Skip to main content

Advertisement

Log in

The star target in SLE: IL-17

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this review is to discuss the significance of IL-17 in SLE and the potential of IL-17-targeted therapy.

Background

Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs and tissues throughout the body. It is characterized by overactive B and T cells and loss of immune tolerance to autoantigens. Interleukin-17 (IL-17) is a cytokine that promotes inflammation and has been implicated in the pathogenesis of several autoimmune diseases as well as inflammatory diseases. In in vitro cellular experiments in lupus susceptible mice or SLE patients, there is substantial evidence that IL-17 is a highly promising therapeutic target.

Methods

We searched papers from PubMed database using the search terms, such as interleukin-17, systemic lupus erythematosus, treatment targets, T cells, lupus nephritis, and other relevant terms.

Results

We discuss in this paper the molecular mechanisms of IL-17 expression, Th17 cell proliferation, and the relationship between IL-17 and Th17. The significance of IL-17 in SLE and the potential of IL-17-targeted therapy are further discussed in detail.

Conclusion

IL-17 has a very high potential for the development as a star target in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020;172:ITC1–96.

    Article  Google Scholar 

  2. Lim SS, Helmick CG, Bao G, Hootman J, Bayakly R, Gordon C, et al. Racial disparities in mortality associated with systemic lupus erythematosus—Fulton and DeKalb Counties, Georgia, 2002–2016. MMWR Morb Mortal Wkly Rep. 2019;68:419–22.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT. Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis. 2020;80:14–25.

    Article  PubMed  Google Scholar 

  4. Sánchez ARP, Voskuyl AE, van Vollenhoven RF. Treat-to-target in systemic lupus erythematosus: advancing towards its implementation. Nat Rev Rheumatol. 2022;18:146–57.

    Article  Google Scholar 

  5. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  7. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763–76.

    Article  CAS  PubMed  Google Scholar 

  8. Burkett PR, Horste GMzu, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Investig. 2015;125:2211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Amarilyo G, Lourenço EV, Shi F-D, Cava AL. IL-17 Promotes Murine Lupus. J Immunol. 2014;193:540–3.

    Article  CAS  PubMed  Google Scholar 

  10. Crispín JC, Oukka M, Bayliss G, Cohen RA, Beek CAV, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181:8761–6.

    Article  PubMed  Google Scholar 

  11. Yao Z, Fanslow WC, Seldin MF, Rousseau A-M, Painter SL, Comeau MR, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995;3:811–21.

    Article  CAS  PubMed  Google Scholar 

  12. Pavelka K, Kivitz A, Dokoupilova E, Blanco R, Maradiaga M, Tahir H, et al. Efficacy, safety, and tolerability of secukinumab in patients with active ankylosing spondylitis: a randomized, double-blind phase 3 study, MEASURE 3. Arthritis Res Ther. 2017;19:285.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373:2534–48.

    Article  CAS  PubMed  Google Scholar 

  14. McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, Rahman P, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2015;386:1137–46.

    Article  CAS  Google Scholar 

  15. Mease PJ, Genovese MC, Greenwald MW, Ritchlin CT, Beaulieu AD, Deodhar A, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370:2295–306.

    Article  PubMed  Google Scholar 

  16. Warren RB, Blauvelt A, Bagel J, Papp KA, Yamauchi P, Armstrong A, et al. Bimekizumab versus adalimumab in plaque psoriasis. N Engl J Med. 2021;385:130–41.

    Article  CAS  PubMed  Google Scholar 

  17. Reich K, Warren RB, Lebwohl M, Gooderham M, Strober B, Langley RG, et al. Bimekizumab versus secukinumab in plaque psoriasis. N Engl J Med. 2021;385:142–52.

    Article  CAS  PubMed  Google Scholar 

  18. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371:326–38.

    Article  PubMed  Google Scholar 

  19. Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM. Blocking IL-17: a promising strategy in the treatment of systemic rheumatic diseases. Int J Mol Sci. 2020;21:7100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jakiela B, Kosałka J, Plutecka H, Bazan-Socha S, Sanak M, Musiał J. Facilitated expansion of Th17 cells in lupus nephritis patients. Clin Exp Immunol. 2018;194:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun. 2018;87:1–15.

    Article  CAS  PubMed  Google Scholar 

  22. Koga T, Ichinose K, Tsokos GC. T cells and IL-17 in lupus nephritis. Clin Immunol. 2017;185:95–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1472–83.

    Article  PubMed  Google Scholar 

  24. Dedong H, Feiyan Z, Jie S, Xiaowei L, Shaoyang W. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunol Lett. 2019;210:33–9.

