Skip to main content
Log in

Integrative analysis of multi-omics data to identify three immune-related genes in the formation and progression of intracranial aneurysms

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The prevalence of intracranial aneurysms (IAs) has increased globally. We performed bioinformatics analysis to identify key biomarkers associated with IA formation.

Methods and results

We conducted a comprehensive analysis combined with multi-omics data and methods to identify immune-related genes (IRGs) and immunocytes involved in IAs. Functional enrichment analyses showed enhanced immune responses and suppressed organizations of extracellular matrix (ECM) during aneurysm progression. xCell analyses showed that the abundance of B cells, macrophages, mast cells, and monocytes significantly increased from levels in control to unruptured aneurysms and to ruptured aneurysms. Of 21 IRGs identified by overlapping, a three-gene (CXCR4, S100B, and OSM) model was constructed through LASSO logistic regression. The diagnostic ability of the three biomarkers in discriminating aneurysms from the control samples demonstrated a favorable diagnostic value. Among the three genes, OSM and CXCR4 were up-regulated and hypomethylated in IAs, while S100B was down-regulated and hypermethylated. The expression of the three IRGs was further validated by qRT-PCR and immunohistochemistry and mouse IA model using scRNA-seq analysis.

Conclusion

The present study demonstrated heightened immune response and suppressed ECM organization in aneurysm formation and rupture. The three-gene immune-related signature (CCR4, S100B, and OSM) model may facilitate IA diagnosis and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

GEO belongs to public databases. The patients involved in the database have obtained ethical approval. Users can download relevant data for free for research and publish relevant articles. The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

References

  1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10:626–36. https://doi.org/10.1016/s1474-4422(11)70109-0.

    Article  PubMed  Google Scholar 

  2. Gabriel RA, Kim H, Sidney S, et al. Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke. 2010;41:21–6. https://doi.org/10.1161/strokeaha.109.566018.

    Article  PubMed  Google Scholar 

  3. Bakker MK, van der Spek RAA, van Rheenen W, et al. Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat Genet. 2020;52:1303–13. https://doi.org/10.1038/s41588-020-00725-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogilvy CS, Gomez-Paz S, Kicielinski KP, et al. Cigarette smoking and risk of intracranial aneurysms in middle-aged women. J Neurol Neurosurg Psychiatry. 2020;91:985–90. https://doi.org/10.1136/jnnp-2020-323753.

    Article  PubMed  Google Scholar 

  5. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet (London, England). 2017;389:655–66. https://doi.org/10.1016/s0140-6736(16)30668-7.

    Article  PubMed  Google Scholar 

  6. Nieuwkamp DJ, Setz LE, Algra A, et al. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–42. https://doi.org/10.1016/s1474-4422(09)70126-7.

    Article  PubMed  Google Scholar 

  7. Thompson BG, Brown RD Jr, Amin-Hanjani S, et al. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke. 2015;46:2368–400. https://doi.org/10.1161/str.0000000000000070.

    Article  PubMed  Google Scholar 

  8. Frösen J, Cebral J, Robertson AM, Aoki T. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus. 2019;47:E21. https://doi.org/10.3171/2019.5.Focus19234.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Can A, Du R. Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery. 2016;78:510–20. https://doi.org/10.1227/neu.0000000000001083.

    Article  PubMed  Google Scholar 

  10. Huang Z, Zeng M, Tao WG, et al. A hemodynamic mechanism correlating with the initiation of MCA bifurcation aneurysms. AJNR Am J Neuroradiol. 2020;41:1217–24. https://doi.org/10.3174/ajnr.A6615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation. 2014;129:373–82. https://doi.org/10.1161/circulationaha.113.001444.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Furukawa H, Wada K, Tada Y, et al. Mast cell promotes the development of intracranial aneurysm rupture. Stroke. 2020;51:3332–9. https://doi.org/10.1161/strokeaha.120.030834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanematsu Y, Kanematsu M, Kurihara C, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42:173–8. https://doi.org/10.1161/strokeaha.110.590976.

    Article  PubMed  Google Scholar 

  14. Tulamo R, Frösen J, Junnikkala S, et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest J Tech Methods Pathol. 2010;90:168–79. https://doi.org/10.1038/labinvest.2009.133.

