Skip to main content
Log in

Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Bile acids can regulate liver disease progression by affecting the functions of gut microbiota and immune cells. As the most potent natural agonist of G-protein coupled bile acid receptor 5 (TGR5) (expressed in macrophages, HSCs, and monocytes), lithocholic acid (LCA) has multiple functions, such as inhibiting inflammation and regulating metabolism. Therefore, this study aims to investigate the effects of LCA on immune cells and HSCs in liver fibrosis.

Methods

A liver fibrosis mouse model was induced by carbon tetrachloride followed by gavage of LCA, and the effects of LCA were evaluated by serum biochemical analysis, liver histology, and western bolt. Plasma cytokine levels and the number of immune cells were determined by cytometric bead array and flow cytometry, respectively.

Results

LCA could inhibit the activation of HSCs by inducing apoptosis and reducing the activation of transforming growth factor-β (TGF-β) Smad-dependent and Smad-independent pathways. Meanwhile, LCA inhibited glycolysis and promoted oxidative phosphorylation, leading to the differentiation of macrophages to M2 type and inhibiting their differentiation to M1 type. Furthermore, LCA increased the recruitment of NK cells and reduced the activation of NKT cells. However, these effects of LCA were attenuated after antibiotics reduced the diversity and abundance of the gut microbiota.

Conclusions

Gut microbiota and LCA exerted synergistic anti-inflammatory effects on liver fibrosis. The combined intervention of gut microbiota and LCA will be a new strategy for treating liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AceCS1:

Acetyl-CoA synthetase

ACSL1:

Acyl-CoA synthetase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

Acly:

ATP-citrate lyase

CCl4:

Carbon tetrachloride

CYP7A1:

Cholesterol 7α-hydroxylase

EMC:

Extracellular matrix

TGR5:

G protein-coupled receptors

H&E:

Hematoxylin and eosin

HSCs:

Hepatic stellate cells

IFN:

Immune interferon

Timp-1:

Inhibitor of matrix metalloproteinases 1

IL:

Interleukin

LPS:

Lipopolysaccharide

LCA:

Lithocholic acid

MMP-2:

Matrix metalloproteinase

MoMFs:

Monocyte-derived macrophages

NK:

Natural killer

NKT:

Natural killer T

NLRP3:

NOD-, LRR- and pyrin domain-containing 3

NF-κB:

Nuclear factor κB

SD:

Standard deviations

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

VM:

Vancomycin + ampicillin

α-SMA:

α-Smooth muscle actin

References

  1. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153:601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fabre T, Molina MF, Soucy G, Goulet JP, Willems B, Villeneuve JP, et al. Type 3 cytokines IL-17A and IL-22 drive TGF-beta-dependent liver fibrosis. Sci immunol. 2018;3(28):7754.

    Article  Google Scholar 

  3. Mountford S, Effenberger M, Noll-Puchta H, Griessmair L, Ringleb A, Haas S, et al. Modulation of liver inflammation and fibrosis by interleukin-37. Front Immunol. 2021;12: 603649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bataller R, Brenner DA. Liver fibrosis. J Clin Investig. 2005;115:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng H, Sun R. Liver-resident NK cells and their potential functions. Cell Mol Immunol. 2017;14(11):890–294.

    Article  CAS  PubMed Central  Google Scholar 

  6. Li M, Li C, Wu X, Chen T, Ren L, Xu B, et al. Microbiota-driven interleukin-17 production provides immune protection against invasive candidiasis. Crit Care. 2020;24:268.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Park JW, Jung KH, Lee JH, Moon SH, Cho YS, Lee KH. (89)Zr anti-CD44 immuno-PET monitors CD44 expression on splenic myeloid cells and HT29 colon cancer cells. Sci Rep. 2021;11:3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campana L, Iredale JP. Regression of liver fibrosis. Semin Liver Dis. 2017;37:1–10.

    Article  PubMed  Google Scholar 

  9. Dong F, Jiang S, Li J, Wang Y, Zhu L, Huang Y, et al. The histone demethylase KDM4D promotes hepatic fibrogenesis by modulating Toll-like receptor 4 signaling pathway. EBioMedicine. 2019;39:472–83.

    Article  PubMed  Google Scholar 

  10. Wammers M, Schupp AK, Bode JG, Ehlting C, Wolf S, Deenen R, et al. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci Rep. 2018;8:255.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernstein H, Bernstein C, Payne CM, Dvorak K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 2009;15:3329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng Y, Yue C, Zhang H, Chen H, Liu Y, Li J. Deoxycholic acid and lithocholic acid alleviate liver injury and inflammation in mice with klebsiella pneumoniae-induced liver abscess and bacteremia. J Inflamm Res. 2021;14:777–89.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 2020;27(659–670): e5.

    Google Scholar 

  15. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye JZ, Lv LX, Wu WR, Li YT, Shi D, Fang DQ, et al. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01967.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang C, Shao J, Lou C, Wu F, Ge T, Gao H, et al. Reduced energy metabolism impairs t cell-dependent b cell responses in patients with advanced HBV-related cirrhosis. Front Immunol. 2021;12: 660312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.

    Article  CAS  PubMed  Google Scholar 

  19. Oakley F, Meso M, Iredale JP, Green K, Marek CJ, Zhou X, et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 2005;128:108–20.

    Article  CAS  PubMed  Google Scholar 

  20. Han QJ, Mu YL, Zhao HJ, Zhao RR, Guo QJ, Su YH, et al. Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells. World J Gastroenterol. 2021;27:3581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology; 49.

