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Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ 
transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative conse-
quences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically 
to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered 
to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune 
response at various stages has not yet to be elucidated.
Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal 
molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web 
of Science to search for relevant literatures.
Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of 
IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the 
immune response associated with IRI during diverse organ transplantation.
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Introduction

Organ transplantation has emerged as the most direct and 
effective clinical option for patients suffering from terminal 
organ failure and there is an expanding worldwide demand 
for organ transplants. Actually, cell damage caused by organ 
resection and storage can unquestionably deteriorate trans-
planted organs and may be a contributing factor for clinical 
outcomes and prognosis [1]. The period between the ces-
sation of blood and the proceed of organ cold perfusion is 

widely recognized as warm ischemia time [2, 3]. Organs 
from donation of cardiac arrest death (DCD) are vulner-
able to warm ischemia for a longer duration than those 
from donation of brain death (DBD) because hypoperfu-
sion and warm ischemia begin quite a long time before 
cardiac arrest, when circulatory and respiratory function 
gradually fails after drug withdrawal [3]. Cold ischemia 
time is the period between cold perfusion and blood supply 
regeneration following transplantation [4]. Prolonged cold 
ischemia impacts transplanted organs’ functional recovery 
and long-term survival [5]. Reperfusion injury aggravates 
tissue injury by restoring blood perfusion and oxygen sup-
ply to transplanted organs. We have learned that ischemia 
and reperfusion injury (IRI) can spark apoptosis of tubular 
cells, resulting in severe renal function damage, which is 
the primary driver of delayed graft function (DGF) or even 
chronic graft injury [6]. Furthermore, every effort should be 
made to avoid mechanical damage and destruction of donor 
organs during the procurement process.

IRI is an inherent immune-related pathophysiological 
process that occurs in the process of organ transplantation. 
Ischemia causes microvascular function impairment and 
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metabolic disorders like oxygen abnormality as well as 
pH abnormality in transplanted organs, and succeeding 
reperfusion causes calcium disorder and an increase in 
oxygen free radicals (Fig. 1), facilitating immune response 
and cell death pathways [7]. Over the last few decades, 
several immune activation pathways have been unearthed, 
with some cell types specifically performing opposing pro-
inflammatory and anti-inflammatory capabilities in an IRI-
dependent pattern. The identification of novel molecular 
events and the immune regulatory mechanisms associated 

with IRI establishes a link between immune response and 
organ regeneration, allowing for long-term transplant func-
tion [8]. Despite the clinical characteristics of different 
organ transplantation appear distinct, IRI-related immune 
response is mediated by similar mechanisms in common. 
This paper reviews the effects and progress of IRI medi-
ated by various factors in different organ transplantation 
in terms of the mechanism of IRI triggering immune 
response, innate immunity and adaptive immunity.

Fig. 1  Mechanisms of ischemia and reperfusion-mediated cellular 
injury in the context of organ transplantation. Oxidative stress, cal-
cium overload and excessive inflammatory reaction play the impor-
tant roles in the pathogenesis of IRI. First, hypoxia and ischemia 
during organ donation accelerate the conversion of transplanted cells 
to anaerobic metabolism, which results in lactic acidosis, decreases 
adenosine triphosphate (ATP) production, and causes mitochondrial 

dysfunction. Second, excessive  Ca2+ and reactive oxygen species 
(ROS), along with extracellular and intracellular signaling molecules, 
are crucial in IRI-mediated cell destruction in the case of organ trans-
plantation. Finally, severe IRI in the context of organ transplantation 
causes different forms of cell death, which make a significant contri-
bution to immune activation
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Innate immunity

Danger signals for initiating innate immune 
response associated with IRI during organ 
transplantation

