Skip to main content

Advertisement

Log in

H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The CagA (cytotoxin-related gene A, CagA) protein is an important factor for the pathogenicity of Helicobacter pylori (H. pylori). Although H. pylori has previously been shown to activate the NLRP3 inflammasome, it remains unclear what role CagA plays in this process. In the current study, we aimed to investigate the effect of CagA on NLRP3 activation and how it is linked to gastric cancer cell migration and invasion.

Methods

CagA positive H. pylori strain (Hp/CagA+) and CagA gene knockout mutant (Hp/ΔCagA) infected and the pcDNA3.1/CagA plasmid transfected gastric epithelial cell lines, respectively. The morphological alterations of cells under a microscope; the NLRP3 inflammasome-related markers: NLRP3, caspase-1, and ASC protein levels were detected by Western blot, IL-1β and IL-18 levels were determined by ELISA; cell migration and invasion were determined by transwell assay; and the pyroptosis levels and intracellular ROS were determined by flow cytometry analysis. Then, pretreated with 5 mM NAC for 2 h and subsequently transfected with the pcDNA3.1/CagA plasmid for 48 h, the effects of NAC pretreatment on CagA-induced NLRP3 inflammasome-related markers expression and cell pyroptosis were examined, finally assessed the effect of CagA on migration and invasion in NLRP3-silenced cells.

Results

We found that Hp/CagA+ strain infection and pcDNA3.1/CagA vector transfection result in NLRP3 inflammasome activation, generation of intracellular ROS, and increased invasion and migration of gastric cancer cells. Moreover, we found that ROS inhibition via NAC effectively blocks NLRP3 activation and pyroptosis. Silencing of NLRP3 reduces the effects of CagA on gastric cancer cell migration and invasion.

Conclusion

Our study shows that CagA can promote the invasion and migration of gastric cancer cells by activating NLRP3 inflammasome pathway. These findings provide novel insights into the mechanism of gastric cancer induction by H. pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin. 2021;71(1):1542–4863.

    Google Scholar 

  2. Wang F, Meng W, Wang B, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer[J]. Cancer Lett. 2014;345(2):196–202.

    Article  CAS  Google Scholar 

  3. Plummer M, De Martel C, Vignat J, et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis[J]. Lancet Glob Health. 2016;4(9):e609–16.

    Article  Google Scholar 

  4. Ahn HJ, Dong SL. Helicobacter pylori in gastric carcinogenesis[J]. World J Gastrointest Oncol. 2015;7(12):455–65.

    Article  Google Scholar 

  5. Rojasrengifo DF, Alvarezsilva MC, Ulloaguerrero CP, et al. Intramolecular energies of the cytotoxic protein CagA of Helicobacter pylori as a possible descriptor of strains’ pathogenicity level[J]. Comput Biol Chem. 2018;76:17–22.

    Article  CAS  Google Scholar 

  6. Westmeier D, Posselt G, Hahlbrock A, et al. Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori[J]. Nanoscale. 2018;10(3):1453–63.

    Article  CAS  Google Scholar 

  7. Torres J, Pérez-Pérez GI, Leal-Herrera Y, et al. Infection with CagA+Helicobacter pylori strains as a possible predictor of risk in the development of gastric adenocarcinoma in Mexico[J]. Int J Cancer. 1998;78(3):298–300.

    Article  CAS  Google Scholar 

  8. Franco AT, Johnston E, Krishna U, et al. Regulation of gastric cancinogenesis by Helicobacter pylorivirolence factors. Cancer Res. 2008;68:379–87.

    Article  CAS  Google Scholar 

  9. Zhang B, Hu L, Zang M, et al. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development[J]. Oncotarget. 2016;7(9):9788–800.

    Article  Google Scholar 

  10. Wen S, Moss SF. Helicobaxter pylori virulence factors in gastric carcinogenesis. Cancer Lett. 2009;282:1–8.

    Article  CAS  Google Scholar 

  11. Balkwill F, Coussens LM. Cancer: an inflammatory link[J]. Nature. 2004;431(7007):405–6.

    Article  CAS  Google Scholar 

  12. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell. 2002;10(2):417–26.

    Article  CAS  Google Scholar 

  13. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.

    Article  CAS  Google Scholar 

  14. Jiang D, Chen S, Sun R, Zhang X, Wang D. The NLRP3 inflammasome: role in metabolic disorders and regulation by metabolic pathways. Cancer Lett. 2018;419:8–19.

    Article  CAS  Google Scholar 

  15. El-Sharkawy LY, Brough D, Freeman S. Inhibiting the NLRP3 inflammasome. Molecules. 2020;25(23):5533.

    Article  CAS  Google Scholar 

  16. Wei-guoLIN HU, Jin-ye SONG, Qi-bin. Progress in the relationship of inflammasome and tumor metastasis[J]. J Chin Oncol. 2016;161(02):23–9.

    Google Scholar 

  17. Wang H, Luo Q, Feng X, et al. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma[J]. BMC Cancer. 2018;18(1):500–2.

