ≤ z. When

z ∈ W̃ ′
2 and x �∈ A∗, x Ñ z always holds.

(2): x �∈ A∗ means that the sequence x contains an occurrence of p, which

is interpreted by h. Hence, the claim holds by integrality.

(3): This is proved in a similar way. �

Lemma 5.2. W̃p
A satisfies the rule (comN ). Hence W̃p+

A is a chain.

Proof. We verify
x Ñ z and y Ñ w

x Ñ w or y Ñ z
(comN )

.

In case at least one of the conclusions is not stable, (comN ) immediately

holds by Lemma 5.1(1). Notice that this is always the case when both premises

x Ñ z and y Ñ w are not stable. Hence, we only need to consider the cases

when both conclusions are stable and either both or only one of the premises

is stable.

(i) If both premises x Ñ z and y Ñ w are stable, (comN ) boils down to

x ≤ z and y ≤ w =⇒ x ≤ w or y ≤ z,

that holds by the communication property in A.

(ii) Assume only one premise is stable. For instance, let y Ñ w be stable

and x Ñ z not stable, so that x �∈ A∗ and z �∈ A◦. We have either y ≤ g or

h ≤ y since (g, h) is a gap. If y ≤ g, then y ≤ g ≤ z by Lemma 5.1(3), so the

right conclusion holds. If h ≤ y, Lemma 5.1(2) and the right premise implies

x ≤ h ≤ y ≤ w, so the left conclusion holds. The case where y Ñ w is not

stable and x Ñ z is stable is symmetrical. �

For the next lemma, we consider injections i, i′ from A to W and W ′ given

by i(a) := a ∈ W and i′(a) := (ε, a, ε) ∈ W̃ ′, and identify a with i(a) and i′(a).

Lemma 5.3. (W̃p
A,A) satisfies all Gentzen rules. Moreover, a Ñ b im-

plies a ≤A b for every a, b ∈ A. Hence, e(a) := γ(a) is an embedding of A

into W̃p+
A .

Proof. Observe that all Gentzen rules (Figure 1, where N is replaced by Ñ)

have stable premises. If the conclusion is also stable, then the claim follows

from the premises by Lemma 5.1(1). Otherwise, (as may happen for the rule

(Cut)), the conclusion holds automatically. �
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Lemma 5.4. Let e be the embedding of A into W̃p+
A in Lemma 5.3. The

following hold.

(1) For every x ∈ A ∪ {p}, e(x) = x�� = x�.

(2) e(g) � e(p) � e(h).

Proof. (1): Suppose that x = a ∈ A. We have a ∈ a� by (Id). Hence,

a�� ⊆ a�. To show the other inclusion, let y ∈ a� and z ∈ a�. Then y Ñ a

and a Ñ z, so y Ñ z by (Cut). This shows that a� ⊆ a��.

For x = p, the above reasoning shows that it is sufficient to verify (Id) and

(Cut) for p, too:

p Ñ p
(Id)

x Ñ p p Ñ z

x Ñ z
(Cut)

Here, we identify p on the right-hand side with (ε, p, ε) ∈ W̃ ′. (Id) is obvious.

For (Cut), if the conclusion is unstable, it holds automatically. Otherwise,

we distinguish three cases. If x ∈ A∗ and z �∈ A◦, Lemma 5.1(3) and the

left premise (which is stable) imply x ≤ g ≤ z. If x �∈ A∗ and z ∈ A◦,

Lemma 5.1(2) and the right premise (which is stable) imply x ≤ h ≤ z. If

x ∈ A∗ and z ∈ A◦, we have x ≤ g < h ≤ z.

(2): We have g Ñ p and p Ñ h, so g ∈ p� and p ∈ h�, which imply

e(g) ⊆ e(p) ⊆ e(h) by (1). On the other hand, we have neither p Ñ g nor

h Ñ p (that would mean h ≤ g). Hence, the two inclusions are strict. �

We have proved that the chain W̃p+
A fills the gap (g, h) of A. Clearly, W̃p

A

satisfies (eN ), (cN ), and (oN ) whenever A satisfies (e), (c), and (o). Hence,

by Lemma 4.3, Corollary 4.5, and Proposition 2.3, we conclude the following.

Theorem 5.5. FL�x with {i} ⊆ x ⊆ {e, c, i, o} is densifiable and standard com-

plete.

Thus, we have given a uniform proof for the standard completeness of Gödel

logic (FL�ecio), monoidal t-norm logic (FL�eio), and its noncommutative counter-

part (FL�io) [23, 24].

The structure of W̃p+
A . We have obtained a chain W̃p+

A filling a gap of A,

but we have not yet seen what kind of chain it is. By looking into its structure,

it turns out that it is just a MacNeille completion of the chain Ap presented

in Section 3.

We will show that the restriction of W̃p+
A to e[A]∪{γ(p)} forms a subalgebra

by giving a concrete description. To simplify the notation, we write

x̂ := γ(x) = x�� = x�

for every x ∈ A ∪ {p} (cf. Lemma 5.4(1)), and x̂ · ŷ := x̂ ◦γ ŷ. The lattice

structure of e[A] ∪ {p̂} is already clear (cf. Lemma 5.4(2)). Moreover, since

e(a) = â is an embedding, we have â � b̂ = â � b for every a, b ∈ A and

� ∈ {·, \, /}. Hence, it is sufficient to determine the operations ·, \, / applied

to â and p̂.
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Proposition 5.6. For every a ∈ A, we have:

p̂ · p̂ := p̂ if h2 = h, and p̂ · p̂ := ĥ2, otherwise;

â · p̂ := p̂ if ah = h, and â · p̂ := âh, otherwise;

p̂\p̂ := 1̂, and p̂\â := ĥ\a;

â\p̂ := p̂ if ah = h, and â\p̂ := â\g, otherwise.