IRI-induced cell death stimulates the release of cellular 
components such as heat shock protein (HSP) as well as 
high mobility group box (HMGB) in transplanted organs, 
as supported by the research below, and these components 
serve as damage-associate molecular patterns (DAMPs) 
[9, 10]. Gene expression of HSP27 and 90 induced by IRI 
is up-regulated after pancreatic transplantation, providing 
a very promising prospect for improving pancreatic IRI 
after transplantation [11]. In canine pancreas autotrans-
plantation, compared to the straightforward University of 
Wisconsin (UW) preservation approach, two-layer preser-
vation method reduces IRI due to the high level of HSP60 
expression [12]. According to a recent study, HMGB-1 
levels are elevated in patients of IRI in the context of liver 
transplantation [13]. For a rat liver transplantation model, 
pretreatment of DCD-derived grafts with soluble thrombo-
modulin improves IRI by reducing HMGB-1 and inflam-
matory factors namely tumor necrosis factor (TNF)-α 
and interleukin (IL)-6 [14]. A growing stack of research 
links mitochondrial DNA (mtDNA) with DAMPs since 
the worsening of IRI is accompanied with the increase 
of mtDNA [15]. In the experimental model, senile donor 
animals treated with lytic drugs which could clear away 
the senescent cells, reduce the release of mtDNA and asep-
tic inflammation, thereby extending the life expectancy of 
senile cardiac allografts, as compared with young donor 
animals [16]. Overall, animal research findings corrobo-
rate the apparent participation of DAMPs in the initiating 
innate immune response associated with IRI during organ 
transplantation, but its relevance remains disputed in the 
lack of clinical trials.

Toll-like receptors (TLRs) displayed in immune cells 
react to DAMPs, and their activation stimulates tran-
scription factors involving interferon regulatory factor 
(IRF) and nuclear factor-κB (NF-κB) signalling pathways 
(Fig. 2), causing the release of interferon (IFN)-α/β and 
IL-1, as well as the production of IRI-induced aseptic 
inflammation [17]. Thirteen TLRs have been found in 
mammals, with TLR3, 7, 8, and 9 residing intracellularly, 
while TLR1-6 and TLR10 are reported on the cell mem-
brane surface [18]. Importantly, some TLRs (mainly TLR2 
and TLR4) clearly influence the pathological development 
of IRI, and they are triggered by DAMPs generated during 
ischemia, initiating innate immune response [19]. Inhi-
bition of TLR2 by pretreatment with TLR2 monoclonal 
antibody possesses notable survival benefit against IRI and 

reduces TLR2-mediated cytokine production in a mouse 
kidney transplantation model [20]. TLR4 activation pro-
motes the release of pro-inflammatory mediators, the 
migration and infiltration of leukocytes, the activation of 
the innate and adaptive immune systems, the maintenance 
of tubular necrosis, and the enhancement of renal fibro-
sis during IRI of the transplanted kidney [21]. A clinical 
experiment shows that TLR4, which binds to HMGB-1, is 
significantly raised due to ischemic injury and the func-
tional deletion of TLR4 mutation is related to less pro-
inflammatory gene expression, which offers compelling 
evidence for demonstrating the pathogenesis of IRI during 
human kidney transplantation related to the expression of 
TLR4 in donor kidney cells [22]. Cold IRI of transplanted 
kidney can also be improved by reducing NF-κB phospho-
rylation to inhibit the TLR4/marrow differentiation factor 
88 (Myd88) pathway and reducing downstream inflam-
mation like TNF-α, IL-1, and IL-6 [23]. Furthermore, IRI 
activates TLR3 following RNA release in the transplanted 
heart, and TLR3 deletion protects the heart from IRI [24]. 
As a consequence, according to the recent data, targeted 
TLR3 therapy, in addition to TLR2 and 4, has emerged as 
a novel treatment proposal for halting IRI in organ trans-
plant recipients. But the transformation and application 
of TLRs therapy in IRI following organ donation is still 
one issue that has to be addressed, and further evidence 
is needed.

Macrophages

Emerging evidence suggests that macrophages participate 
in the pathophysiology of IRI during organ transplanta-
tion. Macrophages are made up of both resident and migra-
tory cells. During thoracic organ transplantation, resident 
immune cells in IRI are activated, promoting the creation of 
a pro-inflammatory milieu, and subsequently immune cells 
from the circulation are recruited to augment and maintain 
the immunological cascade [25]. Numerous experimental 
evidence in renal transplantation also illustrates that mac-
rophages influx following renal reperfusion may contribute 
to IRI-mediated acute kidney injury by secreting cytokines, 
attracting neutrophils, and triggering apoptosis [26]. Fur-
thermore, Kupffer cells (KCs), also known as hepatic 
resident macrophages, can take the lead in sensing early 
extracellular DAMPs and be activated to yield chemokines 
and cytokines including such IL-1, 6, 8, 12, and TNF-α, 
eventually resulting in IRI-mediated aseptic inflammation 
of transplanted liver [27]. In the context of transplantation, 
activated macrophages are polarized into two subsets, which 
are M1 mediated the initiation and maintenance of inflam-
mation and M2 performed in inflammation regression [28]. 
M1 macrophages, also known as classically activated mac-
rophages, are formed as a result of the interaction of IFN-γ/ 
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lipopolysaccharide (LPS) and TLRs (Fig. 3). Ischemia-medi-
ated up-regulation of HMGB1 in combination with TLR4 
activates macrophages in organ transplantation, thus releas-
ing inflammatory factors and excessive reactive oxygen spe-
cies (ROS) to promote organ damage [29]. They typically 
have elevated levels of CD86, inducible nitric oxide syn-
thase, as well as inflammatory components like TNF-α, IL-1 
and IL-6, all of which aggravate IRI and graft injury [30]. 