    Article  PubMed  Google Scholar 

  25. Chen XQ, Yu YC, Deng HH, Sun JZ, Dai Z, Wu YW, et al. Plasma IL-17A is increased in new-onset SLE patients and associated with disease activity. J Clin Immunol. 2010;30:221–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wong CK, Lit LCW, Tam LS, Li EKM, Wong PTY, Lam CWK. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: Implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008;127:385–93.

    Article  CAS  PubMed  Google Scholar 

  27. Rouvier E, Luciani M, Mattei M, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and ho. J Immunol. 1993;150:5445–56.

    Article  CAS  PubMed  Google Scholar 

  28. Yao Z, Painter S, Fanslow W, Ulrich D, Macduff B, Spriggs M, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol. 1995;155:5483–6.

    Article  CAS  PubMed  Google Scholar 

  29. Korenaga H, Kono T, Sakai M. Isolation of seven IL-17 family genes from the Japanese pufferfish Takifugu rubripes. Fish Shellfish Immunol. 2010;28:809–18.

    Article  CAS  PubMed  Google Scholar 

  30. Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med. 2016;22:230–41.

    Article  CAS  PubMed  Google Scholar 

  31. Robert M, Miossec P. IL-17 in Rheumatoid arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Front Med. 2019;5.

  32. Novatchkova M, Leibbrandt A, Werzowa J, Neubüser A, Eisenhaber F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem Sci. 2003;28:226–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sønder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U. IL-17-induced NF-κB Activation via CIKS/Act1. J Biol Chem. 2011;286:12881–90.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-wit D, et al. The adaptor Act1 is required for interleukin 17–dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol. 2007;8:247–56.

    Article  CAS  PubMed  Google Scholar 

  35. Liu C, Swaidani S, Qian W, Kang Z, Sun P, Han Y, et al. A CC′ loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17– and IL-25–induced inflammation. Sci Signal. 2011;4:ra72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qian Y, Qin J, Cui G, Naramura M, Snow EC, Ware CF, et al. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity. 2004;21:575–87.

    Article  CAS  PubMed  Google Scholar 

  37. Chang SH, Park H, Dong C. Act1 Adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem. 2006;281:35603–7.

    Article  CAS  PubMed  Google Scholar 

  38. Maitra A, Shen F, Hanel W, Mossman K, Tocker J, Swart D, et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc Natl Acad Sci. 2007;104:7506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sønder SU, Paun A, Ha H-L, Johnson PF, Siebenlist U. CIKS/Act1-mediated signaling by IL-17 cytokines in context: implications for how a CIKS gene variant may predispose to psoriasis. J Immunol. 2012;188:5906–14.

    Article  PubMed  Google Scholar 

  40. Li J, Vinh DC, Casanova J-L, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy intdiduals. Curr Opin Microbiol. 2017;40:46–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conti HR, Gaffen SL. IL-17–mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol. 2015;195:780–8.

    Article  CAS  PubMed  Google Scholar 

  42. Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, Swaidani S, et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal. 2009;2:ra63.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schwandner R, Yamaguchi K, Cao Z. Requirement of tumor necrosis factor receptor-associated factor (Traf)6 in interleukin 17 signal transduction. J Exp Med. 2000;191:1233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tohyama M, Shirakata Y, Hanakawa Y, Dai X, Shiraishi K, Murakami M, et al. Bcl-3 induced by IL-22 via STAT3 activation acts as a potentiator of psoriasis-related gene expression in epidermal keratinocytes. Eur J Immunol. 2017;48:168–79.

    Article  PubMed  Google Scholar 

  45. Ruddy MJ, Wong GC, Liu XK, Yamamoto H, Kasayama S, Kirkwood KL, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α Is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem. 2004;279:2559–67.

    Article  CAS  PubMed  Google Scholar 

  46. Karlsen JR, Borregaard N, Cowland JB. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-α Is controlled by IκB-ζ but neither by C/EBP-β nor C/EBP-δ. J Biol Chem. 2010;285:14088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  48. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  49. Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature. 2010;467:967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  51. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13:668–77.

    Article  CAS  PubMed  Google Scholar 

  52. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    Article  CAS  PubMed  Google Scholar 

  53. Marks BR, Nowyhed HN, Choi J-Y, Poholek AC, Odegard JM, Flavell RA, et al. Thymic self-reactivity selects natural interleukin 17–producing T cells that can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Conti HR, Peterson AC, Brane L, Huppler AR, Hernández-Santos N, Whibley N, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J Exp Med. 2014;211:2075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miyazaki Y, Hamano S, Wang S, Shimanoe Y, Iwakura Y, Yoshida H. IL-17 Is necessary for host protection against acute-phase trypanosoma cruziinfection. J Immunol. 2010;185:1150–7.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka S, Yoshimoto T, Naka T, Nakae S, Iwakura Y, Cua D, et al. Natural occurring IL-17 producing T cells regulate the initial phase of neutrophil mediated airway responses. J Immunol. 2009;183:7523–30.