    Article  Google Scholar 

  18. Xiang L, Sheng L, Jingjing L, et al. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway[J]. Pathog Dis. 2015;73(4):1–8.

    Google Scholar 

  19. Semper RP, Mejías-Luque R, Groß C, et al. Helicobacter pylori–induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag Pathogenicity Island[J]. J Immunol. 2014;193(7):3566–76.

    Article  CAS  Google Scholar 

  20. Pachathundikandi SK, Backert S. Helicobacter pylori controls NLRP3 expression by regulating hsa-miR-223-3p and IL-10 in cultured and primary human immune cells[J]. Innate Immun. 2018;24(1):11–23.

    Article  CAS  Google Scholar 

  21. Zhengmei L, Qiong J, Jianjiang Z, et al. Effect of Helicobacter pylori infection on NLRP3 inflammasome activation[J]. J Shandong Univ. 2016;54(3):9–13.

    Google Scholar 

  22. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—first American Cancer Society award lecture on cancer epidemiology and prevention[J]. Can Res. 1992;52(24):6735–40.

    CAS  Google Scholar 

  23. Huang JY, Sweeney EG, Sigal M, et al. Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium[J]. Cell Host Microbe. 2015;18(2):147–56.

    Article  CAS  Google Scholar 

  24. Yamaoka Y. Helicobacter pylori typing as a tool for tracking human migration[J]. Clin Microbiol Infect. 2009;15(9):829–34.

    Article  CAS  Google Scholar 

  25. Camorlinga-Ponce M, Perez-Perez G, Gonzalez-Valencia G, et al. Helicobacter pylori genotyping from American indigenous groups shows novel Amerindian vacA and CagA alleles and Asian, African and European admixture[J]. PLoS ONE. 2011;6(11):e27212.,50-e27253.

    Article  Google Scholar 

  26. Higashi H, Tsutsumi R, Muto S, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein[J]. Science. 2002;295(5555):683–6.

    Article  CAS  Google Scholar 

  27. Amieva M, Peek RM. Pathobiology of helicobacter pyliori–induced gastric cancer[J]. Gastroenterology. 2016;150(1):64–78.

    Article  CAS  Google Scholar 

  28. Lind J, Backert S, Hoffmann R, et al. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains[J]. BMC Microbiol. 2016;16(1):201–17.

    Article  Google Scholar 

  29. Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis[J]. Cell Host Microbe. 2014;15(3):306–16.

    Article  CAS  Google Scholar 

  30. Roujeinikova A. Phospholipid binding residues of eukaryotic membrane-remodelling F-BAR domain proteins are conserved in Helicobacter pylori CagA[J]. BMC Res Notes. 2014;7(1):525.

    Article  Google Scholar 

  31. Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis[J]. J Cell Physiol. 2018;233(3):2116.

    Article  CAS  Google Scholar 

  32. Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases[J]. Redox Biol. 2015;4:296–307.

    Article  CAS  Google Scholar 

  33. Viala J, Chaput C, Boneca IG, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island[J]. Nat Immunol. 2004;5(11):1166.

    Article  CAS  Google Scholar 

  34. Kim DJ, Park JH, Franchi L, Backert S, Núñez G. The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1β production in Helicobacter pylori infected dendritic cells. Eur J Immunol. 2013;43(10):2650–8. https://doi.org/10.1002/eji.201243281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141–60.

    Article  CAS  Google Scholar 

  36. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev. 2017;277(1):61–75.

    Article  CAS  Google Scholar 

  37. Abais JM, Xia M, Zhang Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? [J]. Antioxid Redox Signal. 2015;22(13):1111–29.

    Article  CAS  Google Scholar 

  38. Xiang LI, Yue-Ping HE, Sheng LIU, et al. Helicobacter pylori induces cytokines IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway[J]. Chin J Immunol. 2015;3:308–13.

    Google Scholar 

  39. Lee YS, Lee DY, Yu DY, Kim S, Lee C. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells. Helicobacter. 2014;19:465–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor, the associate editor, and the reviewer.

Funding

The work was supported by National Natural Science Foundation of China (31660031, 31760328, 31960028), Project of Science and Technology of Guiyang (ZhuKeHe[2017]30-4), The Key Project of Science and Technology of Guizhou Province(QianKeHe JC [2020]1Z010), and the Central Government Guides Local Science and Technology Development Projects of Guizhou (Grant no. [2019] 4008).

Author information

Authors and Affiliations

Authors

Contributions

YX conceived and designed the experiments, XYZ, YZ, YL, LC and DC performed the experiments and analyzed the data. QW, LYB and JJZ gave intellectual advice and revised the manuscript. YX and XYZ wrote the paper.

Corresponding authors

Correspondence to JianJiang Zhou or Yuan Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The project was approved by the Ethic Committee of The Guizhou Medical University.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, C., Chen, D. et al. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion. Inflamm. Res. 71, 141–155 (2022). https://doi.org/10.1007/s00011-021-01522-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01522-6

Keywords

Navigation