Besides, selective inhibition of histone deacetylase (HDAC) 
significantly reduces cell death and improves organ function 
after IRI, possibly because HDAC3 is recruited to activate 
transcription factor 2 (ATF2) binding sites in the process of 
LPS activating macrophages, which activates inflammatory 
gene expression [31–33]. Notably, the deacetylase activity 
of HDAC3 interacts with the nuclear receptors coactivator 1 
and 2 to specifically bind ATF3, which inhibits polarization 

Fig. 2  Specific recognition and binding of Toll-like receptors (TLRs) 
by damage-associate molecular patterns (DAMPs) triggers the initia-
tion of the immune system. Ischemia and reperfusion-mediated cell 
rupture releases endogenous DAMPs. In the immune cells, TLRs are 
activated by DAMPs, which stimulates signaling pathways involving 

interferon regulatory factor (IRF) and marrow differentiation fac-
tor 88 (Myd88)/NF-κB signaling pathways, causing the release of 
cytokines and chemokines such as interferon (IFN) and interleukin 
(IL)
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toward M1 [34]. Exposure to IL-4 or IL-13 results in the 
formation of M2 macrophages, also widely recognized as 
alternately activated macrophages. Contrary to M1 induc-
tion of Th1 immune response, M2 macrophages prompt 
Th2 immune response, which is accompanied by high 

representation of CD163 and 206, arginase-1, inflammatory 
domain molecule 1, chitinase 3 protein 1, and other mark-
ers [35]. Furthermore, M2 can secrete anti-inflammatory 
substances like IL-10, as well as chemokines such as che-
moattractant cytokine ligand (CCL)22 and CCL17, which 

Fig. 3  Polarization of macrophages and its molecular mechanism. 
The migratory macrophages and resident macrophages are activated 
and differentiated into macrophages with different functions in IRI 
region under the influence of different molecules. Interferon (IFN)-γ 
or lipopolysaccharide (LPS) can polarize macrophages into M1 which 
produces inflammatory factors such as tumor necrosis factor (TNF)-α, 
interleukin (IL)-1, IL-6 and reactive oxygen species (ROS) through 

c-Jun N-terminal kinase (JNK), Notch, Janus kinase signal transduc-
ers and activators of transcription (JAK/STAT), and NF-κB signal-
ing pathways. IL-4 or IL-13 activates M2 mainly through phospho-
inositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, and M2 
generates immune molecules such as IL-10, chemoattractant cytokine 
ligand (CCL)22 and CCL17 to repair the damage
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have the function of repairing damage [36]. IRI significantly 
increases the likelihood of graft malfunction, graft rejec-
tion and organ failure, therefore the involvement of mac-
rophages in all parameters connected to IRI should be deeply 
investigated.

