Skip to main content

Advertisement

Log in

Activating α7nAChR helps post-myocardial infarction healing by regulating macrophage polarization via the STAT3 signaling pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Monocytes/macrophages play critical roles in inflammation and cardiac remodeling following myocardial infarction (MI). The cholinergic anti-inflammatory pathway (CAP) modulates local and systemic inflammatory responses by activating α7 nicotinic acetylcholine receptors (α7nAChR) in monocytes/macrophages. We investigated the effect of α7nAChR on MI-induced monocyte/macrophage recruitment and polarization and its contribution to cardiac remodeling and dysfunction.

Methods

Adult male Sprague Dawley rats underwent coronary ligation and were intraperitoneally injected with the α7nAChR-selective agonist PNU282987 or the antagonist methyllycaconitine (MLA). RAW264.7 cells were stimulated with lipopolysaccharide (LPS) + interferon-gamma (IFN-γ) and treated with PNU282987, MLA, and S3I-201 (a STAT3 inhibitor). Cardiac function was evaluated by echocardiography. Masson’s trichrome and immunofluorescence were used to detect cardiac fibrosis, myocardial capillary density, and M1/M2 macrophages. Western blotting was used to detect protein expression, and the proportion of monocytes was measured using flow cytometry.

Results

Activating the CAP with PNU282987 significantly improved cardiac function and reduced cardiac fibrosis and 28-day mortality after MI. On days 3 and 7 post-MI, PNU282987 reduced the percentage of peripheral CD172a + CD43low monocytes and the infiltration of M1 macrophages in the infarcted hearts, whereas it increased the recruitment of peripheral CD172a + CD43high monocytes and M2 macrophages. Conversely, MLA exerted the opposite effects. In vitro, PNU282987 inhibited M1 macrophage polarization and promoted M2 macrophage polarization in LPS + IFN-γ-stimulated RAW264.7 cells. These PNU282987-induced changes in LPS + IFN-γ-stimulated RAW264.7 cells were reversed by administering S3I-201.

Conclusion

Activating α7nAChR inhibits the early recruitment of pro-inflammatory monocytes/macrophages during MI and improves cardiac function and remodeling. Our findings suggest a promising therapeutic target for regulating monocyte/macrophage phenotypes and promoting healing after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reyes-Retana JA, Duque-Ossa LC. Acute myocardial infarction biosensor: a review from bottom up. Curr Probl Cardiol. 2021;46(3): 100739.

    Article  CAS  PubMed  Google Scholar 

  2. Saleh M, Ambrose JA. Understanding myocardial infarction. F1000Res. 2018;7.

  3. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loi H, Kramar S, Laborde C, Marsal D, Pizzinat N, Cussac D, et al. Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. Int J Mol Sci. 2021;22 (17).

  6. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA, Chousterman BG, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114(10):1611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9.

    Article  CAS  PubMed  Google Scholar 

  11. Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102(2):240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, et al. Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci. 2017;24(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107(8):1189–94.

    Article  PubMed  Google Scholar 

  15. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, et al. Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension. 2011;57(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  17. Wu SJ, Li YC, Shi ZW, Lin ZH, Rao ZH, Tai SC, et al. Alteration of cholinergic anti-inflammatory pathway in rat with ischemic cardiomyopathy-modified electrophysiological function of heart. J Am Heart Assoc. 2017;6 (9).

  18. Li-Sha G, Xing-Xing C, Lian-Pin W, De-Pu Z, Xiao-Wei L, Jia-Feng L, et al. Right cervical vagotomy aggravates viral myocarditis in mice via the cholinergic anti-inflammatory pathway. Front Pharmacol. 2017;8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol. 2013;108(3):345.

    Article  PubMed  Google Scholar 

  20. Fang J, Wang J, Chen F, Xu Y, Zhang H, Wang Y. alpha7nAChR deletion aggravates myocardial Infarction and enhances systemic inflammatory reaction via mTOR-signaling-related autophagy. Inflammation. 2019;42(4):1190–202.

    Article  CAS  PubMed  Google Scholar 

  21. Yang H, Liu S, Du H, Hong Z, Lv Y, Nie C, et al. Hydrogen attenuates myocardial injury in rats by regulating oxidative stress and nlrp3 inflammasome mediated pyroptosis. Int J Med Sci. 2021;18(14):3318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li HJ, Sun ZL, Pan YB, Xu MH, Feng DF. Effect of alpha7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury. Exp Cell Res. 2019;383(2): 111546.