Similar equalities hold for p̂ · â, p̂/p̂, â/p̂ and p̂/â. Hence, the restriction of

W̃p+
A to e[A] ∪ {p̂} forms a subalgebra that is isomorphic to Ap, and W̃p+

A is

its MacNeille completion.

Proof. Notice that x̂ · ŷ = γ(γ(x) ◦ γ(y)) = (xy)��. Hence, to see the equiv-

alence between x̂ · ŷ and û, it is sufficient to check (xy)� = u�, which holds

exactly when xy Ñ z iff u Ñ z for every z ∈ W̃ ′.

If z ∈ A◦, stability implies

• pp Ñ z iff h2 ≤ z iff h ≤ z iff p Ñ z (when h2 = h),

• pp Ñ z iff h2 ≤ z iff h2 Ñ z (when h2 ≤ g),

• ap Ñ z iff ah ≤ z iff h ≤ z iff p Ñ z (when ah = h),

• ap Ñ z iff ah ≤ z iff ah Ñ z (when ah ≤ g).

If z �∈ A◦, both sides of the above four hold by Lemma 5.1(1) and (3).

To prove the equalities for \, notice that ŵ = w� and x̂\ẑ = x��\z� =

{x}\z� for every w, x, z ∈ A ∪ {p}. Hence, to see x̂\ẑ = ŵ, it is sufficient to

check that xy Ñ z iff y Ñ w for every y ∈ W .

We have p̂\p̂ = 1̂ and p̂\â = ĥ\a since

• both py Ñ p and y Ñ 1 hold,

• py Ñ a iff hy ≤ a iff y ≤ h\a iff y Ñ h\a.
For the equality for â\p̂, we distinguish two cases. If y ∈ A∗, stability implies

• ay Ñ p iff ay ≤ g iff y ≤ g iff y Ñ p (when ah = h). To see the second

equivalence, y ≤ g obviously implies ay ≤ g. Conversely, suppose that

y ≤ g does not hold. Then h ≤ y, so h = ah ≤ ay. Hence, ay ≤ g does

not hold.

• ay Ñ p iff ay ≤ g iff y ≤ a\g iff y Ñ a\g (when ah ≤ g).

If y �∈ A∗, both sides of the above two hold. In particular, y Ñ a\g holds since

ay ≤ ah ≤ g by Lemma 5.1(2), so y ≤ a\g.
Finally, W̃p+

A is a MacNeille completion of Ap since

e[A] ∪ {p̂} = {x̂ : x ∈ W} = {z� : z ∈ W ′},

and any Galois-closed set X is both a join of elements from the second set and

a meet of elements from the third set (cf. (∗) in Section 4). �

One might call into question the significance of our construction based on

residuated frames, since the resulting algebra admits a much simpler presen-

tation as given in Section 3. Our justifications are as follows.

• Our method has a heuristic value, as it provides a general recipe how to
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find a chain that fills a gap. In essence, it amounts to a combinatorial task of

finding a residuated frame satisfying (comN ) and Gentzen rules. Once such a

frame has been found, we are done. See the next section for another applica-

tion of our method.

• To prove standard completeness, we usually need to show both densifiability

and closure under MacNeille completions (Proposition 2.3). Since residuated

frames unify the two tasks to a large extent, the method may in fact be con-

sidered quite economical.

• Residuated frames are intimately connected to the sequent calculus in proof

theory, as one can see in the Gentzen rules of Figure 1. This allows us to

translate various proof theoretic arguments into algebraic ones. Indeed, our

construction was inspired by a proof theoretic argument for standard com-

pleteness: first introduce the density rule in the hypersequent calculus, which

enforces the intended algebraic models to be dense chains, and then show that

it can be eliminated from a given proof, thus relating dense chains with non-

dense ones [1, 26, 11, 12, 4]. Further references on the subject can be found

in [27, 25]. Our frame construction precisely mirrors the way that the den-

sity rule is eliminated in [12, 4]. It is amazing that such a proof theoretic

argument, devised independently of algebraic considerations, translates into

an algebraic one quite smoothly. It suggests a deep connection between proof

theory and algebra, perhaps much deeper than usually believed. Finding such

a connection is the main goal of our long-term project: algebraic proof theory

for substructural logics [9, 10].

6. Densification of commutative FL chains

We now turn to another class of chains: commutative FL chains. The class

of bounded commutative FL chains provides a general algebraic semantics for

so-called uninorm logic, which is known to be standard complete [26]. However,

all the known proofs of this fact are proof theoretic, based on elimination of

the density rule in a hypersequent calculus. In this section, we translate the

proof theoretic argument into an algebraic one based on residuated frames.

This gives rise to a first algebraic proof of standard completeness for uninorm

logic.

LetA be a commutative FL chain with a gap (g, h) and p a new element. We

again build a residuated frame whose dual algebra fills the gap (g, h). Although

we could define W as before, we can exploit commutativity to simplify the

construction.

We define a frame Wp
A := (W,W ′, N, ◦, ε, ε) as follows:

• W := A× N. Each element (a,m) ∈ W is denoted by apm as if it were a

polynomial in the variable p. We identify A with the subset {ap0 : a ∈ A}
of W .

• apm ◦ bpn := (ab)pm+n and ε := 1 = 1p0.
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• W ′ := A ∪ {p} and ε := 0 ∈ A.

• There are three types of elements inW×W ′: (apn, b), (a, p), and (apn+1, p)

with a, b ∈ A and n ∈ N. N is defined accordingly:

apn N b ⇐⇒ ahn ≤A b,

a N p ⇐⇒ a ≤A g,

apn+1 N p ⇐⇒ ahn ≤A 1.