The regulatory framework network of macrophage 
polarization encompasses c-Jun N-terminal kinase (JNK), 
phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), 
Notch, Janus kinase signal transducers and activators of tran-
scription (JAK/STAT), and NF-κB signaling pathways [37]. 
In the case of IRI after treatment, the expressions of JNK, 
p38, and NF-κB-related proteins in macrophages are sharply 
down-regulated, along with the lessen secretion of M1 phe-
notype, which is emphasizing the significance of M1 polari-
zation in immune function [38]. Besides, liver IRI addressed 
with PI3K inhibition reflects obvious damage manifestations 
such as edema and cytoplasmic vacuolation. Activation of 
the PI3K-AKT pathway can reduce apoptosis and inflamma-
tion of transplanted organs, which may be attributed to the 
promotion of M2 polarization of macrophages [39]. Inhibit-
ing the Notch1 as well as NF-κB pathways can decrease M1 
polarization and inflammation, while increasing M2 pheno-
typic markers [40]. Notch1 signaling pathway is regulated in 
IRI-stressed orthotopic liver transplantation (OLT) treated 
with serelaxin via mitigating macrophage infiltration and 
activation, constraining pro-inflammatory cytokine, and 
optimizing IRI [41]. As the same, the expression of JAK2 
and STAT3 is weakened in OLT treated with propofol, and 
IRI-mediated inflammation, oxidative stress, and apopto-
sis are all diminished in the hippocampus [42], inferring 
that IRI can activate the JAK2/STAT3 signaling pathway 
and boost M1 polarization during liver transplantation. 
In the rat model of OLT established after suberoylanilide 
hydroxamic acid treatment, OLT-induced IRI is alleviated 
by impairing the AKT/GSK3β/NF-κB pathway and reduc-
ing the M1 polarization [43]. In curcumin-pretreated liver 
transplantation model, the remodeling of the polarization 
of KCs contributes to the improvement of IRI and overall 
survival, which may be related to NF-κB suppression as well 
as peroxisome proliferator-activated receptor γ (PPARγ) 
initiation [44]. Ischemia induces an acidic microenviron-
ment because of anaerobic glycolysis as well as lactic acid 
accumulation, which promotes M1 polarization and inhib-
its M2 polarization in macrophages by regulating PPARγ 
[45]. Indeed, understanding and identifying the mecha-
nisms of macrophage polarization hold great promise for 
developing immunotherapy strategies on IRI during organ 
transplantation.

Neutrophils

Neutrophils belong to immune regulatory network that allow 
the patients to modulate IRI during organ transplantation. A 

multi-step process is comprised of recruitment, migration, 
activation and release of granzyme, in which neutrophils 
gather around the region of IRI and amplify tissue dam-
age [46]. Firstly, leukocytes in the region of IRI discharge 
inflammatory mediators; Secondly, vascular endothelial 
cells upregulate adhesion molecules; Finally neutrophils 
rely on integrin transfer out of the circulatory system [47]. 
Many studies have shown that inhibiting selectin can lower 
neutrophil infiltration and inflammatory response, which 
can benefit IRI during transplantation [48–50]. A clinical 
observation shows that genes producing adhesion mol-
ecules and integrins are up-regulated following cold IRI 
in the human liver graft [51] and integrin blocking can 
prevent the development of lung IRI, which is an efficient 
therapeutic protocol for primary graft dysfunction (PGD) 
of transplantation [52]. PGD is one of the leading causes 
of severe complications and increased mortality in trans-
plant recipients. In a rat kidney transplantation model after 
cold and warm ischemia, intercellular adhesion molecule-1 
(ICAM-1) inhibition reduces neutrophil infiltration, result-
ing in less graft damage and DGF [53]. Blocking vascular 
cell adhesion molecule-1 (VCAM-1) in vitro limits neutro-
phil recruitment and migration, reducing the degree of renal 
injury in IRI model [54]. Platelet-endothelial cell adhesion 
molecule-1 (PECAM-1) expression can increase blood neu-
trophils to the peak at 2 h after reperfusion, while the mor-
phological changes in the ultrastructure of IRI-mediated cell 
damage are the most observable [55]. Above all, inhibiting 
neutrophil recruitment provides a foundation for improv-
ing IRI during organ transplantation. Chemokines are the 
primary components that entice neutrophils to migrate to 
inflammatory lesions induced by IRI. IRI rapidly stimulates 
the production of neutrophil chemokines like macrophage 
inflammatory protein-2, as well as other mediators such as 
C5a, to boost migration to transplanted organs [56, 57]. A 
study using a model of heart transplantation-mediated IRI 
have discovered that CXC chemokine (CXCL) 2 and 5 can 
modulate neutrophil extravasation and migration to inflam-
matory regions in cardiac grafts [58]. Furthermore, recent 
research indicates that the recruitment and migration of neu-
trophils during IRI of organ transplantation can be medi-
ated by the TLRs signaling pathway [58, 59]. IRI promotes 
neutrophil activation by increasing their size, forming neu-
trophil clusters, and producing more elongated neutrophils 
[60]. The critical involvement of neutrophils in graft IRI 
has been acknowledged in numerous investigations, includ-
ing the above-mentioned literature, while the underlying 
mechanism of neutrophil recruitment during IRI remains 
unknown. As a result, we address multiple routes of neu-
trophil recruitment into donated organs, which may provide 
new therapy options for IRI-mediated immune damage dur-
ing organ transplantation.