    Article  CAS  PubMed  Google Scholar 

  57. Papotto PH, Ribot JC, Silva-Santos B. IL-17+ γδ T cells as kick-starters of inflammation. Nat Immunol. 2017;18:604–11.

    Article  CAS  PubMed  Google Scholar 

  58. An JN, Ryu S, Kim YC, Yoo KD, Lee J, Kim HY, et al. NK1.1− natural killer T cells upregulate interleukin-17 expression in experimental lupus nephritis. Am J Physiol-Renal Physiol. 2021;320:772–88.

    Article  Google Scholar 

  59. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2022;5:1–17.

    Google Scholar 

  61. Li H, Adamopoulos IE, Moulton VR, Stillman IE, Herbert Z, Moon JJ, et al. Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nat Commun. 2020;11:2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim V, Lee K, Tian H, Jang SH, Diamond B, Kim SJ. IL-17–producing follicular Th cells enhance plasma cell differentiation in lupus-prone mice. JCI Insight. 2022;7:e157332.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: Regulation and function in innate immunity. Cytokine Growth Factor Rev. 2010;21:413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, Caňete JD, et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 2011;64:99–109.

    Article  Google Scholar 

  65. Zhang Z, Kyttaris VC, Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol. 2009;183:3160–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lee S, Lee SH, Seo H-B, Ryu J-G, Jung K, Choi JW, et al. Inhibition of IL-17 ameliorates systemic lupus erythematosus in Roquinsan/san mice through regulating the balance of TFH cells, GC B cells. Treg and Breg Sci Rep. 2019;9:5227.

    Article  PubMed  Google Scholar 

  67. Saber NZ, Maroof SH, Soliman DA, Fathi MS. Expression of T helper 17 cells and interleukin 17 in lupus nephritis patients. Egypt Rheumatol. 2017;39:151–7.

    Article  Google Scholar 

  68. López P, Rodríguez-Carrio J, Caminal-Montero L, Mozo L, Suárez A. A pathogenic IFNα, BLyS and IL-17 axis in systemic lupus erythematosus patients. Sci Rep. 2016;6:20651.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Henriques A, Inês L, Couto M, Pedreiro S, Santos C, Magalhães M, et al. Frequency and functional activity of Th17, Tc17 and other T-cell subsets in systemic lupus erythematosus. Cell Immunol. 2010;264:97–103.

    Article  CAS  PubMed  Google Scholar 

  70. Galil SMA, Ezzeldin N, El-Boshy ME. The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. Cytokine. 2015;76:280–7.

    Article  PubMed  Google Scholar 

  71. Sippl N, Faustini F, Rönnelid J, Turcinov S, Chemin K, Gunnarsson I, et al. Arthritis in systemic lupus erythematosus is characterized by local IL-17A and IL-6 expression in synovial fluid. Clin Exp Immunol. 2021;205:44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther. 2013;15:R97.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nordin F, Shaharir SS, Wahab AA, Mustafar R, Gafor AHA, Said MSM, et al. Serum and urine interleukin-17A levels as biomarkers of disease activity in systemic lupus erythematosus. Int J Rheum Dis. 2019;22:1419–26.

    CAS  PubMed  Google Scholar 

  74. Zhao X-F, Pan H-F, Yuan H, Zhang W-H, Li X-P, Wang G-H, et al. Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep. 2009;37:81–5.

    Article  PubMed  Google Scholar 

  75. Mok MY, Wu HJ, Lo Y, Lau CS. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol. 2010;37:2046–52.

    Article  PubMed  Google Scholar 

  76. Schmidt T, Paust H, Krebs CF, Turner J, Kaffke A, Bennstein SB, et al. Function of the Th17/Interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 2015;67:475–87.

    Article  CAS  PubMed  Google Scholar 

  77. Yin R, Xu R, Ding L, Sui W, Niu M, Wang M, et al. Circulating IL-17 level is positively associated with disease activity in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Biomed Res Int. 2021;2021:1–12.

    Google Scholar 

  78. Lan Y, Luo B, Wang J-L, Jiang Y-W, Wei Y-S. The association of interleukin-21 polymorphisms with interleukin-21 serum levels and risk of systemic lupus erythematosus. Gene. 2014;538:94–8.

