Skip to main content

Advertisement

Log in

Infliximab modifies CD74-mediated lymphatic abnormalities and adipose tissue alterations in creeping fat of Crohn’s disease

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Lymphatic abnormalities are essential for pathophysiologic changes of creeping fat (CrF) in Crohn's disease (CD). Anti-tumor necrosis factor (TNF) therapy has been proved to alleviate CrF lesions, however, whether it achieves these by remodeling lymphatics is unknown.

Methods

CD74 expression was detected in CrF and uninvolved mesentery of CD patients. Lymphatic functions in vitro were evaluated and lymphatic endothelium barrier were checked by transendothelial electrical resistance (TEER) and FITC-Dextran permeability. Protein level of tight junction and signaling pathways were detected by western blotting.

Results

CD74 was upregulated in LECs of CrF and positively correlated with TNF-α synthesis. This was suppressed by IFX administration. In vitro, TNF-α stimulated LECs to express CD74 through NF-κB signaling pathway, and this was rescued by IFX. CD74 downregulation suppressed the abilities of LECs in proliferation, migration and tube formation. Interaction of CD74-MIF impaired LECs’ barrier via reducing tight junction proteins in an ERK1/2-dependent manner, which was reversed by CD74 downregulation. Consistently, the CD patients receiving IFX therapy displayed decreased lymphangiogenesis and improved mesenteric lymphatic endothelium barrier, companied with reduced adipocyte size and adipokine levels in CrF.

Conclusions

Anti-TNF therapy could modify pathological changes in CrF by alleviating CD74-mediated lymphatic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Data are available from the corresponding author upon reasonable request.

References

  1. Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis; a pathologic and clinical entity. Am J Med. 1952;13:583–90.

    Article  CAS  PubMed  Google Scholar 

  2. Mao R, Kurada S, Gordon IO, et al. The mesenteric fat and intestinal muscle interface: creeping fat influencing stricture formation in Crohn’s disease. Inflamm Bowel Dis. 2019;25:421–6.

    Article  PubMed  Google Scholar 

  3. Desreumaux P, Ernst O, Geboes K, et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease. Gastroenterology. 1999;117(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  4. Gonçalves P, Magro F, Martel F. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel. Inflamm Bowel Dis. 2015;21(2):453–67.

    Article  PubMed  Google Scholar 

  5. Li Y, Zhu W, Zuo L, Shen B. The role of the mesentery in Crohn’s disease: the contributions of nerves, vessels, lymphatics, and fat to the pathogenesis and disease course. Inflamm Bowel Dis. 2016;22(6):1483–95.

    Article  PubMed  Google Scholar 

  6. Dowling L, Jakeman P, Norton C, et al. Adults with Crohn’s disease exhibit elevated gynoid fat and reduced android fat irrespective of disease relapse or remission. Sci Rep. 2021;11(1):19258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen W, Li Y, Zou Y, et al. Mesenteric adipose tissue alterations in Crohn’s disease are associated with the lymphatic system. Inflamm Bowel Dis. 2019;25(2):283–93.

    Article  PubMed  Google Scholar 

  8. Buskens CJ, de Groof EJ, Bemelman WA, Wildenberg ME. The role of the mesentery in Crohn’s disease. Lancet Gastroenterol Hepatol. 2017;2(4):245–6.

    Article  PubMed  Google Scholar 

  9. von der Weid PY, Rehal S, Ferraz JG. Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin Gastroenterol. 2011;27(4):335–41.

    Article  PubMed  Google Scholar 

  10. Gu P, Dube S, McGovern DPB. Medical and surgical implications of mesenteric adipose tissue in Crohn’s Disease: a review of the literature. Inflamm Bowel Dis. 2023;29(3):458–69.

    Article  PubMed  Google Scholar 

  11. Li Y, Ge Y, Gong J, et al. Mesenteric lymphatic vessel density is associated with disease behavior and postoperative recurrence in Crohn’s Disease. J Gastrointest Surg. 2018;22(12):2125–32.

    Article  PubMed  Google Scholar 

  12. D’Alessio S, Correale C, Tacconi C, et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest. 2014;124(9):3863–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ge Y, Li Y, Chen Q, et al. Adipokine apelin ameliorates chronic colitis in Il-10 -/- mice by promoting intestinal lymphatic functions. Biochem Pharmacol. 2018;148:202–12.

    Article  CAS  PubMed  Google Scholar 

  14. Yin Y, Yang J, Pan Y, et al. Chylomicrons-simulating sustained drug release in mesenteric lymphatics for the treatment of Crohn’s-like colitis. J Crohns Colitis. 2021;15(4):631–46.