1469Immune response associated with ischemia and reperfusion injury during organ transplantation  

1 3

The precise mechanism of neutrophil-mediated tissue 
damage in graft IRI requires further investigation. However, 
previous evidence indicates that increasing pro-inflamma-
tory cytokines, ROS production, and proteases (such as 
elastase, cathepsin G, and myeloperoxidase) are the rec-
ognized approaches for neutrophils to promote organ IRI 
[61–64]. A new mechanism, neutrophil extracellular traps 
(NETs), has been unearthed in recent years. The accumu-
lation of NETs in animal orthotopic lung transplantation 
model after long-term cold ischemia and in lung transplant 
patients has been confirmed, indicating that NETs are a 
promising therapeutic target [65]. Another study discovers 
that the production of NETs during PGD after lung trans-
plantation are triggered via the attachment of TLR9 signal 
pathway to mtDNA released during lung IRI [66]. Experi-
ments on rat liver transplantation reveal that preventing the 
formation of NETs reduces liver IRI [67]. Furthermore, 
perioperative DNAse administration, which depletes NETs, 
improves graft function following IRI, which is linked to the 
initiation of adaptive immune response [68]. To build a ther-
apeutic framework for reducing IRI during organ transplan-
tation, more and more explorations on immune responses 
and injury mechanisms of neutrophils are emerged.

Natural killer cells and natural killer T cells

Natural killer (NK) cells, as effector cells of innate immune 
response, can exert cytotoxic effects without being energized 
by antigens, and they can excrete inflammatory molecules 
and directly destroy cells to empower with immune supervi-
sion and regulation. Animal studies reveal that TNF-related 
apoptosis-inducing ligand expression defends damage by 
controlling NK cell cytotoxicity and differentiation, as well 
as enhancing IFN-γ release in the IRI model [69]. Infiltration 
of NK cells around blood vessels and interstitium of trans-
planted kidney increases significantly after long-time cold 
ischemia [70]. Removing NK cells from graft significantly 
ameliorates liver IRI by reducing neutrophil infiltration 
and proinflammatory mediators [71]. It has been reported 
that NK cells infiltrate the kidney after IRI, mediating 
tubular epithelial damage through NK group 2 member D 
(NKG2D)/retinoic acid early induced transcript-1 pathway, 
and at the same time the reduction of NK cells can inhibit 
renal IRI [72]. Additionally, NK cells cause chronic damage 
of transplanted kidney, which avoids acute organ rejection 
due to T cell tolerance [73]. The above evidence confirms 
that NK cells, as essential immune cells, are closely linked 
to emergence and progression of IRI, but the mechanisms 
involved in the pathological process of IRI need to be clari-
fied further in the setting of organ transplantation.

Natural killer T (NKT) cells are a special T cell sub-
population with both T cell and NK cell receptors, which 
can identify the lipid antigen delivered by CD1d to arouse 

cytotoxic activity and a diverse range of immune responses 
[74, 75]. Antibody-targeted deletion of NKT cells reveals a 
decrease in serum alanine aminotransferase, as the same in 
warm IRI, which is encouraging immunotherapy in the clini-
cal outlook for transplantation [76]. NKT cells are roughly 
divided into two subsets: type I NKT (iNKT) cells and type 
II NKT (dNKT) cells. In the mouse liver IRI model, sul-
fatide-mediated activation of dNKT cells results in iNKT 
cells inactivation and improves liver IRI by inhibiting IFN-γ 
secretion [77]. It has been reported that iNKT cells rely on 
NADPH oxidase and IL-17 production to facilitate lung dys-
function and inflammation following IRI [78]. Finally, as we 
learn more about the immune mechanism of NKT cells in 
IRI, we will be able to use NKT cell-induced immune toler-
ance as a new therapeutic strategy for preventing transplant 
rejection.