    Article  CAS  PubMed  Google Scholar 

  79. Wang L, Zhao P, Ma L, Shan Y, Jiang Z, Wang J, et al. Increased interleukin 21 and follicular helper T-like cells and reduced interleukin 10+ B cells in patients with new-onset systemic lupus erythematosus. J Rheumatol. 2014;41:1781–92.

    Article  CAS  PubMed  Google Scholar 

  80. Shi Q, Yin Z, Zhao B, Sun F, Yu H, Yin X, et al. PGE2 elevates IL-23 production in human dendritic cells via a cAMP dependent pathway. Mediators Inflamm. 2015;2015:1–7.

    Google Scholar 

  81. Macho-Fernandez E, Koroleva EP, Spencer CM, Tighe M, Torrado E, Cooper AM, et al. Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells. Mucosal Immunol. 2014;8:403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Krause P, Morris V, Greenbaum JA, Park Y, Bjoerheden U, Mikulski Z, et al. IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nat Commun. 2015;6:7055.

    Article  CAS  PubMed  Google Scholar 

  83. Guerra ES, Lee CK, Specht CA, Yadav B, Huang H, Akalin A, et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 2017;13: e1006175.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Garg A, Rawat P, Spector SA. Interleukin 23 produced by myeloid dendritic cells contributes to T-cell dysfunction in HIV type 1 infection by inducing SOCS1 expression. J Infect Dis. 2014;211:755–68.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tang C, Chen S, Qian H, Huang W. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology. 2012;135:112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sherlock JP, Taylor PC, Buckley CD. The biology of IL-23 and IL-17 and their therapeutic targeting in rheumatic diseases. Curr Opin Rheumatol. 2015;27:71–5.

    Article  CAS  PubMed  Google Scholar 

  87. Astry B, Venkatesha SH, Moudgil KD. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine. 2015;74:54–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Teng MWL, Bowman EP, McElwee JJ, Smyth MJ, Casanova J-L, Cooper AM, et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015;21:719–29.

    Article  CAS  PubMed  Google Scholar 

  89. Lubberts E. Erratum: The IL-23–IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11:562–562.

    Article  PubMed  Google Scholar 

  90. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A Genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, Mckenzie B, et al. IL-23 is essential for T cell–mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Investig. 2006;116:1310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kyttaris VC, Kampagianni O, Tsokos GC. Treatment with anti-interleukin 23 antibody ameliorates disease in lupus-prone mice. Biomed Res Int. 2013;2013:1–5.

    Article  Google Scholar 

  95. Kyttaris VC, Zhang Z, Kuchroo VK, Oukka M, Tsokos GC. Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6–lpr/lpr mice. J Immunol. 2010;184:4605–9.

    Article  CAS  PubMed  Google Scholar 

  96. Izati AF, Shukri NDM, Ghazali WSW, Hussin CMC, Wong KK. Increased IL-23R+ Th cells population exhibits higher SLEDAI-2K scores in systemic lupus erythematosus patients. Front Immunol. 2021;12:690908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Du J, Li Z, Shi J, Bi L. Associations between serum interleukin-23 levels and clinical characteristics in patients with systemic lupus erythematosus. J Int Med Res. 2014;42:1123–30.

    Article  PubMed  Google Scholar 

  98. Vukelic M, Laloo A, Kyttaris VC. Interleukin 23 is elevated in the serum of patients with SLE. Lupus. 2020;29:1943–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cesaroni M, Seridi L, Loza MJ, Schreiter J, Sweet K, Franks C, et al. Suppression of serum interferon-γ levels as a potential measure of response to ustekinumab treatment in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2021;73:472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paradowska-Gorycka A, Wajda A, Stypinska B, Walczuk E, Rzeszotarska E, Walczyk M, et al. Variety of endosomal TLRs and Interferons (IFN-α, IFN-β, IFN-γ) expression profiles in patients with SLE, SSc and MCTD. Clin Exp Immunol. 2021;204:49–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martin JC, Baeten DL, Josien R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol. 2014;154:1–12.

    Article  CAS  PubMed  Google Scholar 

  102. Kolios AGA, Tsokos GC, Klatzmann D. Interleukin-2 and regulatory T cells in rheumatic diseases. Nat Rev Rheumatol. 2021;17:749–66.