    Article  CAS  Google Scholar 

  15. Sawyer DM, Pace LA, Pascale CL, et al. Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J Neuroinflammation. 2016;13:185. https://doi.org/10.1186/s12974-016-0654-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pera J, Korostynski M, Krzyszkowski T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke. 2010;41:224–31. https://doi.org/10.1161/strokeaha.109.562009.

    Article  CAS  PubMed  Google Scholar 

  17. Kleinloog R, Verweij BH, van der Vlies P, et al. RNA sequencing analysis of intracranial aneurysm walls reveals involvement of lysosomes and immunoglobulins in rupture. Stroke. 2016;47:1286–93. https://doi.org/10.1161/strokeaha.116.012541.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Song Y, Liu P, et al. Comparative bioinformatics analysis between proteomes of rabbit aneurysm model and human intracranial aneurysm with label-free quantitative proteomics. CNS Neurosci Ther. 2021;27:101–12. https://doi.org/10.1111/cns.13570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shan D, Guo X, Yang G, et al. Integrated transcriptional profiling analysis and immune-related risk model construction for intracranial aneurysm rupture. Front Neurosci. 2021;15:613329. https://doi.org/10.3389/fnins.2021.613329.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhong A, Ding N, Zhou Y, et al. Identification of hub genes associated with the pathogenesis of intracranial aneurysm via integrated bioinformatics analysis. Int J Gen Med. 2021;14:4039–50. https://doi.org/10.2147/ijgm.S320396.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aoki T, Koseki H, Miyata H, et al. RNA sequencing analysis revealed the induction of CCL3 expression in human intracranial aneurysms. Sci Rep. 2019;9:10387. https://doi.org/10.1038/s41598-019-46886-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakaoka H, Tajima A, Yoneyama T, et al. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm. Stroke. 2014;45:2239–45. https://doi.org/10.1161/strokeaha.114.005851.

    Article  CAS  PubMed  Google Scholar 

  23. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220. https://doi.org/10.1186/s13059-017-1349-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95. https://doi.org/10.1016/j.immuni.2013.10.003.

    Article  CAS  PubMed  Google Scholar 

  28. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191. https://doi.org/10.1186/1471-2105-7-191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinform (Oxford, England). 2017;33:3982–4. https://doi.org/10.1093/bioinformatics/btx513.

    Article  CAS  Google Scholar 

  31. Li S, Tao W, Huang Z, et al. The transcriptional landscapes and key genes in brain arteriovenous malformation progression in a venous hypertension rat model revealed by RNA sequencing. J Inflamm Res. 2022;15:1381–97. https://doi.org/10.2147/jir.S347754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. https://doi.org/10.1038/nbt.4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez AN, Tortelote GG, Pascale CL, et al. Single-cell transcriptome analysis of the circle of Willis in a mouse cerebral aneurysm model. Stroke. 2022;53:2647–57. https://doi.org/10.1161/strokeaha.122.038776.

    Article  CAS  PubMed  Google Scholar 

  34. Ruigrok YM, Rinkel GJ, van’t Slot R, et al. Evidence in favor of the contribution of genes involved in the maintenance of the extracellular matrix of the arterial wall to the development of intracranial aneurysms. Hum Mol Genet. 2006;15:3361–8. https://doi.org/10.1093/hmg/ddl412.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Ares WJ, Taussky P, Ducruet AF, Grandhi R. Role of matrix metalloproteinases in the pathogenesis of intracranial Aneurysms. Neurosurg Focus. 2019;47:E4. https://doi.org/10.3171/2019.4.Focus19214.

    Article  PubMed  Google Scholar 

  36. Pope FM, Nicholls AC, Narcisi P, et al. Some patients with cerebral aneurysms are deficient in type III collagen. Lancet (London, England). 1981;1:973–5. https://doi.org/10.1016/s0140-6736(81)91735-9.

    Article  CAS  PubMed  Google Scholar 

  37. Marchese E, Vignati A, Albanese A, et al. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents. 2010;24:185–95.

    CAS  PubMed  Google Scholar 

  38. Shimada K, Furukawa H, Wada K, et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture. Stroke. 2015;46:1664–72. https://doi.org/10.1161/strokeaha.114.007722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitsui K, Ikedo T, Kamio Y, et al. TLR4 (toll-like receptor 4) mediates the development of intracranial aneurysm rupture. Hypertension (Dallas Tex: 1979). 2020;75:468–76. https://doi.org/10.1161/hypertensionaha.118.12595.