    Article  PubMed  Google Scholar 

  15. Le Hiress M, Tu L, Ricard N, et al. Proinflammatory signature of the dysfunctional endothelium in pulmonary hypertension role of the macrophage migration inhibitory factor/CD74 complex. Am J Respir Crit Care Med. 2015;192(8):983–97.

    Article  PubMed  Google Scholar 

  16. Abu El-Asrar AM, Ahmad A, Siddiquei MM, et al. The proinflammatory and proangiogenic macrophage migration inhibitory factor is a potential regulator in proliferative diabetic retinopathy. Front Immunol. 2019;10:2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodor J, Chen SH, Scanlon JP, et al. Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovasc Res. 2022;118(11):2519–34.

    Article  CAS  PubMed  Google Scholar 

  18. Lawrance IC, Fiocchi C, Chakravarti S. Ulcerative colitis and Crohn’s disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet. 2001;10(5):445–56.

    Article  CAS  PubMed  Google Scholar 

  19. Farr L, Ghosh S, Jiang N, et al. CD74 signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing. Cell Mol Gastroenterol Hepatol. 2020;10(1):101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shu W, Wang Y, Li C, et al. Single-cell expression atlas reveals cell heterogeneity in the creeping fat of Crohn’s disease. Inflamm Bowel Dis. 2023;29(6):850–65.

    Article  PubMed  Google Scholar 

  21. Kiernan MG, Calvin Coffey J, Sahebally SM, et al. Systemic molecular mediators of inflammation differentiate between Crohn’s disease and ulcerative colitis, implicating threshold levels of IL-10 and relative ratios of pro-inflammatory cytokines in therapy. J Crohns Colitis. 2020;14(1):118–29.

    Article  PubMed  Google Scholar 

  22. Muñoz L, Albillos A, Nieto M, et al. Mesenteric Th1 polarization and monocyte TNF-alpha production: first steps to systemic inflammation in rats with cirrhosis. Hepatology. 2005;42(2):411–9.

    Article  PubMed  Google Scholar 

  23. Seifarth C, Hering NA, Arndt M, et al. Increased proinflammatory cytokines in mesenteric fat in major surgery and Crohn’s disease. Surgery. 2021;169(6):1328–32.

    Article  PubMed  Google Scholar 

  24. Guberna L, Nyssen OP, Chaparro M, Gisbert JP. Frequency and effectiveness of empirical anti-TNF dose intensification in inflammatory Bowel disease: systematic review with meta-analysis. J Clin Med. 2021;10(10):2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boronat-Toscano A, Monfort-Ferré D, Menacho M, et al. Anti-TNF therapies suppress adipose tissue inflammation in Crohn’s disease. Int J Mol Sci. 2022;23(19):11170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gionchetti P, Dignass A, Danese S, et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s Disease 2016: Part 2: surgical management and special situations. J Crohns Colitis. 2017;11(1):3–25.

    Article  PubMed  Google Scholar 

  27. Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem. 2018;49(1):160–71.

    Article  PubMed  Google Scholar 

  28. Förster C, Silwedel C, Golenhofen N, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol. 2005;565:475–86.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burek M, Arias-Loza PA, Roewer N, Förster CY. Claudin-5 as a novel estrogen target in vascular endothelium. Arterioscler Thromb Vasc Biol. 2010;30(2):298–304.

    Article  CAS  PubMed  Google Scholar 

  30. Mäkinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762–73.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ohta S, Misawa A, Fukaya R, et al. Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. J Cell Sci. 2012;125:3210–20.

    CAS  PubMed  Google Scholar 

  32. Fan C, Rajasekaran D, Syed MA, et al. MIF intersubunit disulfide mutant antagonist supports activation of CD74 by endogenous MIF trimer at physiologic concentrations. Proc Natl Acad Sci U S A. 2013;110(27):10994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi J, Chen Y, Zhao W, et al. Galectin-8 involves in arthritic condylar bone loss via podoplanin/AKT/ERK axis-mediated inflammatory lymphangiogenesis. Osteoarthritis Cartilage. 2023;31(6):753–65.

    Article  CAS  PubMed  Google Scholar 

  34. Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev. 1990;70:987–1028.

    Article  CAS  PubMed  Google Scholar 

  35. Skalak TC, Schmid-Schonbein GW, Zweifach BW. New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc Res. 1984;28:95–112.

    Article  CAS  PubMed  Google Scholar 

  36. Negrini D, Moriondo A. Lymphatic anatomy and biomechanics. J Physiol. 2011;589:2927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakamura K, Rockson SG. Biomarkers of lymphatic function and disease: state of the art and future directions. Mol Diagn Ther. 2007;11:227–38.