Notice that this is compatible with the previous definition. In particular,

apn+1 N p always holds if A is integral. As before, the frame Wp
A induces

a residuated frame W̃p
A := (W, W̃ ′, Ñ , ◦, ε, (ε, ε)). Because of commutativity,

the definitions of W̃ ′ and Ñ are slightly simplified:

W̃ ′ := W ×W ′, x Ñ (y, z) iff x ◦ y N z.

As in the integral case, the set W̃ ′ can be partitioned into three:

W̃ ′
1 := {(apn, b) : a, b ∈ A, n ≥ 0},

W̃ ′
2 := {(a, p) : a ∈ A},

W̃ ′
3 := {(apn+1, p) : a ∈ A, n ≥ 0}.

Elements of W, W̃ ′ are interpreted by elements of A. For x = apn ∈ W , let

x := ahn ∈ A. For z ∈ W̃ ′, we define

z :=




ahn → b, if z = (apn, b) ∈ W̃ ′
1;

a → g, if z = (a, p) ∈ W̃ ′
2;

ahn → 1, if z = (apn+1, p) ∈ W̃ ′
3.

As before, A◦ := W̃ ′
1 ∪ W̃ ′

3. A pair (x, z) ∈ W × W̃ ′ is stable if either x ∈ A or

z ∈ A◦. Similarly to Lemma 5.1(1), we have the following result.

Lemma 6.1. If (x, z) is stable, then x Ñ z iff x ≤A z.

Proof. When x ∈ A and z = (a, p) ∈ W̃ ′
2, we have x Ñ z iff xa N p iff xa ≤ g

iff x ≤ a → g iff x ≤ z.

When x = x′pm and z = (apn, b) ∈ W̃ ′
1, we have x Ñ z iff x′apm+n N b iff

x′ahm+n ≤ b iff x′hm ≤ ahn → b iff x ≤ z.

When x = x′pm and z = (apn+1, p) ∈ W̃ ′
3, we have x Ñ z iff x′apm+n+1 N p

iff x′ahm+n ≤ 1 iff x′hm ≤ ahn → 1 iff x ≤ z. �

Lemma 6.2. W̃p
A satisfies the rule (comN ).

Proof. We verify

x Ñ z and y Ñ w

x Ñ w or y Ñ z
(comN )

.

(i): If x, y ∈ A or w, z ∈ A◦, all the pairs {x, y} × {z, w} are stable. By

Lemma 6.1, the rule boils down to

x ≤ z and y ≤ w =⇒ x ≤ w or y ≤ z,
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which holds by the communication property in A.

(ii): Suppose that w �∈ A◦ and z �∈ A◦. Then w = (a, p) and z = (b, p), so

that (comN ) becomes

xb N p and ya N p

xa N p or yb N p
⇐⇒

b Ñ (x, p) and a Ñ (y, p)

a Ñ (x, p) or b Ñ (y, p) .

Since a, b ∈ A, this reduces to the case (i).

(iii): Suppose that w ∈ A◦ and z �∈ A◦. We write w = (w1, w2) and

z = (a, p). There are three subcases.

First, suppose that x, y �∈ A. Then we may write x = x′p and y = y′p, so

that (comN ) becomes

x′ Ñ (pa, p) and y′ Ñ (pw1, w2)

x′ Ñ (pw1, w2) or y′ Ñ (pa, p) .

Since (pa, p), (pw1, w2) ∈ A◦, this reduces to the case (i).

Second, suppose that x ∈ A and y �∈ A, so that we may write y = y′p.

Notice that x Ñ z iff xa N p iff xa ≤ g. Also, y Ñ z iff y′pa N p iff y′a ≤ 1.

Thus, what we have to check is

xa ≤ g and y ≤ w =⇒ x ≤ w or y′a ≤ 1.

By the communication property, the premises imply either x ≤ w or ya ≤ g.

If x ≤ w, we are done. Otherwise, we have y′ha = ya ≤ g, so y′a ≤ h → g < 1

(since g < h). So, we are done.

Finally, suppose that x �∈ A and y ∈ A, so that we may write x = x′p. Note

that x Ñ z iff x′pa N p iff x′a ≤ 1. Also, y Ñ z iff ya N p iff ya ≤ g. Thus,

what we have to check is

x′a ≤ 1 and y ≤ w =⇒ x ≤ w or ya ≤ g.

If ya ≤ g, we are done. Otherwise, h ≤ ya. Hence, together with the premises,

we obtain x = x′h ≤ x′ya ≤ y ≤ w. �

Lemma 6.3. (W̃p
A,A) satisfies all the Gentzen rules, and moreover a N b

implies a ≤A b for every a, b ∈ A. Hence, e(a) := γ(a) is an embedding of A

into W̃p+
A .

Proof. As in the proof of Lemma 5.3, notice that all Gentzen rules except

(Cut) have stable premises and conclusion. Hence, we only have to check the

(Cut) rule

x Ñ a a Ñ z

x Ñ z
(Cut),

where (x, z) is unstable. We may write x = x′p and z = (b, p). By noting that

x Ñ z iff x′pb N p iff x′b ≤ 1, this amounts to

x′h ≤ a and ab ≤ g =⇒ x′b ≤ 1.

Now the premises imply x′hb ≤ g, so x′b ≤ h → g < 1. �
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Lemma 6.4. Let e be the embedding of A into W̃p+
A in Lemma 6.3. The

following hold.

(1) For every z ∈ W ′, e(z) = z�� = z�.

(2) e(g) � e(p) � e(h).