    Article  CAS  PubMed  Google Scholar 

  103. Kyttaris VC, Tsokos GC. Targeting lymphocyte signaling pathways as a therapeutic approach to systemic lupus erythematosus. Curr Opin Rheumatol. 2011;23:449–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Melderis S, Warkotsch MT, Dang J, Hagenstein J, Ehnold L-I, Herrnstadt GR, et al. The Amphiregulin/EGFR axis protects from lupus nephritis via downregulation of pathogenic CD4+ T helper cell responses. J Autoimmun. 2022;129: 102829.

    Article  CAS  PubMed  Google Scholar 

  105. Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S. Dysfunctional CD4+, CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-α–producing antigen-presenting cells. Arthritis Rheum. 2008;58:801–12.

    Article  CAS  PubMed  Google Scholar 

  106. Barath S, Aleksza M, Tarr T, Sipka S, Szegedi G, Kiss E. Measurement of natural (CD4+CD25high) and inducible (CD4+IL-10+) regulatory T cells in patients with systemic lupus erythematosus. Lupus. 2007;16:489–96.

    Article  CAS  PubMed  Google Scholar 

  107. Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol. 2007;178:2579–88.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao C, Chu Y, Liang Z, Zhang B, Wang X, Jing X, et al. Low dose of IL-2 combined with rapamycin restores and maintains the long-term balance of Th17/Treg cells in refractory SLE patients. BMC Immunol. 2019;20:32.

    Article  PubMed  PubMed Central  Google Scholar 

  109. He J, Zhang R, Shao M, Zhao X, Miao M, Chen J, et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2019;79:141–9.

    Article  PubMed  Google Scholar 

  110. Yang X-P, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–81.

    Article  CAS  PubMed  Google Scholar 

  112. Koga T, Ichinose K, Mizui M, Crispín JC, Tsokos GC. Calcium/calmodulin-dependent protein kinase IV suppresses IL-2 production and regulatory T cell activity in lupus. J Immunol. 2012;189:3490–6.

    Article  CAS  PubMed  Google Scholar 

  113. Humrich JY, Morbach H, Undeutsch R, Enghard P, Rosenberger S, Weigert O, et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci. 2009;107:204–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lieberman LA, Tsokos GC. The IL-2 defect in systemic lupus erythematosus disease has an expansive effect on host immunity. J Biomed Biotechnol. 2010;2010:1–6.

    Article  Google Scholar 

  115. Gómez-Martín D, Díaz-Zamudio M, Crispín JC, Alcocer-Varela J. Interleukin 2 and systemic lupus erythematosus. Autoimmun Rev. 2009;9:34–9.

    Article  PubMed  Google Scholar 

  116. Tenbrock K, Juang Y-T, Tolnay M, Tsokos GC. The cyclic adenosine 5′-monophosphate response element modulator suppresses IL-2 production in stimulated T cells by a chromatin-dependent mechanism. J Immunol. 2003;170:2971–6.

    Article  CAS  PubMed  Google Scholar 

  117. Solomou EE, Juang Y-T, Gourley MF, Kammer GM, Tsokos GC. Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J Immunol. 2001;166:4216–22.

    Article  CAS  PubMed  Google Scholar 

  118. Kyttaris VC, Juang Y-T, Tenbrock K, Weinstein A, Tsokos GC. Cyclic adenosine 5′-monophosphate response element modulator is responsible for the decreased expression of c-fos and activator protein-1 binding in T cells from patients with systemic lupus Er. J Immunol. 2004;173:3557–63.

    Article  CAS  PubMed  Google Scholar 

  119. Herndon TM, Juang Y-T, Solomou EE, Rothwell SW, Gourley MF, Tsokos GC. Direct transfer of p65 into T lymphocytes from systemic lupus erythematosus patients leads to increased levels of interleukin-2 promoter activity. Clin Immunol. 2002;103:145–53.

    Article  CAS  PubMed  Google Scholar 

  120. Mizui M, Koga T, Lieberman LA, Beltran J, Yoshida N, Johnson MC, et al. IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4−CD8− IL-17–producing T cells. J Immunol. 2014;193:2168–77.

    Article  CAS  PubMed  Google Scholar 

  121. Dai H, He F, Tsokos GC, Kyttaris VC. IL-23 Limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol. 2017;199:903–10.

    Article  CAS  PubMed  Google Scholar 

  122. Ballesteros-Tato A, Papillion A. Mechanisms of action of low-dose IL-2 restoration therapies in SLE. Curr Opin Immunol. 2019;61:39–45.

    Article  CAS  PubMed  Google Scholar 

  123. Papillion A, Powell MD, Chisolm DA, Bachus H, Fuller MJ, Weinmann AS, et al. Inhibition of IL-2 responsiveness by IL-6 is required for the generation of GC-T FH cells. Sci Immunol. 2019;4:eaaw7636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tokano Y, Murashima A, Takasaki Y, Hashimoto H, Okumura K, Hirose S. Relation between soluble interleukin 2 receptor and clinical findings in patients with systemic lupus erythematosus. Ann Rheum Dis. 1989;48:803–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol. 2010;42:543–50.

