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Abstract. The concept of Gromov hyperbolicity is a geometric concept that leads to a rich
general theory. Johnson and Kneser graphs are interesting combinatorial graphs defined from
systems of sets. In this work we compute the precise value of the hyperbolicity constant of
every Johnson graph. Also, we obtain good bounds on the hyperbolicity constant of every
Kneser graph, and in many cases, we even compute its precise value.
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1. Introduction

Johnson and Kneser graphs are classes of graphs defined from systems of sets.
In both classes of graphs the adjacency of their vertices depends on the inter-
section of their respective sets, however, these cases can be seen as opposites,
because, while in Johnson graphs the condition for two vertices to be adjacent
is that their respective sets differ in only one element, in Kneser graphs it is
that they differ completely.

The vertices of the Johnson graph J(n, k) are the k-element subsets of
an n-element set; two vertices are adjacent when the intersection of the two
vertices (subsets) contains (k − 1)-elements. Note that if k = 1 then J(n, 1)
is the complete graph Kn. The Johnson graph for n = 5 and k = 2 is the
complement of the Petersen graph, i.e., J(5, 2) is the line graph of K5. In
general, J(n, 2) is the line graph of the complete graph Kn.

The Kneser graph K(n, k) is the graph whose vertices correspond to the
k-element subsets of an n-element set An; two vertices are adjacent when the
intersection of their corresponding sets is empty. The Kneser graph K(n, 1)
is the complete graph with n vertices Kn. The Petersen graph is the Kneser
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graph for k = 2, n = 5, K(5, 2). Also, the odd graph On, a generalization of
the Petersen graph, is the Kneser graph On = K(2n − 1, n − 1).

Hyperbolicity in Gromov’s sense leads to a very rich general theory. This
term comes into use after the seminal work of Gromov [12]. This concept allows
to understand the properties of spaces such as classical hyperbolic spaces,
Riemannian manifolds of negative sectional curvature and discrete spaces such
as trees and Cayley graphs of many finitely generated groups. Hyperbolicity is
a very useful tool that allows us to understand the relationships between graphs
and varieties. It is known that graphs can model manifolds and many metric
spaces (this is an interesting fact, as it allows us to move from working with
a continuous structure that could be complicated to dealing with a discrete
structure, see, for example, [11,12]). In [19,22,27] the equivalence between
the hyperbolicity of many surfaces and the hyperbolicity of simpler graphs is
proved.

Today, the mathematical properties and applications of Gromov hyperbol-
icity are topics of growing interest in graph theory (see [1–7,9,10,13–16,19–
21,27,29] and the references therein).

Gromov hyperbolicity has also been applied to computer science in areas
such as automatic groups (see, for example, [18]), networks and algorithms
(see [17] and its references), random graphs (see, for example, [23–25]), etc.

There are several definitions of Gromov hyperbolicity which are equivalent.
We will work with the definition given by Rips’ condition (see the definition
in Sect. 2) for its geometrical meaning.

In Sect. 3 we compute the precise value of δ(J(n, k)) for every n and k.
In Sect. 4 we obtain good bounds of δ(K(n, k)) in relation of n and k,

and in many cases, we even compute its precise value. In order to do that we
obtain some results about Kneser graphs which are interesting by themselves,
as Propositions 4.7 and 4.15.

2. Background and previous results

We collect in this section some previous definitions and results which will be
useful later in the paper.

If X is a metric space, we say that a curve γ : [a, b] → X is a geodesic if
we have L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every s, t ∈ [a, b], where γ|[t,s]
denotes the restriction of the curve γ to the interval [t, s], and L denotes the
length in X (then γ is equipped with an arc-length parametrization). The
metric space X is said to be geodesic if for every pair of points in X there
exists a geodesic joining them; we denote by [xy] any geodesic joining x and
y; this notation is ambiguous, since in general we do not have uniqueness of
geodesics, but it is very convenient. Consequently, any geodesic metric space is
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connected. If the metric space X is a graph, then the edge joining the vertices
u and v will be denoted by uv.