    Article  CAS  PubMed  Google Scholar 

  23. Carlos DH, Bibiana Roselly CR, Angel UL, Laura MA, Kenya Karina SR, Jose Manuel CB, et al. Cognitive improvements in a rat model with polyunsaturated fatty acids EPA and DHA through alpha7-nicotinic acetylcholine receptors. Nutr Neurosci. 2022;25(4):791–800.

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of nicotinic acetylcholine alpha7 receptor attenuates progression of monocrotaline-induced pulmonary hypertension in rats by downregulating the NLRP3 inflammasome. Front Pharmacol. 2019;10:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Sillje HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301(2):H459–68.

    Article  CAS  PubMed  Google Scholar 

  26. Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121(5):684–91.

    Article  CAS  PubMed  Google Scholar 

  27. Feuerborn R, Becker S, Poti F, Nagel P, Brodde M, Schmidt H, et al. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. Atherosclerosis. 2017;257:29–37.

    Article  CAS  PubMed  Google Scholar 

  28. Gao S, Mao F, Zhang B, Zhang L, Zhang X, Wang M, et al. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-kappaB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood). 2014;239(3):366–75.

    Article  PubMed  Google Scholar 

  29. Guo Q, Zhu X, Wei R, Zhao L, Zhang Z, Yin X, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol. 2021;236(3):2008–22.

    Article  CAS  PubMed  Google Scholar 

  30. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation. 2001;104(11):1286–91.

    Article  CAS  PubMed  Google Scholar 

  31. Potus F, Ruffenach G, Dahou A, Thebault C, Breuils-Bonnet S, Tremblay E, et al. Downregulation of microrna-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation. 2015;132(10):932–43.

    Article  CAS  PubMed  Google Scholar 

  32. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.

    Article  CAS  PubMed  Google Scholar 

  33. Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, et al. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci U S A. 2003;100(22):12929–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giuliani C, Napolitano G, Bucci I, Montani V, Monaco F. Nf-kB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications. Clin Ter. 2001;152(4):249–53.

    CAS  PubMed  Google Scholar 

  35. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.

    Article  PubMed  Google Scholar 

  36. Joe Y, Kim HJ, Kim S, Chung J, Ko MS, Lee WH, et al. Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages. J Biol Chem. 2011;286(28):24735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Espeland T, Lunde IG, B HA, Gullestad L, Aakhus S. Myocardial fibrosis. Tidsskr Nor Laegeforen. 2018;138 (16).

  38. Czubryt MP, Hale TM. Cardiac fibrosis: Pathobiology and therapeutic targets. Cell Signal. 2021;85: 110066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang W, Wang L, Lu Z, Wang B, Li Y, Yang J, et al. Discovery of natural compounds for cardiac fibrosis by a transcriptome-based functional gene module reference approach. J Nat Prod. 2020;83(10):2923–30.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Sun H, Li K, Shang L, Liang X, Yang H, et al. Cholinergic elicitation prevents ventricular remodeling via alleviations of myocardial mitochondrial injury linked to inflammation in ischemia-induced chronic heart failure rats. Mediators Inflamm. 2021;2021:4504431.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Akiyama T, et al. Impact of peripheral alpha7-nicotinic acetylcholine receptors on cardioprotective effects of donepezil in chronic heart failure rats. Cardiovasc Drugs Ther. 2021;35(5):877–88.

    Article  CAS  PubMed  Google Scholar 

  42. Yang YH, Fang HL, Zhao M, Wei XL, Zhang N, Wang S, et al. Specific alpha7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF-beta1/Smad3 pathway. Clin Exp Pharmacol Physiol. 2017;44(12):1192–200.

    Article  CAS  PubMed  Google Scholar 

  43. Frangogiannis NG, Michael LH, Entman ML. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res. 2000;48(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  44. Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair. 2013;6(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn. 2010;239(6):1573–84.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Niu XH, Yin X, Liu YJ, Han C, Yang J, et al. Elevated circulating fibrocytes is a marker of left atrial fibrosis and recurrence of persistent atrial fibrillation. J Am Heart Assoc. 2018;7 (6).

  47. Rodness J, Mihic A, Miyagi Y, Wu J, Weisel RD, Li RK. VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomater. 2016;45:169–81.

    Article  CAS  PubMed  Google Scholar 

  48. Kakinuma Y, Furihata M, Akiyama T, Arikawa M, Handa T, Katare RG, et al. Donepezil, an acetylcholinesterase inhibitor against Alzheimer’s dementia, promotes angiogenesis in an ischemic hindlimb model. J Mol Cell Cardiol. 2010;48(4):680–93.