Proof. In view of the proof of Lemma 5.4, it is sufficient to show that (Id) and

(Cut) hold for p. For (Cut),

x Ñ p p Ñ z

x Ñ z
(Cut).

If x ∈ A and z ∈ A◦, then all of (x, z), (x, p), and (p, z) are stable. Hence, the

premises imply x ≤ g < h ≤ z.

If x �∈ A and z ∈ A◦, we may write x = x′p. The premises amount to x′ ≤ 1

and h ≤ z, so we obtain x = x′h ≤ z.

If x �∈ A and z �∈ A◦, we may write x = x′p and z = (a, p). The premises

amount to x′ ≤ 1 and a ≤ 1, so we obtain x′a ≤ 1.

Finally, if x ∈ A and z �∈ A◦, we may write z = (a, p). The premises amount

to x ≤ g and a ≤ 1, so we obtain xa ≤ g.

In any case, we obtain the conclusion x Ñ z. �

We have proved that the chain W̃p+
A fills the gap (g, h) of A. An alternative

construction of this algebra and a finer analysis of its structure are provided

in [17]. It is easy to see that W̃p
A satisfies (eN ), (iN ), (oN ) wheneverA satisfies

(e), (i), (o). Thus, we have the following.

Theorem 6.5. Every variety FL�x with {e} ⊆ x ⊆ {e, i, o} is densifiable, hence

is standard complete.

As we mentioned at the beginning of the section, uninorm logic is complete

with respect to the class of bounded commutative FL chains. Since bound-

edness is clearly preserved by our construction, we have obtained a purely

algebraic proof of the standard completeness of uninorm logic [26].

7. Substructural hierarchy and MacNeille completions

The rest of this paper is devoted to densification of subvarieties of FL�i and

FL�e. The concept of substructural hierarchy [7, 8, 9, 10] is useful to deal with

those subvarieties systematically.

Definition 7.1. For each n ≥ 0, the sets Pn and Nn are defined as follows.

(0) P0 = N0 = the set of variables.

(P1) 1 and all terms t ∈ Nn belong to Pn+1.

(P2) If t, u ∈ Pn+1, then t ∨ u, t · u ∈ Pn+1.

(N1) 0 and all terms t ∈ Pn belong to Nn+1.

(N2) If t, u ∈ Nn+1, then t ∧ u ∈ Nn+1.

(N3) If t ∈ Pn+1 and u ∈ Nn+1, then t\u, u/t ∈ Nn+1.
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Figure 2. The substructural hierarchy

In other words, Pn and Nn (n ≥ 1) are generated by the following BNF

grammar:

Pn ::= Nn−1 | 1 | Pn ∨ Pn | Pn · Pn,

Nn ::= Pn−1 | 0 | Nn ∧ Nn | Pn\Nn | Nn/Pn.

By residuation, any equation u = v can be written as 1 ≤ t. We say that

u = v belongs to Pn (Nn, resp.) if t does.

The classes (Pn, Nn) constitute the substructural hierarchy (Figure 2).

Among those classes, relevant to subsequent arguments, are N2 and P3. The

former includes the following:

xy ≤ yx (e)

x ≤ xx (c)

x ≤ 1 (i)

0 ≤ x (o)

xm ≤ xn (knotted axioms, m,n ≥ 0)

1 ≤ ∼(x ∧ ∼x) (non-contradiction)

P3 includes the following:

1 ≤ x ∨ ∼x (excluded middle)

1 ≤ ∼x ∨ ∼∼x (weak excluded middle)

1 ≤ ∼(x · y) ∨ (x ∧ y\x · y) (weak nilpotent minimum)

1 ≤ ∼(x · y)n ∨ ((x ∧ y)n−1\(x · y)n) (wnmn)

1 ≤ (xn−1\x · y) ∨ (y\x · y) (Ωn)

1 ≤
∨k

i=0(p0 ∧ · · · ∧ pi−1\pi) (bounded width k)

1 ≤ p0 ∨ (p0\p1) ∨ · · · ∨ (p0 ∧ · · · ∧ pk−1\pk) (bounded size k)
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The classes N2 and P3 are intimately related to the classes of structural

quasiequations and structural clauses defined below.

Definition 7.2. By a clause, we mean a classical first-order formula of the

form

t1 ≤ u1 and · · · and tm ≤ um =⇒ tm+1 ≤ um+1 or · · · or tn ≤ un, (q)

where ti, ui are terms of FL and all variables are assumed to be universally

quantified. Each ti ≤ ui (1 ≤ i ≤ m) is called a premise, while each tj ≤ uj

(m + 1 ≤ j ≤ n) is a conclusion. We say (q) is a quasiequation if n = m + 1.

It is structural if t1, . . . , tn are products of variables (including the empty

product 1) and u1, . . . , un are either a variable or 0. Given a structural clause

(q), let L(q) be the set of variables occurring in tm+1, . . . , tn, and R(q) the set

of variables occurring in um+1, . . . , un. We say (q) is analytic if the following

conditions are satisfied:

Separation: L(q) and R(q) are disjoint.

Linearity: Each variable in L(q) ∪ R(q) occurs exactly once in the con-

clusions tm+1 ≤ um+1, . . . , tn ≤ un.

Inclusion: Each of t1, . . . , tm is a product of variables in L(q), while each

of u1, . . . , um is either a variable in R(q) or 0.

Theorem 7.3.

(1) Every equation in N2 is equivalent in integral FL algebras to a set of

analytic quasiequations.

(2) Every equation in P3 is equivalent in integral FL chains to a set of analytic

clauses.