Throughout this paper, G = (V,E) = (V (G), E(G)) denotes an undirected
(finite or infinite) simple (without loops and multiple edges) graph (not nec-
essarily connected) such that V �= ∅ and every edge has length 1. In order
to consider a connected graph G as a geodesic metric space, identify (by an
isometry) any edge uv ∈ E(G) with the interval [0, 1] in the real line; then the
edge uv (considered as a graph with just one edge) is isometric to the interval
[0, 1]. Thus, the points in G are the vertices and, also, the points in the interior
of any edge of G. In this way, any connected graph G has a natural distance
defined on its points, induced by taking shortest paths in G, and we can see
G as a metric graph. We denote by dG or d this distance. If x, y are in dif-
ferent connected components of G, we define dG(x, y) = ∞. These properties
guarantee that any connected component of any graph is a geodesic metric
space.

If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three
geodesics [x1x2], [x2x3] and [x3x1] is a geodesic triangle that will be denoted
by T = {x1, x2, x3} and we will say that x1, x2 and x3 are the vertices of the
triangle T ; it is usual to write also T = {[x1x2], [x2x3], [x3x1]}. We say that
T is δ-thin if any side of T is contained in the δ-neighborhood of the union
of the two other sides. We denote by δ(T ) the sharp thin constant of T , i.e.,
δ(T ) := inf{δ ≥ 0 | T isδ − thin}.

Definition 2.1. A metric space X is Gromov δ-hyperbolic or just δ-hyperbolic
(or satisfies the Rips condition with constant δ) if every geodesic triangle in
X is δ-thin. We denote by δ(X) the sharp hyperbolicity constant of X, i.e.,

δ(X) := sup{δ(T ) | T is a geodesic triangle in X}.

We say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0; then X is
hyperbolic if and only if δ(X) < ∞. If X has connected components {Xi}i∈I ,
then we define δ(X) := supi∈I δ(Xi), and we say that X is hyperbolic if δ(X) <
∞.

If we have a triangle with two identical vertices, we call it a “bigon”. Obvi-
ously, every bigon in a δ-hyperbolic space is δ-thin.

It is clear by the definition that to compute the precise value of δ(X) is
a difficult task. Hence, it is very useful to obtain bounds of the hyperbolicity
constant of X as those that appear in Lemmas 2.2 and 2.5.

In the classical references on this subject (see, e.g., [11]) appear several
different definitions of Gromov hyperbolicity, which are equivalent in the sense
that if X is δ-hyperbolic with respect to one definition, then it is δ′-hyperbolic
with respect to another definition (for some δ′ related to δ).

We want to remark that the main examples of hyperbolic graphs are the
trees. In fact, the hyperbolicity constant of a geodesic metric space can be
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viewed as a measure of how “tree-like” the space is, since those spaces X
with δ(X) = 0 are precisely the metric trees. This is an interesting subject
since, in many applications, one finds that the borderline between tractable
and intractable cases may be the tree-like degree of the structure to be dealt
with (see, e.g., [8]).

For any connected graph G, we define, as usual,

diam V (G) := sup
{
dG(v, w) | v, w ∈ V (G)

}
,

diam G := sup
{
dG(x, y) | x, y ∈ G

}
,

i.e., diam V (G) is the diameter of the set of vertices of G, and diam G is the
diameter of the whole graph G (recall that in order to have a geodesic metric
space, G must contain both the vertices and the points in the interior of any
edge of G).

Lemma 2.2. In any graph G the following inequality holds

δ(G) ≤ 1
2

diam G ≤ 1
2
(diam V (G) + 1).

As usual, by cycle we mean a simple closed curve, i.e., a path with different
vertices, unless the last one, which is equal to the first vertex.

Given a graph G, we denote by V M(G) the union of the set V (G) and the
midpoints of the edges of G. Consider the set T1 of geodesic triangles T in
G that are cycles and such that the three vertices of the triangle T belong to
V M(G), and denote by δ1(G) the infimum of the constants λ such that every
triangle in T1 is λ-thin.

The following result, which appears in [1, Theorems 2.5, 2.6 and 2.7], will
be used throughout the paper.