  22. Ajuebor MN, Aspinall AI, Zhou F, Le T, Yang Y, Urbanski SJ, et al. Lack of chemokine receptor ccr5 promotes murine fulminant liver failure by preventing the apoptosis of activated cd1d-restricted nkt cells. J Immunol. 2005;174:8027–37.

    Article  CAS  PubMed  Google Scholar 

  23. Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends cancer. 2019;5:822–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends in cancer. 2019;5(12):822–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan YT, Wang N, Tan HY, Li S, Feng Y. Targeting hepatic stellate cells for the treatment of liver fibrosis by natural products: is it the dawning of a new era? Front Pharmacol. 2020;11:548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin invest. 1998;102:538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh HD, Otano I, Rombouts K, Singh KP, Peppa D, Gill US, et al. TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Sci Rep. 2017;7:5514.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.

    Article  CAS  PubMed  Google Scholar 

  29. Caporaso JG, Lauber CL, Costello E. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lavelle A, Lennon G, O"Sullivan O, Docherty N, Balfe A, Maguire A, et al. 2015 Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut:gutjnl-2014–307873.

  31. Cheema SK, Cikaluk D, Agellon LB. Dietary fats modulate the regulatory potential of dietary cholesterol on cholesterol 7 alpha-hydroxylase gene expression. J Lipid Res. 1997;38:315–23.

    Article  CAS  PubMed  Google Scholar 

  32. Aydin MM, Akcali KC. Liver fibrosis. Turkish J gastroenterology. 2018;29:14–21.

    Article  Google Scholar 

  33. Zhou Y, Zhang Q, Kong Y, Guo X, Zhang H, Fan H, et al. Insulin-like growth factor binding protein-related protein 1 activates primary hepatic stellate cells via autophagy regulated by the pi3k/akt/mtor signaling pathway. Dig Dis Sci. 2020;65:509–23.

    Article  CAS  PubMed  Google Scholar 

  34. Glassner A, Eisenhardt M, Kokordelis P, Kramer B, Wolter F, Nischalke HD, et al. Impaired CD4(+) T cell stimulation of NK cell anti-fibrotic activity may contribute to accelerated liver fibrosis progression in HIV/HCV patients. J Hepatol. 2013;59:427–33.

    Article  CAS  PubMed  Google Scholar 

  35. Han QJ, Mu YL, Zhao HJ, Zhao RR, Zhang J. Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells. World J Gastroenterol. 2021;27:3581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu L, Jin M, Tao Q, Yu L, Du J, Wang C, et al. Effective amelioration of liver fibrosis through lentiviral vector carrying toxoplasma gondii gra15ii in murine model. Front Immunol. 2018;9:1572.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Tang B, Long L, Luo P, Xiang W, Li X, et al. Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nat Commun. 2021;12:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–93.

    Article  CAS  PubMed  Google Scholar 

  39. Wei M, Huang F, Zhao L, Zhang Y, Yang W, Wang S, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine. 2020;55: 102766.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhu X, Guo Q, Zou J, Wang B, Zhang Z, Wei R, et al. MiR-19a-3p suppresses m1 macrophage polarization by inhibiting stat1/irf1 pathway. Front Pharmacol. 2021;12: 614044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reinhold S, Blankesteijn WM, Foulquier S. The Interplay of WNT and PPARgamma signaling in vascular calcification. Cells. 2020;9(12):2658.

    Article  CAS  PubMed Central  Google Scholar 

  42. Patel SK, Janjic JM. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics. 2015;5:150–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu M, He Y, Gong M, Li Q, Tang Q, Wang X, et al. Role of neuro-immune cross-talk in the anti-obesity effect of electro-acupuncture. Front Neurosci. 2020;14:151.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eto H, Ishimine H, Kinoshita K, Watanabe-Susaki K, Kato H, Doi K, et al. Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency. Stem cells dev. 2013;22:985–97.

    Article  CAS  PubMed  Google Scholar 

  45. Delire B, Henriet P, Lemoine P, Leclercq IA, Starkel P. Chronic liver injury promotes hepatocarcinoma cell seeding and growth, associated with infiltration by macrophages. Cancer Sci. 2018;109:2141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer. 2019;7:267.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Irvine KM, Clouston AD, Gadd VL, Miller GC, Wong WY, Melino M, et al. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. Fibrogenesis tissue repair. 2015;8:19.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215:383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all those who have helped us.

Funding

The funding sources come from the National Science and Technology Major Project of China(2017ZX10202203, 2018ZX10302206).

Author information

Authors and Affiliations

Authors

Contributions

ZC, JS, and CT designed the experiments and wrote the manuscript. TG, JS, GW, and LP conducted the major parts of the experiments.

Corresponding author

Correspondence to Zhi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Contribution to the field statement

Lithocholic acid (LCA) achieves anti-inflammatory and anti-fibrotic effects in the liver by regulating the differentiation of macrophages and inhibiting the activation of hepatic stellate cells (HSCs). The impacts of LCA on liver fibrosis need the synergistic effects of the gut microbiota.

Ethics approval and consent to participate

The First Affiliated Hospital of Zhejiang University School of Medicine ethics committee approved these animal experiments in accordance with Helsinki ethics committee guidelines. Informed consent was obtained from all participants. The Ethics Committee approved the experimental protocol of the same hospital (V2.0/20190503).

Consent for publication

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Ge, T., Tang, C. et al. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis. Inflamm. Res. 71, 1389–1401 (2022). https://doi.org/10.1007/s00011-022-01629-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01629-4

Keywords

Navigation