Proof. (1) is proved in [9]. For (2), we have

A |= t ∨ u = 1 ⇐⇒ A |= (t = 1 or u = 1),

A |= t · u = 1 ⇐⇒ A |= (t = 1 and u = 1),

for every integral FL chain A. Thus, each P3 equation is equivalent to a set

of disjunctions of the form (t1 = 1 or · · · or tn = 1). The rest of the proof

proceeds as in [8, 10]. �

Example 7.4. Our running example is the weak nilpotent minimum axiom

1 ≤ ∼(xy) ∨ (x ∧ y\xy) that belongs to P3. It is equivalent in integral FL

chains to

xy ≤ z and xv ≤ z and vy ≤ z and vv ≤ z =⇒ xy ≤ 0 or v ≤ z. (wnm)

Structural clauses are useful because they can be expressed as rules for

residuated frames. Moreover, analytic ones are preserved under the dual al-

gebra construction. To make it more precise, consider a structural clause of

the form (q) above, and let W = (W,W ′, N, ◦, ε, ε) be a residuated frame. We

can naturally translate each ti into a term over (◦, ε), and each ui into either
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a variable or ε. The resulting terms are still denoted by ti, ui. Corresponding

to the clause (q), we have

t1 N u1 and · · · and tm N um =⇒ tm+1 N um+1 or · · · or tn N un. (qN )

Example 7.5. The clause (wnm) corresponds to the following rule for resid-

uated frames:

xy N z and xv N z and vy N z and vv N z =⇒ xy N ε or v N z.

(wnmN )

By definition, if an FL algebra A satisfies (q), then the residuated frame

WA satisfies (qN ). Moreover, Lemma 4.3 generalizes to all analytic clauses.

Theorem 7.6. Let (q) be an analytic clause. If a residuated frame W satisfies

(qN ), then the dual algebra W+ satisfies (q).

The correctness of the above theorem should be clear from the example be-

low as well as the case of (com) handled by Lemma 4.3. The case of quasiequa-

tions is detailed in [9] and the case of clauses is implicit in [8]; [10] contains a

more general result.

Example 7.7. Suppose that W satisfies (wnmN ). Our goal is to show that

W+ satisfies (wnm), namely

XY ⊆ Z and XV ⊆ Z and V Y ⊆ Z and V V ⊆ Z =⇒ XY ⊆ ε� or V ⊆ Z

holds for all Galois-closed sets X,Y, V, Z. Suppose that neither of the conclu-

sions holds. Then there are x ∈ X, y ∈ Y , v ∈ V , and z ∈ Z� such that

neither xy N ε nor v N z holds (since Z = Z��).

On the other hand, the premises yield xy N z, xv N z, vy N z, and vv N z,

which contradict the assumption that W satisfies the rule (wnmN ).

Corollary 4.5 and Theorem 7.6 lead to the following general result on Mac-

Neille completions.

Theorem 7.8. Let V be a variety of FL algebras.

(1) If V is defined by equations equivalent to analytic quasiequations and

A ∈ V, then its MacNeille completion belongs to V.

(2) If V is defined by equations equivalent to analytic clauses (over chains)

and A is a chain in V, then its MacNeille completion belongs to V.

8. Densification of subvarieties of FL�i

We now focus on subvarieties of FL�i defined by P3 equations. By Theo-

rems 7.3 and 7.8, such varieties are always closed under MacNeille comple-

tions (applied to chains). However, there are such varieties that do not admit

densification. A typical counterexample is the variety BA of Boolean algebras,
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whose only nontrivial chain is the two element one. Notice that BA is defined

by excluded middle x ∨ ¬x = 1 in P2, which is equivalent to

xy ≤ z =⇒ x ≤ 0 or y ≤ z. (em)

We should rule out such a clause by introducing some criteria. The criteria

below are inspired by the proof-theoretical approach in [4], which extends [12].

Before we proceed further, let us make it precise what it means that the

specific residuated frame W̃p
A defined in Section 5 satisfies (qN ). Recall that

an analytic clause (q) is of the form

t1 ≤ z1 and · · · and tm ≤ zm =⇒ tm+1 ≤ zm+1 or · · · or tn ≤ zn.

For the purpose of this section, it is convenient to write (q) as P =⇒ C, where

P := {t1 ≤ z1, . . . , tm ≤ zm}, C := {tm+1 ≤ zm+1, . . . , tn ≤ zn}.

Recall that each equation in P and C consists of variables L(q) and R(q). To

each x ∈ L(q), we associate an element x• ∈ W = (A∪{p})∗ so that each term

t is interpreted by t• ∈ W . Likewise, to each z ∈ R(q) we associate a triple

z• ∈ W̃ ′ = W×W ′×W , where W ′ = A∪{p}. The interpretations of constants
1, 0 are already fixed: 1• := ε ∈ W and 0• := (ε, ε, ε) = (ε, 0, ε) ∈ W̃ ′. It is

now clear when W̃p
A satisfies (qN ). It is true just in case the following holds

for each such interpretation • :

{t• Ñ z• : t ≤ z ∈ P} =⇒ {t• Ñ z• : t ≤ z ∈ C}. (∗)

Suppose that t is a product of variables: t = x1 · · ·xn. Then t• ∈ A∗ iff

x•
i ∈ A∗ for every 1 ≤ i ≤ n. This implies:

(t•, z•) is stable ⇐⇒ (x•
i , z

•) is stable for every 1 ≤ i ≤ n. ($)

Let us now come back to criteria for densifiability.

Definition 8.1. Let (q) : P =⇒ C be an analytic clause. Let us define

DP (q) := {(x, z) : uxv ≤ z ∈ P} and DC(q) := {(x, z) : uxv ≤ z ∈ C}. That

is, DP (q) is the set of pairs of variables “connected” by one of the premises,

and similarly for DC(q). We say that (q) is anchored if DP (q) ⊆ DC(q).