Theorem 2.3. For every graph G we have δ1(G) = δ(G). Furthermore, if G
is hyperbolic, then δ(G) is an integer multiple of 1/4 and there exists T ∈ T1

with δ(T ) = δ(G).

Hence, by Theorem 2.3, in order to compute the hyperbolicity constant of
a graph, we can consider just geodesic triangles such that the vertices of the
triangle are vertices of the graph or midpoints of edges of the graph.

Lemma 2.4. Let G and H be isomorphic graphs. Then, δ(G) = δ(H).

A subgraph H of G is said isometric if dH(x, y) = dG(x, y) for every x, y ∈
H. Note that this condition is equivalent to dH(u, v) = dG(u, v) for every
vertices u, v ∈ V (H).

The following results appear in [3, Lemma 9] and [21, Theorem 11].

Lemma 2.5. If H is an isometric subgraph of G, then δ(H) ≤ δ(G).
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Figure 1. Metric graphs: in figure a the complete graph K5,
in figure b the Cartesian product P5 × P2. In both cases
p ∈ [xz] and δ(G) = δ(T ) = d(p, [xy] ∪ [yz]). Note that in
figure a δ(K5) = diam(K5)/2 while in figure b δ(P7 × P2) =
3/2 < 7 = diam(P7×P2). In general diam(Pn×P2) = n while
δ(Pn ×P2) = 3/2 for each n ≥ 4 so the hyperbolicity constant
δ is not necessarily close to the diameter of the graph

Theorem 2.6. The following graphs have these precise values of δ.
• If Pn is a path graph, then δ(Pn) = 0 for all n ≥ 1.
• If Cn is a cycle graph, then δ(Cn) = 1

4 L(Cn) = n
4 for all n ≥ 3, see Fig. 1a.

• If Kn is a complete graph, then δ(K1) = δ(K2) = 0, δ(K3) = 3/4 and
δ(Kn) = 1 for all n ≥ 4.
• If P is the Petersen graph, then δ(P ) = 3/2.

Recall that 
t� and �t
 denote the lower integer part and upper integer
part, respectively, of the real number t, i.e., the greatest integer less than or
equal to t and the least integer that is greater than or equal to t, respectively.

We denote by vj the vertex of J(n, k) associated to the set Vj . We use the
same notation for the vertices of K(n, k) and their respective sets.

3. Johnson graphs

The distance between two vertices of the Johnson graph is given by the half
of the cardinal of the symmetric difference of their respective sets, so we have
that diam V

(
J(n, k)

)
= min{k, n − k}.
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The following results are well known.

Lemma 3.1. If J(n, k) is a Johnson graph, then

diam V
(
J(n, k)

)
= min{k, n − k}.

Lemma 3.2. If J(n, k) is a Johnson graph, then J(n, k) is isomorphic to
J(n, n − k).

Remark 3.3. By Lemma 3.2, it suffices to consider the Johnson graph J(n, k)
with 2k ≤ n.

We are going to compute the precise value of δ(J(n, k)) for every n and k.

Theorem 3.4. Let J(n, k) be a Johnson graph. If n ≥ 2k + 2, then

δ(J(n, k)) =
k + 1

2
.

Proof. Lemmas 2.2 and 3.1 give that

δ
(
J(n, k)

) ≤ diam V
(
J(n, k)

)
+ 1

2
=

min{k, n − k} + 1
2

=
k + 1

2
.

So it suffices to prove that there exists a geodesic triangle T such that δ(T ) =
k+1
2 .
Case A. We suppose that k ≤ n/3.
We define the sets Vj = {j + 1, j + 2, . . . , j + k}, 0 ≤ j ≤ 2k and V2k+i =

{1, 2, . . . , i, 2k + i + 1, 2k + i + 2, . . . , 3k}, 1 ≤ i ≤ k − 1. By construc-
tion v0v3k−1, vivi+1 ∈ E

(
J(n, k)

)
, 0 ≤ i < 3k − 1. Let x, y be the mid-

points of v0v3k−1 and vkvk+1 respectively and z = v2k. We consider the
geodesics P = [xy], P ′ = [yz] and P ′′ = [xz] such that P ∩ V

