Skip to main content
Log in

IL-38, a potential therapeutic agent for lupus, inhibits lupus progression

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Previous studies reported that IL-38 was abnormally expressed in patients with systemic lupus erythematosus (SLE). However, the involvement of IL-38 in the pathophysiology of SLE remains unknown.

Methods

The therapeutic potential of IL-38 was tested in pristane-treated wild-type (WT) and IL-38−/− mice. Thus, SLE was induced via pristane in WT and IL-38−/− mice. Afterwards, the liver, spleen, and kidney of each mouse were obtained. The flow cytometric analysis of the immune cells, serologic expression of inflammatory cytokines and autoantibodies, renal histopathology, and inflammatory signaling were evaluated.

Results

WT mice with pristane-induced lupus exhibited hepatomegaly, splenomegaly, severe kidney damages, increased lymphoproliferation, enhanced lymphoproliferation, and upregulated inflammatory cytokines, such as IL-6, IL-13, IL-17A, MIP-3α, IL-12p70, and IFNγ, and elevated levels of autoantibodies, such as ANA IgG, anti-dsDNA IgG, and total IgG. IL-38−/− mice whose lupus progressed, had elevated cells of CD14+, CD19+, CD3+, and Th1, upregulated inflammatory cytokines and autoantibodies, and severe pathological changes in kidney. Administration of recombinant murine IL-38 to pristane-treated IL-38−/− mice improved their renal histopathology, which depended on ERK1/2, JNK1/2, p38, NF-κB p65, and STAT5 signaling pathways.

Conclusion

IL-38 regulates SLE pathogenesis. Furthermore, targeting IL-38 is critical in the treatment of SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Datasets are available from the corresponding author on reasonable request.

Abbreviations

SLE:

Systemic lupus erythematosus

WT:

Wild-type

IL-38:

Interleukin-38

LN:

Lupus nephritis

IL-1Ra:

IL-1 receptor antagonist

IL-36Ra:

IL-36 receptor antagonist

RA:

Rheumatoid arthritis

References

  1. Xu WD, Huang AF. Role of interleukin-38 in chronic inflammatory diseases: a comprehensive review. Front Immunol. 2018;9:1462.

    Article  Google Scholar 

  2. Esmaeilzadeh A, Bahmaie N, Nouri E, Hajkazemi MJ, Zareh RM. Immunobiological properties and clinical applications of interleukin-38 for immune-mediated disorders: a systematic review study. Int J Mol Sci. 2021;22(22):12552.

    Article  CAS  Google Scholar 

  3. Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal. 2020;75: 109773.

    Article  CAS  Google Scholar 

  4. Hao Z, Liu Y. IL-38 and IL-36 target autophagy for regulating synoviocyte proliferation, migration, and invasion in rheumatoid arthritis. Dis Markers. 2021;2021:7933453.

    PubMed  PubMed Central  Google Scholar 

  5. Huang L, Zhang H, Zhao D, Hu H, Lu Z. Interleukin-38 suppresses cell migration and proliferation and promotes apoptosis of colorectal cancer cell through negatively regulating extracellular signal-regulated kinases signaling. J Interferon Cytokine Res. 2021;41(10):375–84.

    Article  CAS  Google Scholar 

  6. Xu WD, Su LC, Liu XY, et al. IL-38: a novel cytokine in systemic lupus erythematosus pathogenesis. J Cell Mol Med. 2020;24(21):12379–89.

    Article  CAS  Google Scholar 

  7. Xu WD, Su LC, He CS, Huang AF. Plasma interleukin-38 in patients with rheumatoid arthritis. Int Immunopharmacol. 2018;65:1–7.

    Article  CAS  Google Scholar 

  8. Freitas EC, de Oliveira MS, Monticielo OA. Pristane-induced lupus: considerations on this experimental model. Clin Rheumatol. 2017;36(11):2403–14.

    Article  Google Scholar 

  9. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.

    Article  CAS  Google Scholar 

  10. Markowitz GS, D’Agati VD. The ISN/RPS 2003 classification of lupus nephritis: an assessment at 3 years. Kidney Int. 2007;71(6):491–5.

    Article  CAS  Google Scholar 

  11. Satoh M, Kumar A, Kanwar YS, Reeves WH. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc Natl Acad Sci USA. 1995;92(24):10934–8.

    Article  CAS  Google Scholar 

  12. Reeves WH, Lee PY, Weinstein JS, Satoh M, Lu L. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 2009;30(9):455–64.