    Article  CAS  PubMed  Google Scholar 

  126. Mosak J, Furie R. Breaking the ice in systemic lupus erythematosus: belimumab, a promising new therapy. Lupus. 2013;22:361–71.

    Article  CAS  PubMed  Google Scholar 

  127. Cloos PAC, Christgau S. Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology. 2004;5:139–58.

    Article  CAS  PubMed  Google Scholar 

  128. Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol. 2004;16:753–8.

    Article  CAS  PubMed  Google Scholar 

  129. Xia H, Sun Z, Wang J, Tian A, Li J, Li X, et al. Application of rib surface positioning ruler combined with volumetric CT measurement technique in endoscopic minimally invasive thoracic wall fixation surgery. Exp Ther Med. 2020;20:1616–20.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From Sirtuin Biology to Human Diseases: An Update. J Biol Chem. 2012;287:42444–52.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019;55: 100961.

    Article  CAS  PubMed  Google Scholar 

  132. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Petrackova A, Smrzova A, Gajdos P, Schubertova M, Schneiderova P, Kromer P, et al. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clinical Proteomics. 2017;14:32.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS, et al. cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci. 2012;109:16606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoshida N, Comte D, Mizui M, Otomo K, Rosetti F, Mayadas TN, et al. ICER is requisite for Th17 differentiation. Nat Commun. 2016;7:12993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hisada R, Yoshida N, Umeda M, Burbano C, Bhargava R, Scherlinger M, et al. The deacetylase SIRT2 contributes to autoimmune disease pathogenesis by modulating IL-17A and IL-2 transcription. Cell Mol Immunol. 2022;19:738–50.

    Article  CAS  PubMed  Google Scholar 

  137. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  138. Macián F. Garcı́a-Cózar F, Im S-H, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.

    Article  PubMed  Google Scholar 

  139. Katsuyama T, Tsokos GC, Moulton VR. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front Immunol. 2018;9:1088.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang J, Lee S-M, Shannon S, Gao B, Chen W, Chen A, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Investig. 2009;119:3048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu F, Zhang Q, Zhang K, Xie W, Grunstein M. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol Cell. 2007;27:890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ. Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol. 2011;408:187–204.

    Article  CAS  PubMed  Google Scholar 

  143. Ruvolo PP. The broken “Off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 2016;6:87–99.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139:468–84.

    Article  CAS  PubMed  Google Scholar 

  145. Katsiari CG. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. J Clin Investig. 2005;115:3193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sunahori K, Juang Y-T, Kyttaris VC, Tsokos GC. Promoter hypomethylation results in increased expression of protein phosphatase 2A in T cells from patients with systemic lupus erythematosus. J Immunol. 2011;186:4508–17.

    Article  CAS  PubMed  Google Scholar 

  147. Tan W, Sunahori K, Zhao J, Deng Y, Kaufman KM, Kelly JA, et al. Association of PPP2CA polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups. Arthritis Rheum. 2011;63:2755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nagpal K, Watanabe KS, Tsao BP, Tsokos GC. Transcription factor Ikaros represses protein phosphatase 2A (PP2A) expression through an intronic binding site. J Biol Chem. 2014;289:13751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Crispín JC, Apostolidis SA, Rosetti F, Keszei M, Wang N, Terhorst C, et al. Cutting edge: protein phosphatase 2A confers susceptibility to autoimmune disease through an IL-17–dependent mechanism. J Immunol. 2012;188:3567–71.

    Article  PubMed  Google Scholar 

  150. Apostolidis SA, Rauen T, Hedrich CM, Tsokos GC, Crispín JC. Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J Biol Chem. 2013;288:26775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li Y, Harada T, Juang Y-T, Kyttaris VC, Wang Y, Zidanic M, et al. Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic Lupus erythematosus. J Immunol. 2007;178:1938–47.