(
J(n, k)

)
=

{v0, v1, . . . , vk}, P ′∩V
(
J(n, k)

)
= {vk+1, vk+2, . . . , v2k} and P ′′∩V

(
J(n, k)

)
=

{v2k, v2k+1, . . . , v3k−1}. We consider the geodesic triangle T = P ∪ P ′ ∪ P ′′.
Let p be the midpoint of P , then

δ
(
J(n, k)

) ≥ d(p, [xz] ∪ [yz]) = d(p, {x, y}) =
k + 1

2
.

Case B. We suppose that n/3 < k < n/2, therefore min{k, n − k} = k.
Since k < n/2 there exists r ≥ 1 such that 2k + r = n. We consider the sets
Vj = {j + 1, j + 2, . . . , j + k}, 0 ≤ j ≤ k + r and Vk+r+i = {1, . . . , i, k + r +
i + 1, k + r + i + 2, . . . , n}, 1 ≤ i ≤ k − 1. By construction v0vn−1, vivi+1 ∈
E

(
J(n, k)

)
, 0 ≤ i < n− 1. Let x and y be the midpoints of v0vn−1 and vkvk+1

respectively. Consider a path P ∗ joining x and y such that P ∗ ∩ V
(
J(n, k)

)
=

{vk+1, vk+2, . . . , vn−1} and let z be the midpoint of P ∗.
We consider the geodesics P = [xy], P ′ = [yz] and P ′′ = [xz] such that P ∩

V
(
J(n, k)

)
= {v0, v1, . . . , vk}, P ′ ∩ V

(
J(n, k)

)
= {vk+1, vk+2, . . . , vk+�n−k

2 �}
and P ′′ ∩ V

(
J(n, k)

)
= {vk+�n−k

2 �, v2k+1, . . . , vn−1}. We consider the geodesic
triangle T = P ∪ P ′ ∪ P ′′.
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Let p be the midpoint of P , then

δ
(
J(n, k)

) ≥ d(p, [xz] ∪ [yz]) = d(p, {x, y}) =
k + 1

2
.

�

Theorem 3.5. If J(n, k) is a Johnson graph and n = 2k + 1, then

δ(J(n, k)) =
2k + 1

4
.

Proof. Note that for every vertex v there exist k + 1 vertices v′ such that
d(v, v′) = k. If v′

1 and v′
2 are vertices such that d(v, v′

1) = d(v, v′
2) = k and

p is the midpoint of v′
1v

′
2, then d(v, p) = k + 1/2. On the other hand, for

every u ∈ V
(
J(n, k)

)
such that uv ∈ E(J(n, k)), we have that d(u, {v′

1, v
′
2}) =

k − 1; therefore, if q is the midpoint of uv, then d(p, q) = k. So we have that
diam J(n, k) = k + 1/2 and δ(J(n, k)) ≤ (k + 1/2)/2 = (2k + 1)/4.

Consider the sets Vi = {i, i + 1, . . . , i + k − 1}, 1 ≤ i ≤ k + 2 and
Vk+j = {1, . . . , j − 2, k + j, . . . , 2k + 1}, 3 ≤ j ≤ k + 1. Let x be the ver-
tex v1 and y the midpoint of vk+1vk+2. Let P and P ∗ be the geodesics joining
x and y such that P ∩ V

(
J(n, k)

)
= {v1, v2, . . . , vk+1} and P ∗ ∩ V

(
J(n, k)

)
=

{v1, vk+2, vk+3, . . . , v2k+1}. Let z and p be the midpoints of P and P ∗, respec-
tively. If T is the geodesic triangle T = P ∗ ∪ [yz] ∪ [xz], then

δ
(
J(n, k)

) ≥ δ(T ) ≥ d(p, [xz] ∪ [yz]) = d(p, {x, y}) =
k + 1/2

2
=

2k + 1
4

.

�

Theorem 3.6. If J(n, k) is a Johnson graph, n is even and n = 2k, then

δ(J(n, k)) =
k

2
.