    Article  CAS  Google Scholar 

  13. Fu R, Xia Y, Li M, et al. Pim-1 as a therapeutic target in lupus nephritis. Arthritis Rheumatol. 2019;71(8):1308–18.

    Article  CAS  Google Scholar 

  14. Zarrabi M, Nazarinia M, Rahimi Jaberi A, Gholijani N, Amirghofran Z. Elevated IL-38 serum levels in newly diagnosed multiple sclerosis and systemic sclerosis patients. Med Princ Pract. 2021;30(2):146–53.

    Article  Google Scholar 

  15. Xie C, Yan W, Quan R, et al. Interleukin-38 is elevated in inflammatory bowel diseases and suppresses intestinal inflammation. Cytokine. 2020;127: 154963.

    Article  CAS  Google Scholar 

  16. Luo D, Chen Y, Zhou N, Li T, Wang H. Blockade of Th17 response by IL-38 in primary Sjogren’s syndrome. Mol Immunol. 2020;127:107–11.

    Article  CAS  Google Scholar 

  17. Rudloff I, Godsell J, Nold-Petry CA, et al. Brief report: interleukin-38 exerts anti-inflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(12):3219–25.

    Article  CAS  Google Scholar 

  18. Chu M, Tam LS, Zhu J, et al. In vivo anti-inflammatory activities of novel cytokine IL-38 in Murphy Roths Large (MRL)/lpr mice. Immunobiology. 2017;222(3):483–93.

    Article  CAS  Google Scholar 

  19. Chu M, Chu IM, Yung EC, et al. Aberrant expression of novel cytokine IL-38 and regulatory T lymphocytes in childhood asthma. Molecules. 2016;21(7):933.

    Article  Google Scholar 

  20. Ge Y, Huang M, Wu Y, Dong N, Yao YM. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4(+) CD25(+) regulatory T cells. J Cell Mol Med. 2020;24(2):2027–39.

    Article  CAS  Google Scholar 

  21. Sigdel KR, Duan L, Wang Y, et al. Serum cytokines Th1, Th2, and Th17 expression profiling in active lupus nephritis-IV: from a Southern Chinese Han population. Mediators Inflamm. 2016;2016:4927530.

    Article  Google Scholar 

  22. Mao YM, Zhao CN, Leng J, et al. Interleukin-13: a promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev. 2019;45:9–23.

    Article  CAS  Google Scholar 

  23. Xiao ZX, Hu X, Zhang X, et al. High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther. 2020;5(1):34.

    Article  CAS  Google Scholar 

  24. Goropevšek A, Holcar M, Pahor A, Avčin T. STAT signaling as a marker of SLE disease severity and implications for clinical therapy. Autoimmun Rev. 2019;18(2):144–54.

    Article  Google Scholar 

  25. Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–46.

    Article  CAS  Google Scholar 

  26. Gao X, Chan PKS, Lui GCY, et al. Interleukin-38 ameliorates poly(I:C) induced lung inflammation: therapeutic implications in respiratory viral infections. Cell Death Dis. 2021;12(1):53.

    Article  CAS  Google Scholar 

  27. Yu H, Liu Y, Xie W, Xie Q, Liu Q, Cheng L. IL-38 alleviates the inflammatory response and the degeneration of nucleus pulposus cells via inhibition of the NF-κB signaling pathway in vitro. Int Immunopharmacol. 2020;85: 106592.

    Article  CAS  Google Scholar 

  28. Ma K, Du W, Xiao F, et al. IL-17 sustains the plasma cell response via p38-mediated Bcl-xL RNA stability in lupus pathogenesis. Cell Mol Immunol. 2021;18(7):1739–50.

    Article  CAS  Google Scholar 

  29. Hou LF, He SJ, Li X, et al. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum. 2011;63(8):2445–55.

    Article  CAS  Google Scholar 

  30. Chang A, Clark MR, Ko K. Cellular aspects of the pathogenesis of lupus nephritis. Curr Opin Rheumatol. 2021;33(2):197–204.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81701606), and Sichuan Provincial Natural Science Foundation (2022NSFSC0697, 2022NSFSC0694).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: WX, LS, and AH. Acquisition of data: LF, YL, and XL. Analysis and interpretation of data: QH, QW, and JZ. Drafting the article: WX, LS, and AH. Final approval of the version of the article to be published: all the authors, and all the authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to An-Fang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was approved Animal Ethics Committee of Southwest Medical University.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WD., Su, LC., Fu, L. et al. IL-38, a potential therapeutic agent for lupus, inhibits lupus progression. Inflamm. Res. 71, 963–975 (2022). https://doi.org/10.1007/s00011-022-01581-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01581-3

Keywords

Navigation