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A note on ideal C∗-completions and amenability

Tomasz Kochanek

Abstract. For a discrete group G, we consider certain ideals I ⊂ c0(G) of sequences with
prescribed rate of convergence to zero. We show that the equality between the full group
C∗-algebra of G and the C∗-completion C∗

I(G) in the sense of Brown and Guentner (Bull.
London Math. Soc. 45:1181–1193, 2013) implies that G is amenable.
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1. Introduction

By a classical result of Hulanicki [4], amenable groups can be characterized by
the fact that their full and reduced group C∗-algebras coincide. In [2], Brown
and Guentner obtained several far reaching generalizations of this fact by intro-
ducing a new C∗-completion of any discrete group G induced by an algebraic
ideal D of �∞(G). Namely, the corresponding group C∗-algebra, denoted by
C∗

D(G), is the completion of the group ring C[G] with respect to the norm

‖x‖D = sup
{‖π(x)‖ : π is a D-representation

}
,

where by a D-representation we mean a unitary representation π of G on
a Hilbert space H such that the matrix coefficient functions πξ,η belong to D
for all ξ, η from a dense subspace of H. Using this idea, Brown and Guentner
provided new C∗-algebraic characterizations of a-T-menability and Kazhdan’s
property (T) and, among other things, they showed that the equality C∗

�p(G) =
C∗(G) is equivalent to G being amenable.
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In this note, we consider the ideals of c0(G) consisting of sequences with
prescribed rate of convergence. Namely, for f ∈ c0(G) and ε > 0, we set

ν(f, ε) = #
{
s ∈ G : |f(s)| ≥ ε

}
,

and define

I(an) =
{
f ∈ c0(G) : ν(f, 1

n ) = O(an)
}
.

We show that the condition

C∗
I(an)

(G) = C∗(G) (*)

is equivalent to (or implies) amenability, provided that (an) does not grow too
fast.

Amenability is strictly connected to the famous and widely studied stability
property arising from a problem posed by Ulam [7] whether any quasimorphism
can be uniformly approximated by a homomorphism, the problem first solved
for commutative groups by Hyers [5]. We say that a group G has the Hyers–
Ulam property provided that for every map φ : G → R satisfying

sup
{|φ(xy) − φ(x) − φ(y)| : x, y ∈ G

}
< ∞

we have dist(φ,Hom(G,R)) < ∞. It is known (see [6]) that every amenable
group has the Hyers–Ulam property, but the converse is not true which is
witnessed e.g. by the groups SL(n,Z) for n ≥ 3. Although there is an al-
gebraic characterization of the Hyers–Ulam property, due to Bavard [1], no
C∗-algebraic characterization is known.

Hence, a natural question concerning Ulam stability reads as follows: Is
there an increasing sequence (an) ⊂ R+ such that for any discrete group G
the following characterization holds true: G has the Hyers–Ulam property if
and only if condition (∗) holds true? Our result reduces the size of the set of
possible candidates for (an).

2. Results

In what follows, G stands for a general discrete group. We will need the fol-
lowing two results proved by Brown and Guentner.

Proposition 1. (see [2, Remark 2.5]) For any ideal D ⊂ �∞(G), C∗
D(G) has

a faithful D-representation.

Theorem 2. ([2, Thm. 3.2]) Let D ⊂ �∞(G) be a translation-invariant ideal.
Then, we have C∗

D(G) = C∗(G) if and only if there exists a sequence (hn) ⊂ D
of positive-definite functions converging pointwise to the constant one function.

Our main result reads as follows.
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Theorem 3. (a) If (an) = O(n2+δ) for every δ > 0, then

C∗
I(an)

(G) = C∗
r(G)

and hence condition (∗) is equivalent to G being amenable.
(b) Suppose a sequence (an) ⊂ R+ is such that for some k > 0, we have

∞∑

n=1

an

nk
< ∞. (**)

Then, condition (∗) implies that G is amenable.

Lemma 4. Let f ∈ c0(G) and p ≥ 1. We have f ∈ �p(G) if and only if the
series

∞∑

n=1

ν(f, 1
n )n−(p+1) (2.1)

converges.

Proof. Let Γn = {s ∈ G : 1
n ≤ |f(s)| < 1

n−1} for n ∈ N with the convention
1
0 = ∞, and note that

∑

s∈G

|f(s)|p =
∞∑

n=1

∑

s∈Γn

|f(s)|p.