Proof. Note that for every vertex v there exists only one vertex u such that
d(u, v) = k, so if p is the midpoint of the edge u1u2 and v ∈ V (J(n, k)) then
d(v, p) = max{d(v, u1), d(v, u2)} − 1/2 ≤ k − 1/2 and so, diam(J(n, k)) = k
and δ

(
J(n, k)

) ≤ k/2 by Lemma 2.2.
Consider the sets Vi = {i, i + 1, . . . , i + k − 1}, 1 ≤ i ≤ k + 1 and

Vk+j = {1, . . . , j − 1, k + j, . . . , 2k} 2 ≤ j ≤ k. Let x and y be the ver-
tices v1 and vk+1, respectively; let P ∗ be the path joining x to y such that
P ∗ ∩ V

(
J(n, k)

)
= {v1, vk+1, vk+2, . . . , v2k} and let z be the midpoint of P ∗.

Consider the geodesics P = [xy], P ′ = [yz] and P ′′ = [xz] such that P ∩
V

(
J(n, k)

)
= {v0, v1, . . . , vk+1}, P ′ ∩ V

(
J(n, k)

)
= {vk+1, vk+2, . . . , vk+� k

2 �}
and P ′′ ∩ V

(
J(n, k)

)
= {v1, vk+� k

2 �, . . . , v2k}. Let T be the geodesic triangle
T = P ∪ P ′ ∪ P ′′.

Let p be the midpoint of P , then

δ
(
J(n, k)

) ≥ δ(T ) ≥ d(p, [xz] ∪ [yz]) = d(p, {x, y}) =
k

2
.

�



668 J. Méndez et al. AEM

4. Kneser graphs

Let K(n, k) be a Kneser graph. Note that if n < 2k, then the Kneser graph is
a set of isolated vertices. If n = 2k, then the Kneser graph is a set of isolated
edges, see Theorem 4.2. Therefore, we will consider n = 2k + m with m ≥ 1.

The Kneser graph K(n, 1) is the complete graph with n vertices Kn. The
Petersen graph is the Kneser graph for n = 2, m = 5, K(5, 2). Also, the
odd graph Ok, a generalization of the Petersen graph, is the Kneser graph
Ok = K(2k − 1, k − 1).

We can see from the definition of Kneser graphs, that they are interesting
combinatorial graphs.

In this section, we are going to compute good bounds of δ(K(2k+m, k)) for
every m and k, and in many cases, we even compute its precise value. In order
to do that we obtain some results about Kneser graphs which are interesting
by themselves, as Propositions 4.7 and 4.15.

If ui, vj ∈ V (K (2k + m, k)), we denote by Ui, Vj their corresponding sub-
sets of Am, respectively.

The following results on K(s, 1) and K(2k, k), i.e. m = 0, are direct:

Theorem 4.1. Let K(s, 1) be a Kneser graph with s ≥ 2. The following state-
ments hold:
(1) If s = 2, then δ (K(2, 1)) = 0.
(2) If s = 3, then δ (K(3, 1)) = 3/4.
(3) If s > 3, then δ (K(s, 1)) = 1.

Theorem 4.2. If K(2k, k) is a Kneser graph with k ≥ 2, then δ (K(2k, k)) = 0.

Distances in the Kneser graphs were studied in [28]. The following results
in [28] will be useful:

Theorem 4.3. The diameter of vertices of the Kneser graph K (2k + m, k) is
given by

diam V (K (2k + m, k)) =
⌈k − 1

m

⌉
+ 1.

Theorem 4.4. If v1, v2 ∈ V (K (2k + m, k)) and s = |V1 ∩ V2|, then

d(v1, v2) = min
{

2
⌈k − s

m

⌉
, 2

⌈ s

m

⌉
+ 1

}
.

The following results appear in [26] and [28].