    Article  CAS  PubMed  Google Scholar 

  40. Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41. https://doi.org/10.1146/annurev-immunol-020711-074934.

    Article  CAS  PubMed  Google Scholar 

  41. Chyatte D, Bruno G, Desai S, Todor DR. Inflammation and intracranial aneurysms. Neurosurgery. 1999;45:1137–46. https://doi.org/10.1097/00006123-199911000-00024. (discussion 46-7).

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto R, Aoki T, Koseki H, et al. A sphingosine-1-phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. Br J Pharmacol. 2017;174:2085–101. https://doi.org/10.1111/bph.13820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ikedo T, Minami M, Kataoka H, et al. Dipeptidyl peptidase-4 inhibitor anagliptin prevents intracranial aneurysm growth by suppressing macrophage infiltration and activation. J Am Heart Assoc. 2017. https://doi.org/10.1161/jaha.116.004777.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Yang D, Liu B, et al. Identification and validation of key genes mediating intracranial aneurysm rupture by weighted correlation network analysis. Ann Trans Med. 2020;8:1407. https://doi.org/10.21037/atm-20-4083.

    Article  CAS  Google Scholar 

  45. Hoh BL, Hosaka K, Downes DP, et al. Stromal cell-derived factor-1 promoted angiogenesis and inflammatory cell infiltration in aneurysm walls. J Neurosurg. 2014;120:73–86. https://doi.org/10.3171/2013.9.Jns122074.

    Article  CAS  PubMed  Google Scholar 

  46. Li ZF, Fang XG, Zhao R, et al. Stromal cell-derived factor 1α facilitates aneurysm remodeling in elastase-induced rabbit saccular aneurysm. Cytokine. 2018;102:123–30. https://doi.org/10.1016/j.cyto.2017.07.020.

    Article  CAS  PubMed  Google Scholar 

  47. Chen YH, Cheng ZY, Shao LH, Shentu HS, Fu B. Macrophage migration inhibitory factor as a serum prognostic marker in patients with aneurysmal subarachnoid hemorrhage. Clin Chimica Acta Int J Clin Chem. 2017;473:60–4. https://doi.org/10.1016/j.cca.2017.08.018.

    Article  CAS  Google Scholar 

  48. Sanchez-Peña P, Pereira AR, Sourour NA, et al. S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit Care Med. 2008;36:2267–73. https://doi.org/10.1097/CCM.0b013e3181809750.

    Article  CAS  PubMed  Google Scholar 

  49. Balança B, Ritzenthaler T, Gobert F, et al. Significance and Diagnostic Accuracy of Early S100B Serum Concentration after Aneurysmal Subarachnoid Hemorrhage. J Clin Med. 2020. https://doi.org/10.3390/jcm9061746.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Murakami K, Koide M, Dumont TM, et al. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res. 2011;2:72–9. https://doi.org/10.1007/s12975-010-0052-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wahl AF, Wallace PM. Oncostatin M in the anti-inflammatory response. Ann Rheum Dis. 2001;60(Suppl 3):iii75-80. https://doi.org/10.1136/ard.60.90003.iii75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge GEO databases for providing their platforms and contributors for uploading their meaningful datasets.

Funding

This study did not receive any funding or financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SL and QZ; methodology, SL; software, SL; validation, SL; formal analysis, SL; investigation, SL; writing—original draft preparation, SL; writing—review and editing, QZ; visualization, ZH; supervision, FC; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Fenghua Chen.

Ethics declarations

Conflict of interest

The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices described in this article.

Ethical approval and consent to participate

Written informed consent was obtained from each participants and this study was approved by the Institutional Review Board of Xiangya Hospital (202103613).

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3468 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, Q., Huang, Z. et al. Integrative analysis of multi-omics data to identify three immune-related genes in the formation and progression of intracranial aneurysms. Inflamm. Res. 72, 1001–1019 (2023). https://doi.org/10.1007/s00011-023-01725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01725-z

Keywords

Navigation