The complement cascades

The complement system regulates the IRI-mediated DGF, 
the loss of transplanted organs, and the risk of rejection, so a 
better understanding of the complement system’s activation 
and immune function can really help expand the blueprint 
for organ transplantation therapy [79, 80]. During transplan-
tation, overactivation of donor and recipient complement 
system gives rise to graft injury, with graft ischemia and 
subsequent reperfusion being the most important mecha-
nisms that trigger complement activation [81]. The path-
ways of complement activation vary with organ type during 
transplantation, and mainly include classical pathway, alter-
native pathway and lectin pathway [82]. Lung function in 
lung transplant recipients decreases immediately following 
reperfusion and is improved rapidly upon administration of 
C1-esterase-inhibitor [83]. In mouse heart transplantation 
model, inhibition of all or alternative complement path-
ways diminishes early complement accumulation in the 
graft, results in a substantial reduction in myocardial IRI 
by lowering the amount of inherent immune cell infiltration 
as well as inflammatory cytokine and adhesion molecule 
gene expression [84]. Factor B deficiency in the recipient's 
alternative pathway protects the transplanted kidney from 
IRI and inflammation [85]. Mannose-binding lectin (MBL) 
staining of human pretransplant and posttransplant kidney 
biopsies shows that MBL pathway in ischemia-damaged kid-
ney is initiated at the early stage of IRI [86]. Besides, DBD 
increases complement activation when compared to living 
donor [87]. DBD aggravates myocardial IRI after trans-
plantation in mice and human, and reduces the survival rate 
of mouse allografts [88]. The aforementioned clinical and 
experimental studies support complement activation asso-
ciated with IRI during transplantation, but more research 
on the immune effect of complement cascade in grafts is 
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becoming crucially influential because of the scarcity of 
related complement therapy drugs in the clinics.

Important complement activation products, including 
C3a, C5a, and membrane attack complex (MAC), exert 
immune effects, and regulate inflammation via conjugat-
ing to receptors to initiate immune cells and behaving as 
facilitators of downstream immune mechanisms [89, 90]. 
The C3a and C5a signaling pathways effect organ trans-
plantation-mediated IRI through enhancing the formation 
of pro-inflammatory cytokines, the initiation and invasion 
of innate immune cells, and the commencement of adaptive 
immunity [91]. Nebulizing C3a receptor antagonist before 
transplantation significantly reduces lung IRI from DBD, 
supporting the role of complement inhibition in improving 
post-transplant IRI in the context of DBD [92]. The results 
of a study demonstrate that pre-ischemic treatment with C5a 
receptor antagonists significantly reduces tissue IRI and do 
not impair the formation of MAC [93, 94]. Interestingly, 
studies have found that C3a and C5a levels do not change 
significantly during the reperfusion process, and the MAC is 
primarily associated with post-transplant graft function [95]. 
After kidney transplantation from DBD and DCD, soluble 
C5b-9 (sC5b-9) shows marked intravenous release immedi-
ately following reperfusion but no sC5b-9 or C5a is released 
from the living donor kidney [96, 97]. MAC itself directly 
induces cell injury and necrosis in the graft by forming a 
transmembrane channel through a hydrophilic junction with 
the cell membrane [98, 99]. In general, the specific effect 
of each complement molecule on IRI in the case of organ 
transplantation has not been fully clarified.

Adaptive immunity

T cells‑mediated adaptive immunity

In addition to the innate immune response, emerging evi-
dence indicates that T cells serve an antigen-independent 
function in IRI during organ transplantation (Table 1), 
though the pathways by which antigen-specific T cells are 
operated in aseptic IRI inflammation is unknown. In one 
experiment involving rat liver transplantation, sotraustau-
rin-treated rats of liver transplantation show longer survival 
times and decrease T cell counts [100].  CD4+ T cells rap-
idly permeate the transplanted lung after reperfusion, but 
it appears that the donor factor has a greater effect on the 
extent of injury at the early stage of reperfusion, whereas 
T cells in the recipient chiefly foster the injury at the late 
stage of reperfusion, which may be mediated by the official 
launch of IFN-γ by activated T cells [101]. By combined use 
of gene therapy, blocking drug, and gene targeting mice, the 
findings demonstrate that blocking the CD154-CD40 signal 
prevents T cells infiltration and thus improves hepatic IRI 

[102]. T cells-mediated adaptive immunity has a significant 
impact on IRI during various organ transplantation, and the 
related immune mechanism warrants further investigation.