Lemma 4.5. Let V1, V2 be k-subsets of an (2k + m)-set A2k+m. If there exists
a path of length 2i joining v1 with v2 in K (2k + m, k), then

|V1 ∩ V2| ≥ k − im.
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Lemma 4.6. Let V1, V2 be k-subsets of an (2k + m)-set A2k+m. If there exists
a path of length 2i + 1 joining v1 with v2 in K (2k + m, k), then

|V1 ∩ V2| ≤ im.

Lemmas 4.6 and 4.5 have the following consequences:

Proposition 4.7. Let K(2k+m, k) be a Kneser graph. Consider D = �k−1
m 
+1,

r = 
D/2�, i ≤ r − 1 and v1, v2 ∈ V (K (2k + m, k)) with |V1 ∩ V2| = s. The
following statements hold:
(1) If d(v1, v2) < D, then d(v1, v2) = 2i + 1 if and only if (i − 1)m + 1 ≤ s ≤

im.
(2) If d(v1, v2) < D, then d(v1, v2) = 2i if and only if k − im ≤ s ≤ k − (i −

1)m − 1.
(3) If D = 2r + 1, then d(v1, v2) = D if and only if (r − 1)m + 1 ≤ s ≤

k − rm − 1.
(4) If D = 2r, then d(v1, v2) = D if and only if (r − 1)k + 1 ≤ s ≤ k − (r −

1)m − 1.

Proof. Since D ≤ 2r and i ≤ r − 1, we have

2� im

m

 + 1 = 2i + 1 ≤ 2r − 1 < 2r + 2 ≤ 4r − 2i ≤ 2

(
�k − 1

m

 − i

)

≤ 2�k − im

m

.

Let us prove now the four statements.
(1) Lemma 4.6 gives that if d(v1, v2) = 2i + 1, then (i − 1)m + 1 ≤ s ≤ im.

If s = im, then

d(v1, v2) = min
{

2�k − im

m

, 2� im

m

 + 1

}
= 2i + 1.

If s = im − j, 0 ≤ j ≤ m − 1, then

d(v1, v2) = min
{

2�k − im + j

m

, 2� im − j

m

 + 1

}

= min
{

2�k + j

m

 − 2i, 2i + 1

}
= 2i + 1.

(2) Lemma 4.5 gives that if d(v1, v2) = 2i, then k−im ≤ s ≤ k−(i−1)m−1.
If s = k − im, then

d(v1, v2) = min
{

2� im

m

, 2�k − im

m

 + 1

}
= 2i.

If s = k − im + j, 0 ≤ j ≤ m − 1, then

d(v1, v2) = min
{

2� im − j

m

, 2�k − im + j

m

 + 1

}
= 2i.
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(3) If s ≤ (r − 1)m, then Item (1) gives d(v1, v2) ≤ 2r − 1. If s = k − rm − 1,
then

d(v1, v2) = min
{

2�rm + 1
m


, 2�k − rm − 1
m


 + 1
}

= min
{

2 (r + 1) , 2�k − 1
m


 − 2r + 1
}

= min {2r + 2, 2r + 1} = 2r + 1 = D.

On the other hand, note that if s = k − rm, then

d(v1, v2) = min
{

2�rm

m

, 2�k − rm

m

 + 1

}

= min
{

2r, 2� k

m

 − 2r + 1

}
= 2r = D − 1.

Therefore, if d(v1, v2) = D = 2r + 1, then (r − 1)m ≤ s ≤ min{rm, k −
rm − 1}. Note that k − rm − 1 ≤ rm (the equality is obtained if k − 1 is
an even multiple of m). If s = (r−1)m+j with 1 ≤ j ≤ k−(2r−1)m−1,
then

2� s

m

 + 1 ≤ 2� (r − 1)m + 1

m

 + 1 ≤ 2r + 1 < 2r + 2 ≤ 2�k − 1

m

 − 2(r − 1)

= 2�k − (r − 1)m − 1
m


 ≤ 2�k − s

m

;

and since 1 ≤ j ≤ k − (2r − 1)m − 1 ≤ m, we conclude

d(v1, v2) = 2� (r − 1)m + j

j

 + 1 = 2r + 1.