Clearly, the clause (em) is not anchored since DP (em) = {(x, z), (y, z)}
and DC(em) = {(y, z)}. On the other hand, any analytic quasiequation is

anchored due to the inclusion condition.

Lemma 8.2. Let A be an integral FL chain with a gap (g, h) and (q) an

anchored analytic clause. If A satisfies (q), then the residuated frame W̃p
A

satisfies (qN ). In particular, if A satisfies an analytic quasiequation (q), W̃p
A

satisfies (qN ).

Proof. Assume that A satisfies an anchored clause (q). Our goal is to verify

(∗) above for any interpretation •. If there is a conclusion t ≤ z ∈ C such that

(t•, z•) is not stable, then we have t• Ñ z• by Lemma 5.1(1), so (∗) holds.
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Otherwise, (t•, z•) is stable for every t ≤ z ∈ C, and the same holds for

every t ≤ z ∈ P by ($) and DP (q) ⊆ DC(q). Hence, by Lemma 5.1(1), (∗)
amounts to {t• ≤A z• : t ≤ z ∈ P} =⇒ {t• ≤A z• : t ≤ z ∈ C}, which
holds since A satisfies (q). �

The previous lemma does not apply to many clauses. For instance, it does

not apply to (wnm):

xy ≤ z, xv ≤ z, vy ≤ z, vv ≤ z =⇒ xy ≤ 0 or v ≤ z, (wnm)

since (x, z), (y, z) ∈ DP (wnm)\DC(wnm). To deal with this and more in-

volved clauses, we need to extend the definition of anchored clause.

In the sequel, we write t = t(x1, . . . , xn) to indicate variable occurrences

x1, . . . , xn in term t. Then t(y1, . . . , yn) denotes the result of substituting yi
for xi.

Definition 8.3. Let (q) : P =⇒ C be an analytic clause. We say that (q)

is semi-anchored if for every premise t ≤ z in P , if t can be written as

t(x1, . . . , xn), with (xi, z) �∈ DC(q) (1 ≤ i ≤ n), one of the following holds:

(1) there is a premise t(y1, . . . , yn) ≤ z in P with (yi, z) ∈ DC(q) for every

1 ≤ i ≤ n,

(2) there is a premise t(x1, . . . , xn) ≤ w in P with (xi, w) ∈ DC(q) for some

1 ≤ i ≤ n,

(t may contain a variable x0 �∈ {x1, . . . , xn} with (x0, z) �∈ DC(q).)

Notice that checking semi-anchoredness amounts to checking finitely many

conditions on the premises and the conclusions of a clause; hence, it is decid-

able. The PROLOG-system AxiomCalc automates the conversion of equations

into analytic clauses in Section 7 and checks whether an analytic clause sat-

isfies a condition similar to (1) in Definition 8.3; see [4]. Condition (2) in

Definition 8.3 does not present any particular challenge for further automa-

tion. (AxiomCalc is available online at http://www.logic.at/people/lara/

axiomcalc.html.)

Example 8.4. (wnm) is semi-anchored. Note that DC(wnm) = {(v, z)}.
For the first premise xy ≤ z, the term xy can be written as t1(x) = t2(y) =

t3(x, y) = xy, so that t1(v) = vy, t2(v) = xv, and t3(v, v) = vv. In any case, we

have premises t1(v) ≤ z, t2(v) ≤ z, and t3(v, v) ≤ z with (v, z) ∈ DC(wnm),

so the case (1) applies. Similarly for the other premises.

Likewise, we can show that (wnmn) is equivalent to a semi-anchored clause

for every n. This conforms to the standard completeness of monoidal t-norm

logic with (wnmn) proved in [4].

Example 8.5. The equations (Ωn) are equivalent in integral FL chains to the

conjunction of xn−1 ≤ xn and (xn−1\y) ∨ (y\x · y). FLew chains satisfying

these equations are called Ω(SnMTL) chains and are shown to be densifiable
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in [22]. The equation (Ω3) is equivalent to the analytic clause

yx ≤ z1, wx ≤ z1, yx ≤ z2, wx ≤ z2 =⇒ wy ≤ z2 or x ≤ z1 (Ω3)

This clause is semi-anchored. Note that DC(Ω3) = {(w, z2), (y, z2), (x, z1)}.
For the first premise, yx can be written as t1(y) = yx. We have t1(y) ≤ z2
in the premise with (y, z2) ∈ DC(Ω3), so that case (2) applies. For the third

premise, yx can be written as t2(x) = yx. We have t2(x) ≤ z1 in the premise

with (x, z1) ∈ DC(Ω3). Similarly for the second and fourth premises.

Lemma 8.6. Let A be an integral FL chain with a gap (g, h) and (q) : P =⇒ C

a semi-anchored analytic clause. If A satisfies (q), then W̃p
A satisfies (qN ).

Proof. Our goal is again to show that

{t• Ñ z• : t ≤ z ∈ P} =⇒ {t• Ñ z• : t ≤ z ∈ C} (∗)

holds in W̃p
A for every interpretation •. As in the previous proof, we may

assume that (t•, z•) is stable for every conclusion t ≤ z in C. Thus, (x, z) ∈
DC(q) implies that (x•, z•) is stable by ($). But this time stability may not

hold for some premises.

So let t ≤ z be a premise such that (t•, z•) is not stable. Then by ($),

we can identify the set {x1, . . . , xn} of variables in t such that (x•
i , z

•) is not

stable for any 1 ≤ i ≤ n (thus, x•
i �∈ A∗, z• �∈ A◦ and (xi, z) �∈ DC(q)). Let us

write t = t(x1, . . . , xn). By Lemma 5.1(2) and (3), we have

g ≤ z•, x•
i ≤ h (for 1 ≤ i ≤ n). (!)