    Article  CAS  PubMed  Google Scholar 

  49. Han Z, Li L, Wang L, Degos V, Maze M, Su H. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture. J Neurochem. 2014;131(4):498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li XW, Wang H. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sci. 2006;78(16):1863–70.

    Article  CAS  PubMed  Google Scholar 

  51. Youssef ME, El-Mas MM, Abdelrazek HM, El-Azab MF. alpha7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur J Pharmacol. 2021;898: 173996.

    Article  CAS  PubMed  Google Scholar 

  52. Yu JG, Song SW, Shu H, Fan SJ, Liu AJ, Liu C, et al. Baroreflex deficiency hampers angiogenesis after myocardial infarction via acetylcholine-alpha7-nicotinic ACh receptor in rats. Eur Heart J. 2013;34(30):2412–20.

    Article  CAS  PubMed  Google Scholar 

  53. Giannopoulou C, Geinoz A, Cimasoni G. Effects of nicotine on periodontal ligament fibroblasts in vitro. J Clin Periodontol. 1999;26(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  54. Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of alpha7 nicotinic acetylcholine receptor by PHA-543613 improves Abeta25-35-mediated cognitive deficits in mice. Neuroscience. 2015;298:81–93.

    Article  CAS  PubMed  Google Scholar 

  55. Skinovsky J, Malafaia O, Chibata M, Tsumanuma F, Panegalli FF, Martins MV. The influence of nicotine in healing of small bowel anastomoses in rats: angiogenesis and miofibroblasts. Rev Col Bras Cir. 2016;43(2):87–92.

    Article  PubMed  Google Scholar 

  56. Tipton DA, Dabbous MK. Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro. J Periodontol. 1995;66(12):1056–64.

    Article  CAS  PubMed  Google Scholar 

  57. Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, et al. Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure—activity relationship. J Med Chem. 2006;49(14):4425–36.

    Article  CAS  PubMed  Google Scholar 

  58. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res. 2018;191:15–28.

    Article  PubMed  Google Scholar 

  60. ter Horst EN, Hakimzadeh N, van der Laan AM, Krijnen PA, Niessen HW, Piek JJ. Modulators of macrophage polarization influence healing of the infarcted myocardium. Int J Mol Sci. 2015;16(12):29583–91.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bencherif M, Lippiello PM, Lucas R, Marrero MB. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci. 2011;68(6):931–49.

    Article  CAS  PubMed  Google Scholar 

  62. Kiss A, Tratsiakovich Y, Mahdi A, Yang J, Gonon AT, Podesser BK, et al. Vagal nerve stimulation reduces infarct size via a mechanism involving the alpha-7 nicotinic acetylcholine receptor and downregulation of cardiac and vascular arginase. Acta Physiol (Oxf). 2017;221(3):174–81.

    Article  CAS  PubMed  Google Scholar 

  63. Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020;116(6):1101–12.

    Article  CAS  PubMed  Google Scholar 

  64. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res. 2014;115(2):284–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baez-Pagan CA, Delgado-Velez M, Lasalde-Dominicci JA. Activation of the macrophage alpha7 nicotinic acetylcholine receptor and control of inflammation. J Neuroimmune Pharmacol. 2015;10(3):468–76.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu J, Jiao ZY, Zhang Z, Tang ZH, Zhang HH, Lu HL, et al. Cross-talk between alpha7 nAChR-mediated cholinergic pathway and acylation stimulating protein signaling in 3T3-L1 adipocytes: role of NFkappaB and STAT3. Biochem Cell Biol. 2015;93(4):335–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No.82070333), the Zhejiang Provincial Natural Science Foundation of China (No.LY21H020011), and the Wenzhou Science and Technology Bureau Major Scientific Research Project (No.ZY2020018).

Author information

Authors and Affiliations

Authors

Contributions

JL and LL designed the research, wrote the paper; XN and RL conducted animal experiments; XL, RH and XL conducted cell experiments; SW and FL analyzed the data and contributed to revise the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Li or Jia-Feng Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Mauro Teixeira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, XH., Liu, RH., Lv, X. et al. Activating α7nAChR helps post-myocardial infarction healing by regulating macrophage polarization via the STAT3 signaling pathway. Inflamm. Res. 72, 879–892 (2023). https://doi.org/10.1007/s00011-023-01714-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01714-2

Keywords

Navigation