    Article  CAS  PubMed  Google Scholar 

  152. Isgro J, Gupta S, Jacek E, Pavri T, Duculan R, Kim M, et al. Enhanced rho-associated protein kinase activation in patients with systemic lupus erythematosus. Arthritis Rheum. 2013;65:1592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Crispín JC, Apostolidis SA, Finnell MI, Tsokos GC. Induction of PP2A Bβ, a regulator of IL-2 deprivation-induced T-cell apoptosis, is deficient in systemic lupus erythematosus. Proc Natl Acad Sci. 2011;108:12443–8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rodríguez-Rodríguez N, Madera-Salcedo IK, Cisneros-Segura JA, García-González HB, Apostolidis SA, Saint-Martin A, et al. Protein phosphatase 2A B55β limits CD8+ T cell lifespan following cytokine withdrawal. J Clin Investig. 2020;130:5989–6004.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Pan W, Sharabi A, Ferretti A, Zhang Y, Burbano C, Yoshida N, et al. PPP2R2D suppresses IL-2 production and Treg function. JCI Insight. 2020;5:e138215.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Martin M, Geudens I, Bruyr J, Potente M, Bleuart A, Lebrun M, et al. PP2A regulatory subunit Bα controls endothelial contractility and vessel lumen integrity via regulation of HDAC7. EMBO J. 2013;32:2491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pan W, Nagpal K, Suárez-Fueyo A, Ferretti A, Yoshida N, Tsokos MG, et al. The regulatory subunit PPP2R2A of PP2A enhances Th1 and Th17 differentiation through activation of the GEF-H1/RhoA/ROCK signaling pathway. J Immunol. 2021;206:1719–28.

    Article  CAS  PubMed  Google Scholar 

  158. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D’Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.

    Article  CAS  PubMed  Google Scholar 

  160. Racioppi L, Means AR. Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller. Trends Immunol. 2008;29:600–7.

    Article  CAS  PubMed  Google Scholar 

  161. Hook SS, Means AR. Ca2+/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol. 2001;41:471–505.

    Article  CAS  PubMed  Google Scholar 

  162. Jensen KF, Ohmstede CA, Fisher RS, Sahyoun N. Nuclear and axonal localization of Ca2+/calmodulin-dependent protein kinase type Gr in rat cerebellar cortex. Proc Natl Acad Sci. 1991;88:2850–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ohmstede C, Jensen K, Sahyoun N. Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem. 1989;264:5866–75.

    Article  CAS  PubMed  Google Scholar 

  164. Frangakis MV, Ohmstede CA, Sahyoun N. A brain-specific Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) is regulated by autophosphorylation. Relevance to neuronal Ca2+ signaling. J Biol Chem. 1991;266:11309–16.

    Article  CAS  PubMed  Google Scholar 

  165. Juang Y-T, Wang Y, Solomou EE, Li Y, Mawrin C, Tenbrock K, et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Investig. 2005;115:996–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bhargava R, Lehoux S, Maeda K, Tsokos MG, Krishfield S, Ellezian L, et al. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight. 2021;6:e147789.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Koga T, Hedrich CM, Mizui M, Yoshida N, Otomo K, Lieberman LA, et al. CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Investig. 2014;124:2234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12:487–502.

    Article  CAS  PubMed  Google Scholar 

  169. Koga T, Sato T, Furukawa K, Morimoto S, Endo Y, Umeda M, et al. Promotion of calcium/calmodulin-dependent protein kinase 4 by GLUT1-dependent glycolysis in systemic lupus erythematosus. Arthritis Rheumatol. 2019;71:766–72.

    Article  CAS  PubMed  Google Scholar 

  170. Otomo K, Koga T, Mizui M, Yoshida N, Kriegel C, Bickerton S, et al. Cutting edge: nanogel-based delivery of an inhibitor of CaMK4 to CD4+ T cells suppresses experimental autoimmune encephalomyelitis and lupus-like disease in mice. J Immunol. 2015;195:5533–7.

    Article  CAS  PubMed  Google Scholar 

  171. Perl A. Review: metabolic control of immune system activation in rheumatic diseases. Arthritis Rheumatol. 2017;69:2259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Takeuchi T, Suzuki K, Kondo T, Yoshimoto K, Tsuzaka K. CD3 ζ defects in systemic lupus erythematosus. Ann Rheum Dis. 2012;71:i78-81.

    Article  CAS  PubMed  Google Scholar 

  173. Wang Y, Wei J, Zhang W, Doherty M, Zhang Y, Xie H, et al. Gut dysbiosis in rheumatic diseases: a systematic review and meta-analysis of 92 observational studies. EBioMedicine. 2022;80:104055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. de Wiele TV, Praet JTV, Marzorati M, Drennan MB, Elewaut D. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol. 2016;12:398–411.

    Article  PubMed  Google Scholar 

  175. Valiente GR, Munir A, Hart ML, Blough P, Wada TT, Dalan EE, et al. Gut dysbiosis is associated with acceleration of lupus nephritis. Sci Rep. 2022;12:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019;78:947–56.