By the definition of a semi-anchored clause, two cases can occur.

(1) First, assume that there is a premise ts ≤ z with ts = t(y1, . . . , yn) and

(y1, z), . . . , (yn, z) ∈ DC(q). Then (t•s, z
•) is stable by ($). Hence, by

Lemma 5.1(1), we have t
•
s ≤ z•. Since (g, h) is a gap, we have that either

y•i ≤ g or h ≤ y•i for each 1 ≤ i ≤ n. We distinguish two cases.

(a) There is some y•i such that y•i ≤ g. As (yi, z) ∈ DC(q), there is a

conclusion u ≤ zi in C such that u contains yi. Hence , we have

u• ≤ y•i ≤ g ≤ z• by integrality and (!). So we have obtained a true

conclusion u• Ñ z•.

(b) For every y•i , we have h ≤ y•i . We then have x•
i ≤ h ≤ y•i by (!).

Hence, we obtain t
•
= t(x1, . . . , xn)

•
≤ t(y1, . . . , yj)

•
= t

•
s ≤ z•.

In other words, we have that for the unstable premise t• Ñ z•, the

inequation t
• ≤ z• holds in A.

(2) Assume now that there is a premise t ≤ w with (xi, w) ∈ DC(q) for some

1 ≤ i ≤ n. Since x•
i �∈ A∗, this means w• ∈ A◦, so (t•, w•) is stable.

Hence, by Lemma 5.1(1), we have t
• ≤ w•. As (g, h) is a gap, we have

that either w• ≤ g or h ≤ w•.

(a) In case h ≤ w•, note that there is a conclusion u ≤ w such that u

contains xi. By integrality and Lemma 5.1(2), we have u• ≤ x•
i ≤

h ≤ w•, which means that we have a true conclusion u• Ñ w•.
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(b) In case w• ≤ g, we have t
• ≤ w• ≤ g ≤ z• by (!). In other words, we

have that for the unstable premise t• Ñ z•, the inequation t
• ≤ z•

holds in A.

Summing up, for any unstable premise t Ñ z, we have shown that either

a conclusion is true (cases (1a) and (2a)), in which case we are done, or that

t
• ≤ z• holds in A (cases (1b) and (2b)). Recall that the latter inequation is

also true for all the stable premises by Lemma 5.1(1). Hence, our claim follows

just by applying {t• ≤A z• : t ≤ z ∈ P} =⇒ {t• ≤A z• : t ≤ z ∈ C}, which
holds since A satisfies (q). �

To state our main theorem, let us call an equation semi-anchored if it is

equivalent to a set of semi-anchored analytic clauses in the integral FL chains.

Theorem 8.7. Let V be a nontrivial subvariety of FL�i defined by a set of

semi-anchored equations. Then V is densifiable, so is standard complete.

Proof. Let Q be the set of semi-anchored analytic clauses equivalent to the

defining equations of V. Let A ∈ V be a chain with a gap (g, h). Then A

satisfies all the clauses in Q, so by the previous lemma, W̃p
A satisfies (qN ) for

all (q) ∈ Q. Hence, W̃p+
A , filling the gap (g, h) ofA, satisfiesQ by Theorem 7.6,

i.e., W̃p+
A ∈ V. �

9. Densification of subvarieties of FL�e

Now we turn our attention to subvarieties of FL�e algebras. The situation

here is considerably more complicated than for FL�i , and we have no idea how

to deal with P3, or even N2, equations uniformly. We thus limit ourselves

to the subvarieties of FL�e defined by knotted axioms xm ≤ xn, with distinct

m,n > 1, translating in our framework the results in [2]. To begin with, any

knotted axiom implies a curious fact, that yxk ≤ 1 holds if and only if yxl ≤ 1,

as long as k, l ≥ 1.

Lemma 9.1. Let A be a commutative FL chain satisfying xm ≤ xn for some

distinct m,n > 0. Then A satisfies the following quasiequations.

xxy ≤ 1 =⇒ xy ≤ 1, (c1)

xy ≤ 1 =⇒ xxy ≤ 1. (w1)

Proof. Notice that (c1) and (w1) are mutually derivable in commutative FL

chains. Therefore, we will only show that (c1) holds in case m < n. In case

n < m, one can prove in a symmetric way that (w1) holds. Given a, b ∈ A,

assume that aab ≤ 1 holds in A. This implies (1): a2nbn ≤ 1. We have either

1 ≤ a or a ≤ 1. In the former case, we immediately obtain ab ≤ aab ≤ 1. In

the latter case, we have (2): an ≤ al for every l ≤ n. Now choose k, l ∈ N such

that 2n = k(n −m) + l and m ≤ l < n. Notice that since m ≤ l, we have by

the knotted axiom, al = a(l−m)am ≤ a(l−m)an = alan−m. Hence, we get (3):
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al ≤ alak(n−m) = a2n. By (1)–(3), we obtain anbn ≤ albn ≤ a2nbn ≤ 1. Since

A is a chain, one can easily show that ab ≤ 1 follows from the latter. �

Another important fact is that any knotted axiom is equivalent to a simple

analytic quasiequation in commutative FL chains.

Lemma 9.2. Let A be a commutative FL chain. Then A satisfies xm ≤ xn,

for distinct m,n > 0, if and only if it satisfies the following quasiequation:

xn
1 ≤ z and · · · and xn

m ≤ z =⇒ x1 · · ·xm ≤ z. (knotnm)

Proof. Assume (knotnm) holds in A. Given a ∈ A, we interpret all x1, . . . , xm

by a and z by an. Then all the premises hold, and the conclusion is am ≤ an.