    Article  CAS  PubMed  Google Scholar 

  38. von der Weid PY, Zawieja DC. Lymphatic smooth muscle: the motor unit of lymph drainage. Int J Biochem Cell Biol. 2004;36:1147–53.

    Article  PubMed  Google Scholar 

  39. Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 2014;7(1):6–19.

    Article  CAS  PubMed  Google Scholar 

  40. de Bruyn JR, Becker MA, Steenkamer J, et al. Intestinal fibrosis is associated with lack of response to Infliximab therapy in Crohn’s disease. PLoS ONE. 2018;13(1):e0190999.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schmiedlin-Ren P, Reingold LJ, Broxson CS, et al. Anti-TNFα alters the natural history of experimental Crohn’s disease in rats when begun early, but not late, in disease. Am J Physiol Gastrointest Liver Physiol. 2016;311(4):G688–98.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoon SM, Haritunians T, Chhina S, et al. Colonic phenotypes are associated with poorer response to anti-TNF therapies in patients with IBD. Inflamm Bowel Dis. 2017;23(8):1382–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Czepielewski RS, Erlich EC, Onufer EJ, et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity. 2021;54(12):2795-2811.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rivera ED, Coffey JC, Walsh D, Ehrenpreis ED. The mesentery, systemic inflammation, and Crohn’s disease. Inflamm Bowel Dis. 2019;25(2):226–34.

    Article  PubMed  Google Scholar 

  45. Ryan TJ. Lymphatics and adipose tissue. Clin Dermatol. 1995;13(5):493–8.

    Article  CAS  PubMed  Google Scholar 

  46. Rockson SG. Lymphedema. Am J Med. 2001;110:288–95.

    Article  CAS  PubMed  Google Scholar 

  47. Shin WS, Szuba A, Rockson SG. Animal models for the study of lymphatic insufficiency. Lymphat Res Biol. 2003;1(2):159–69.

    Article  PubMed  Google Scholar 

  48. Greenwood C, Metodieva G, Al-Janabi K, et al. Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer. J Proteomics. 2012;75(10):3031–40.

    Article  CAS  PubMed  Google Scholar 

  49. Nagata S, Jin YF, Yoshizato K, et al. CD74 is a novel prognostic factor for patients with pancreatic cancer receiving multimodal therapy. Ann Surg Oncol. 2009;16(9):2531–8.

    Article  PubMed  Google Scholar 

  50. Zhang JF, Hua R, Liu DJ, et al. Effect of CD74 on the prognosis of patients with resectable pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2014;13(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  51. He G, Li W, Zhao W, et al. FMNL2 promotes angiogenesis and metastasis of colorectal cancer by regulating EGFL6/CKAP4/ERK axis. Cancer Sci. 2023;114(5):2014–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mao F, Huang F, Nong W, et al. N-methyl-D-aspartic acid increases tight junction protein destruction in brain endothelial cell via caveolin-1-associated ERK1/2 signaling. Toxicology. 2022;470:153139.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Q, Zheng M, Betancourt CE, et al. Increase in Blood–brain barrier (BBB) permeability is regulated by MMP3 via the ERK signaling pathway. Oxid Med Cell Longev. 2021;2021:6655122.

    PubMed  PubMed Central  Google Scholar 

  54. Clemente TR, Dos Santos AN, Sturaro JN, et al. Infliximab modifies mesenteric adipose tissue alterations and intestinal inflammation in rats with TNBS-induced colitis. Scand J Gastroenterol. 2012;47(8–9):943–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank for the support of the National Natural Science Foundation of China (81970449).

Funding

This work was partly supported by the National Natural Science Foundation of China (Grant 81970449).

Author information

Authors and Affiliations

Authors

Contributions

Xiaolei Wang designed the study and critically revised the whole manuscript. Weigang Shu and Yongheng Wang were involved in the acquisition, analysis and interpretation of data, as well as the drafting of the manuscript and the drawing of all the figures. Chuanding Li, Deji Zhuoma and Chunqiu Chen, Wenjun Ding and Peng Du were involved in the acquisition and analysis of data for the work. All authors agree with the final approval of the version to be published.

Corresponding author

Correspondence to Xiaolei Wang.

Ethics declarations

Conflict of interests

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval and consent to participate

This study was approved by the Institutional Ethics Committee of Shanghai Tenth People's Hospital (SHSY-IEC-4.1/20-152/01).

Consent for publication

Yes.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, W., Wang, Y., Deji, Z. et al. Infliximab modifies CD74-mediated lymphatic abnormalities and adipose tissue alterations in creeping fat of Crohn’s disease. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01889-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01889-2

Keywords

Navigation