    Article  CAS  PubMed  Google Scholar 

  177. Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10:eaan2306.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Miyauchi E, Kim S-W, Suda W, Kawasumi M, Onawa S, Taguchi-Atarashi N, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585:102–6.

    Article  CAS  PubMed  Google Scholar 

  179. Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    Article  CAS  PubMed  Google Scholar 

  181. Ruff WE, Kriegel MA. Autoimmune host–microbiota interactions at barrier sites and beyond. Trends Mol Med. 2015;21:233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vieira SM, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359:1156–61.

    Article  PubMed Central  Google Scholar 

  183. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Shirakashi M, Maruya M, Hirota K, Tsuruyama T, Matsuo T, Watanabe R, et al. Effect of impaired T cell receptor signaling on the gut microbiota in a mouse model of systemic autoimmunity. Arthritis Rheumatol. 2022;74:641–53.

    Article  CAS  PubMed  Google Scholar 

  185. Matsuo T, Hashimoto M, Sakaguchi S, Sakaguchi N, Ito Y, Hikida M, et al. Strain-specific manifestation of lupus-like systemic autoimmunity caused byZap70Mutation. J Immunol. 2019;202:3161–72.

    Article  CAS  PubMed  Google Scholar 

  186. Christovich A, Luo XM. Gut microbiota, leaky gut, and autoimmune diseases. Front Immunol. 2022;13.

  187. Li X-B, Chu X-J, Cao N-W, Wang H, Fang X-Y, Fan Y-G, et al. Proton pump inhibitors induce changes in the gut microbiome composition of systemic lupus erythematosus patients. BMC Microbiology. 2022;22:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Beringer A, Miossec P. IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases. Autoimmun Rev. 2018;17:1176–85.

    Article  CAS  PubMed  Google Scholar 

  189. Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019;15:491–501.

    Article  PubMed  Google Scholar 

  190. Satoh Y, Nakano K, Yoshinari H, Nakayamada S, Iwata S, Kubo S, et al. A case of refractory lupus nephritis complicated by psoriasis vulgaris that was controlled with secukinumab. Lupus. 2018;27:1202–6.

    Article  CAS  PubMed  Google Scholar 

  191. von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2015;75:1407–15.

    Article  Google Scholar 

  192. van Vollenhoven RF, Hahn BH, Tsokos GC, Wagner CL, Lipsky P, Touma Z, et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. The Lancet. 2018;392:1330–9.

    Article  Google Scholar 

  193. Humrich JY, Riemekasten G. The rise of IL-2 therapy—a novel biologic treatment for SLE. Nat Rev Rheumatol. 2016;12:695–6.

    Article  CAS  PubMed  Google Scholar 

  194. Souza AD. Successful treatment of subacute lupus erythematosus with ustekinumab. Arch Dermatol. 2011;147:896.

    Article  PubMed  Google Scholar 

  195. Ndongo-Thiam N, Miossec P. A cell-based bioassay for circulating bioactive IL-17: application to destruction in rheumatoid arthritis. Ann Rheum Dis. 2015;74:1629–31.

    Article  CAS  PubMed  Google Scholar 

  196. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016;165:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bruce IN, Furie RA, Morand EF, Manzi S, Tanaka Y, Kalunian KC, et al. Concordance and discordance in SLE clinical trial outcome measures: analysis of three anifrolumab phase 2/3 trials. Ann Rheum Dis. 2022;81:962–9.

    Article  CAS  PubMed  Google Scholar 

  198. Levy RA, Gonzalez-Rivera T, Khamashta M, Fox NL, Jones-Leone A, Rubin B, et al. 10 Years of belimumab experience: what have we learnt? Lupus. 2021;30:1705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wofsy D, Hillson JL, Diamond B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum. 2012;64:3660–5.

    Article  CAS  PubMed  Google Scholar 

  200. Pisitkun P, Ha H-L, Wang H, Claudio E, Tivy CC, Zhou H, et al. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity. 2012;37:1104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the Science and Technology Program of Department of Health of Jiangxi Province (20204254), and the Key Research and Development Program of Jiangxi municipal Science and Technology Department (20192BBGL70024).

Author information

Authors and Affiliations

Authors

Contributions

YY, CY, LY, XZ, JS and Jie Fan were mainly involved in the writing of the manuscript. RZ, JR and XD produced Figs. 1 and 2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xinwang Duan.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Responsible Editor: Masaru Ishii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yan, C., Yu, L. et al. The star target in SLE: IL-17. Inflamm. Res. 72, 313–328 (2023). https://doi.org/10.1007/s00011-022-01674-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01674-z

Keywords

Navigation