T cells contributing to the occurrence and progression 
of IRI encompass not only  CD4+ T cells, but also  CD8+ T 
and γδ T cells, all of which have different effects in different 
organs and phases of the disease [103]. First, activated  CD4+ 
T cells differentiate into three major subtypes of different 
immune functions and phenotypes: Th1 that secretes IFN-
γ, Th2 that secretes IL-4 or IL-13, and Th17 that secretes 
IL-17, according to the cytokines they produce and damage 
the graft through cytokine-mediated inflammation [104]. 
One experiment shows that in IFN-γ knockout mice, renal 
IRI is more severe than that in the control group [105]. It has 
been demonstrated that magnesium pretreatment improves 
reperfusion syndrome and enhance Th2 cell activity, with 
increased IL-4 and IL-10, causing a shift in Th1-Th2 
cytokine balance to Th2 in patients undergoing liver trans-
plantation [106]. MicroRNA-155 deficiency reduces IRI 
in mice after liver transplantation, which is related to the 
reduction of IL-17 secretion caused by inhibition of Th17 
differentiation [107]. It has been confirmed that NKG2D 
blockade significantly recovers damage in heart transplant 
models with IRI, and its effect is related to the reduction 
of T cell infiltration that produces IL-17 [108]. Accord-
ing to one study, the presence of forkhead box P3 (FoxP3) 
Th2 cells, as well as upregulation of Th17-related retinoid-
related orphan receptor-γt mRNA in the donor kidney after 
cold ischemia, regulate the immune injury [109]. Previous 
research has already proven that various cell types differenti-
ated by  CD4+ T cells play distinct roles, and that balancing 
 CD4+T cells differentiation also contributes to IRI-mediated 
graft outcome. Next,  CD8+ T cells are also involved in IRI-
mediated immune response during organ transplantation. In 
post-treatment ischemic transplanted kidney mice, the quan-
tity of transplanted infiltrated  CD8+ T cells is effectively 
diminished, lessening IRI-induced graft abnormality [110]. 
Using B7 homolog 1 (B7-H1) knockout mice, the experi-
mental data shows that the loss of B7-H1 in liver transplan-
tation significantly aggravates cold IRI, which is linked to a 
higher frequency and an absolute number of  CD8+ T cells in 
both the donor and recipient [111]. Finally, IL-17A, mainly 
produced by γδT cells, is increased following IRI during 
transplantation. Neutralizing antibodies against IL-17A 
inhibit cardiomyocyte caspase-3 activity-related apoptosis 
to improve IRI after myocardial transplantation [112]. It 
has been proved that regulatory T cells contribute to IRI 
of renal transplantation [113]. During recovery of IRI after 
renal transplantation, regulatory T cells can be regulated 
to minimize fibrosis, ameliorate tubular injury and enhance 
growth factor yield [114].

Furthermore, T cell immunoglobulin domain and mucin 
domain (TIM) family is a protein encoded by T cells 
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comprised of eight members, three of which are reported 
to be found: TIM1, 3, 4. Ischemic injury induces the pro-
duction of TIM-1 in activated  CD4+ T cells, and block-
ing TIM-1, which hinders ischemic necrosis, leukocyte 
enrollment and the output of regional pro-inflammatory 
cytokines after reperfusion, substantially prolongs survival 
after IRI [115]. In the background of liver transplantation, 
TIM-1 antibody therapy limits Tbet transcription, elevates 
caspase-3 activity, enhances the selectivity of Bcl-2/Bcl-
xl expression, and eliminates considerable IR-induced 

hepatocyte necrosis/apoptosis [116, 117]. TIM-3 is dis-
played by stimulated  CD4+ T cells entering the cold IRI-
stressed OLT, and interrupting the TIM-3 signal polar-
izes the phenotype towards Th1/Th17, inhibits Th2-related 
FoxP3, and magnifies hepatocyte IRI, confirming its 
immunomodulatory character in IRI of liver transplants 
[118]. TIM pathway in IRI necessitates more clinical and 
experimental evidence, as it may be a therapeutic target 
for improving graft outcomes.

Table 1  Summary of references for evidence of T-cell role in IRI models

Organ Model Related findings Reference

Liver transplantation for 30-h cold ischemia Rats T spleen cells Inhibition of T-cell activation reduces hepatocyte 
damage

[100]

Lung transplantation of cold ischemia for 12 h and 
reperfusion for 2 or 12 h

Rats Recipient  CD4+ T cells infiltrate lung grafts within 1 h 
of reperfusion and upregulate CD25 expression for 
the following 12 h; The role of T cells is independent 
of neutrophil recruitment and activation

[101]

Liver of partial 90-min warm hepatic ischemia fol-
lowed by 6 h of reperfusion

Mice CD154-CD40 T-cell signaling is the mechanism of IRI 
and disruption of CD154 signaling alleviates liver 
injury

[102]

Kidney for 32-min ischemia and 24-h reperfusion Mice Lack of T and B cells, no protection by A2A agonists; 
Associated with IFN-γ

[105]

Liver transplantation Patients Protective magnesium treatment is associated with 
reduced Th1-derived cytokines and elevated Th2-
derived cytokines

[106]

Liver transplantation for 20-h ischemia Mice Th17 differentiation is suppressed in the ameliorated 
IRI

[107]

Hearts for 8-h cold ischemia before transplantation Mice Blocking NKG2D in γδ T cells improves cellular 
performance