Since |Γ1| = ν(f, 1) and |Γn| = ν(f, 1
n ) − ν(f, 1

n−1 ) for n ≥ 2, we have

∑

s∈G

|f(s)|p ≤ ν(f, 1) · ‖f‖∞ +
∞∑

n=1

(
ν(f, 1

n+1 ) − ν(f, 1
n )

) · n−p (2.2)

and
∑

s∈G

|f(s)|p ≥
∞∑

n=1

(
ν(f, 1

n+1 ) − ν(f, 1
n )

) · (n + 1)−p. (2.3)

Denote dn = ν(f, 1
n+1 ) − ν(f, 1

n ); the series occurring in (2.2) is the limit of
partial sums

lim
N→∞

N∑

n=1

dnn
−p

= lim
N→∞

[
N−1∑

n=1

(d1 + . . . + dn)
(
n−p − (n + 1)−p

)
+ (d1 + . . . + dN ) · N−p

]

.

Since d1 + . . . + dN = ν(f, 1
N+1 ) − ν(f, 1), the above limit exists if and only if

the series
∞∑

n=1

ν(f, 1
n+1 )(n−p − (n + 1)−p)
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converges. By Lagrange’s mean value theorem, we have n−p − (n + 1)−p =
p θ

−(p+1)
n for some θn ∈ (n, n+1), hence the above series converges if and only

if (2.1) converges.
We have proved that the convergence of series (2.1) implies that f ∈ �p(G).

The converse implication is proved in a similar fashion by using estimate (2.3)
instead of (2.2). �

Proof of Theorem 3. (a) Suppose that (an) = O(n2+δ) for each δ > 0. Then
for any f ∈ I(an) and any δ > 0 there is Cδ > 0 such that

ν(f, 1
n )n−(p+1) ≤ Cδ · n−p+1+δ (n ∈ N).

Therefore, series (2.1) converges for every p > 2 and hence Lemma 4 implies
that

I(an) ⊆
⋂

ε>0

�2+ε(G). (2.4)

By the Cowling–Haagerup–Howe theorem [3], if π : G → B(H) is a unitary
representation of G with a cyclic vector v ∈ H such that πv,v ∈ ⋂

ε>0 �2+ε(G),
then π is weakly contained in the regular representation λ, i.e. ‖π(x)‖ ≤ ‖λ(x)‖
for each x ∈ G.

Now, for any fixed x ∈ C∗
I(an)

(G) we use Proposition 1 to pick a cyclic I(an)-
representation π with π(x) �= 0 (the restriction of a faithful I(an)-representation
to a cyclic subspace). Then, as explained above, inclusion (2.4) implies that π
is weakly contained in the regular representation. Therefore, x is not in the ker-
nel of the canonical map C∗

I(an)
(G) → C∗

r(G), which proves that C∗
I(an)

(G) =
C∗

r(G).
(b) This is essentially [2, Remark 2.13] by Brown and Guentner. Notice

that condition (∗∗) says that for any f ∈ I(an) we have fk ∈ �1(G). Indeed,
let C > 0 be such that ν(f, 1

n ) ≤ Can. Then, the inequality |f(x)|k ≥ n−k

holds true for at most Can elements x ∈ G, hence ‖fk‖1 ≤ ν(f, 1) · ‖f‖∞ +
C

∑
n≥2 ann−k < ∞.

Now, by Theorem 2, condition (∗) implies that there exists a sequence
(hn) ⊂ I(an) of positive-definite functions converging pointwise to the con-
stant one function. In view of (∗∗), we have (hk

n) ⊂ �1(G); if fn ⊂ c00(G)
approximates the square root of hk

n in C∗
r(G), then hk

n is approximated by the
finitely supported positive-definite functions f∗

nfn. This yields C∗
r(G) = C∗(G),

i.e. G is amenable. �

We conclude our note with a corollary which shows that if there is any ideal
of the form I(an) characterizing the Hyers–Ulam property for discrete groups,
then (an) must grow quite rapidly. This follows from Theorem 3 and the fact
that the Hyers–Ulam property is weaker than amenability.
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Corollary 5. If there exists a sequence (an) ⊂ R+ such that condition (∗) char-
acterizes the Hyers–Ulam property, then (an) grows faster than any polyno-
mial.
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