Conversely, assume xm ≤ xn holds in A. Suppose that an1 ≤ b, . . . , anm ≤ b

hold for a1, . . . , am, b ∈ A. Our goal is to show a1 · · · am ≤ b. Since A

is a chain, there is a maximum among a1, . . . , am, say ak. Then we have

a1 · · · am ≤ amk ≤ ank ≤ b. �

Notice that since the knotted axioms are in the class N2, we could have

just used the procedure in [8, 9] to obtain equivalent analytic quasiequations.

The quasiequations we have considered here are a simplified version, which are

equivalent to the axioms only when we restrict to chains.

Lemma 9.3. Let A be a commutative FL chain with a gap (g, h), satisfying

(knotnm) for some distinct m,n > 1. The residuated frame W̃p
A defined in

Section 6 satisfies (knotnNm ).

Proof. We need to show that W̃p
A satisfies

xn
1 Ñ z and · · · and xn

m Ñ z =⇒ x1 · · ·xm Ñ z, (knotnNm )

for every x1, . . . , xm ∈ W = A× N and z ∈ W̃ ′ = W ×W ′ = W × (A ∪ {p}).
The conclusion is stable if and only if all the premises are. If this is the case,

the claim easily follows from Lemma 6.1 and from the fact that A satisfies

(knotnm).

So assume that some of the premises violate stability, for instance, without

loss of generality, xn
1 Ñ z, . . . , xn

k Ñ z with 1 ≤ k ≤ m. This means that

there are a1, . . . , am, b ∈ A and natural numbers e1, . . . , ek ≥ 1 such that

z = (b, p), xi = aip
ei (1 ≤ i ≤ k), xj = aj (k + 1 ≤ j ≤ m).

Then (knotnNm ) amounts to:

an1 bh
ne1−1 ≤ 1, . . . , ankbh

nek−1 ≤ 1,

ank+1b ≤ g, . . . , anmb ≤ g

}
=⇒ a1 · · · ambhe1+···+ek−1 ≤ 1.

By combining all the premises on the first line and by Lemma 9.1 (noting that

n > 1), we obtain (*): an1 · · · ankbkhl ≤ 1, for any l ≥ 1. By combining all those

on the second line, we obtain (**): ank+1 · · · anmbm−k ≤ gm−k ≤ hm−k.

If e1+ · · ·+ ek−1 ≥ 1, the two inequalities (∗) and (∗∗) with l := m−k+1

imply an1 · · · anmbmh ≤ 1, which leads to the conclusion by Lemma 9.1.
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Otherwise k = 1 and e1 = 1. Since m > 1, we have m − k ≥ 1. Hence,

(∗) and (∗∗) with l := m − k implies an1 · · · anmbm ≤ 1, which leads to the

conclusion. �

Finally, we obtain the main theorem of this section.

Theorem 9.4. Let V be the subvariety of FL�e defined by xm ≤ xn with distinct

m,n > 1. Then V is densifiable, and so is standard complete.

Proof. Let A ∈ V be a chain with a gap (g, h). By Lemmas 9.2 and 9.3, W̃p
A

satisfies (knotnNm ). Hence, W̃p+
A , filling the gap (g, h) of A, satisfies (knotnm)

by Theorem 7.6, i.e., W̃p+
A ∈ V. �

Notice that xm ≤ x0 with m > 0 is equivalent to the integrality x ≤ 1,

that has already been dealt with; indeed, the former implies x ≤ (1 ∨ x)m ≤
(1 ∨ x)0 = 1. Likewise, x0 ≤ xn with n > 0 is equivalent to 1 ≤ x, which

defines the trivial variety.

The only remaining cases are xm ≤ x1 and x1 ≤ xn with m,n > 1, which

are respectively equivalent to x2 ≤ x and x ≤ x2 in FL�. Unfortunately, our

result in this section, as well as its proof theoretic origin [2], does not cover

these cases. [26] shows proof-theoretically only that the subvariety of FL� ax-

iomatized by both x2 ≤ x and x ≤ x2 is densifiable. In a recently submitted

work [3], all these cases are addressed by general proof-theoretic means. Trans-

lating them into our algebraic framework would require the construction of a

residuated frame different from the one given in Section 6.

10. Final remarks and open problems

The results presented here subsume most of the results on strong standard

completeness of fuzzy logics in the literature [4, 6, 14, 15, 16, 21, 23, 24, 26, 30].

Unfortunately, N3-subvarieties (i.e., subvarieties defined by N3 equations)

of FL�, or even FL�eio, cannot be dealt with by our method. This is the case,

for instance, for the varieties corresponding to basic logic, �Lukasiewicz logic,

product logic, WCMTL and ΠMTL (see, e.g., [13, 14, 15, 28, 20]). It is

certainly a limitation of our approach, but notice that these varieties only enjoy

the finite strong form of standard completeness (E |=V s = t ⇔ E |=V[0,1]
s = t

for finite E), and it has actually been proved that none of them admits the

strong form studied in this paper.

It is an open problem to what extent the N2-subvarieties of FL�e admit

densification and standard completeness. Section 9 only gives a partial solution

(for knotted axioms xm ≤ xn with m,n > 1). In this paper, we have not

considered involutive subvarieties of FL, i.e., those defined by −∼x = ∼−x =

x. For involutive FL�ei, which corresponds to involutive monoidal t-norm logic,

strong standard completeness has been proved algebraically in [15] and proof-

theoretically in [26]. We believe that this result can be reproved by employing

involutive residuated frames of [18]. On the other hand, an important open
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problem in this direction is the standard completeness of involutive FL�e, which

correspond to involutive uninorm logic, for which we are not sure whether our

method applies or not.
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