[108]

Kidney transplantation Patients Infiltration of regulatory T cells into dead donor 
kidneys; Co-culture with regulatory T cells reduces 
renal cell injury

[109]

Kidney transplantation for 7-h cold ischemia Rats rATG reduces  CD4+,  CD8+ T cell infiltration and IRI-
mediated apoptosis

[110]

Liver transplantation for 24-h cold ischemia Mice Increased tissue damage and  CD8+ T cells in B7-H1 
KO grafts

[111]

Heart transplantation for 8-h cold ischemia Mice Elevated levels of IL-17A produce mainly by γδ T 
cells after IRI

[112]

Kidney for 45 min of ischemia and 24/72 h of reperfu-
sion

Mice Renal impairment after IRI exacerbated by T-cell 
clearance with anti-CD25

[113]

Kidney for 45-min ischemia Mice Targeted lymphocyte therapy alters the repair of IRI [114]
Kidney for 30-min warm ischemia Mice TIM-1 is expressed on activated  CD4+ T cells after 

ischemic injury; Anti-TIM-1 antibody has no effect 
on IRI in RAG −/− animals lacking T cells; Anti-
TIM-1 antibody reduces  CD4+ T cell infiltration in 
ischemic kidneys and improved IRI

[115]

Liver transplantation for 20-h cold ischemia or 90-min 
warm ischemia

Mice Disruption or blockade of  CD4+ T cell-dependent 
TIM-1 signaling pathway reduces IRI-mediated 
apoptosis or necrosis

[116]

Liver transplantation for 90-min ischemia and 6 h of 
reperfusion

Mice IPC attenuates IRI injury associated with TIM-1 
inhibition

[117]

Liver transplantation for 20-h cold ischemia Mice Increased TIM3 expression in  CD4+ T cells infiltrating 
IR;. Targeting TIM3 accelerates IRI

[118]
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B cells‑mediated adaptive immunity

Although little research has paid insights into the issue of 
B cells in IRI, B cells gradually prove to be a component 
of the immune mechanism of IRI [119]. Experimental data 
show that compared with wild-type mice, B-cells deficient 
mice have functional protection for IRI [120]. When com-
pared to the non-ischemic intestine, the B-cell chemokine 
CXCL13 is discovered to be ubiquitously expressed in the 
IRI region, as well as the B-cell-specific CXC chemokine 
receptor 5 (CXCR5) transcript, indicating that the intestinal 
tract affected by IRI expresses the chemokine CXCL13 and 
that attracting CXCR5 B cells into the inflammatory region 
is conducive to antibody-independent damage [121]. A 
recent study provides evidence for rapid up-regulation of the 
chemokine CXCL13 after renal IRI which is confirmed to be 
connected with the timeframe of graft ischemia in the mouse 
model [122]. Furthermore, the repair capacity of B cells in 
IRI and organ transplantation appears to be contradictory 
in the literature. B cells travel to inflamed tissues during 
the repair stage of post-ischemic organs, which can increase 
atrophy and aggravate functional impairment by reducing 
tubular proliferation, demonstrating their new position in 
the repair of warm IRI [123]. According to transcriptome 
analysis of kidney transplant biopsies, B cells contribute to 
the pathogenesis of advanced immune-mediated graft fibro-
sis and are closely related to long-term clinical outcomes of 
the graft [124]. Therefore, the immune effect and oriented 
mechanism of B cells in IRI should be given more consid-
eration when it comes to organ transplantation.

Conclusions

Organ transplant research over the last few decades is highly 
concentrated on post-transplant patients’ management 
especially immunosuppression. IRI is a major contributor 
to transplanted organ dysfunction and rejection. Although 
innate and adaptive immunity have been discovered to play 
essential roles in IRI during organ transplantation, the path-
way and precise involvement of the immune response at var-
ious stages has not yet to be elucidated. Finally, we cannot 
deny that post-transplant rejection is the predominant cause 
of long-term graft survival and chronic nonfunctioning. 
Perhaps the perioperative IRI-induced early graft immune 
response seems to have a role in transplant rejection. An 
in-depth examination of the involvement of immune sys-
tem, as well as a better knowledge of the interaction of vari-
ous immune cells, would aid in clarifying the complicated 
immunity mechanism of IRI during organ transplantation. 
Moreover, it is also significant in the formation of new diag-
nostic and therapeutic procedures, as well as in the preven-
tion and treatment of early peri-operative graft rejection.
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