(4) Since D = 2r, if s ≤ (r − 1)m, then Item (1) gives d(v1, v2) ≤ 2r − 1. If
k−(r−1)m ≤ s, then Item (2) gives d(v1, v2) ≤ 2r−2. If s = (r−1)m+j
with 1 ≤ j ≤ k − 2(r − 1)m − 1, then

2�k − s

m

 ≤ 2�k − (r − 1)m − 1

m

 ≤ 2r < 2r + 1 ≤ 2� (r − 1)m + 1

m

 + 1

= 2� s

m

 + 1

and

2r ≥ 2�k − s

m

 = 2�k − (r − 1)m − j

m



= 2�k − j

m

 − 2(r − 1) ≥ 2�k − 1

m

 − 2(r − 1) = 2r.

Therefore, d(v1, v2) ≤ 2r = D.

�
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Let A = {a1, a2, . . . , an} be a non-empty set. We define for 0 ≤ i ≤ n:

Ai = {a1, . . . , ai}, Ai = A\Ai, A0 = ∅, An = ∅.

4.1. The odd graphs

In this subsection we study the hyperbolicity of K(n, k) with n = 2k + 1 and
k ≥ 3.

In this case, we have that:

diam V (K(2k + 1, k)) = �k − 1
 + 1 = k.

4.1.1. k is odd. If v1, v2 ∈ V (K(2k + 1, k)) with d(v1, v2) = k and |V1 ∩ V2| =
s, taking into account that k is odd and m = 1, then

k = d(v1, v2) = min
{

2�k − s
, 2�s
 + 1
}

= 2s + 1,

and we have

s = |V1 ∩ V2| =
k − 1

2
.

Thus, for the case k odd and m = 1, we can write A2k+1 = A1 ∪ A2 ∪ A3 ∪
A4 ∪{a1, a2, a3}, with |Ai| = s and Ai ∩Aj = ∅ if i �= j. We have the following
results:

Theorem 4.8. If k is odd, then

diam (K(2k + 1, k)) < diam V (K(2k + 1, k)) + 1 = k + 1.

Proof. Note that diam K (2k + m, k) ≤ diam V (K (2k + m, k)) + 1. Seeking
for a contradiction assume that there exist x, y ∈ K (2k + 1, k) such that
d(x, y) = diam V (K (2k + 1, k)) + 1 = k + 1. Therefore, x and y are midpoints
of edges of K (2k + 1, k). Suppose that x is the midpoint of u1v1 and y is the
midpoint of u2v2. Thus, d(u1, u2) = d(u1, v2) = k = d(v1, v2) = d(v1, u2) and
|U1 ∩ V2| = |V1 ∩ V2| = s.

Without loss of generality we can assume that:

U1 = A1 ∪ A2 ∪ {a1}, V1 = A3 ∪ A4 ∪ {a2}, V2 = A1 ∪ A2 ∪ {a3}.

Since d(u1, u2) = d(v1, u2) = k and d(u2, v2) = 1, we have that |U1 ∩ U2| =
|V1 ∩ U2| = s and V2 ∩ U2 = ∅. So, we can suppose that U2 = A1 ∪ A3 ∪ {w},
but note that if w ∈ A2 ∪ {a1} (respectively, A4 ∪ {a2}), then |U1 ∩ U2| =
s + 1 (respectively, |V1 ∩ U2| = s + 1) and so, w �= a3. Thus, does not exist
u2 ∈ V (K (2k + 1, k)) satisfying these conditions and we obtain the desired
contradiction. �

Corollary 4.9. If k is odd, then

diam (K(2k + 1, k)) = diam V (K(2k + 1, k))) + 1/2 = k + 1/2.
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Proof. If we consider the sets U1, V1, V2 and the point x as in the previous
theorem, we have d(x, v2) = k + 1/2. �

Theorem 4.10. If k is odd, then

δ
(
K(2k + 1, k)

)
=

2k + 1
4

.

Proof. Lemma 2.2 and Corollary 4.9 give δ
(
K(2k + 1, k)

) ≤ 2k+1
4 .

We can write A2k+1 = A1 ∪A2 ∪A3 ∪A4 ∪{a1, a2, a3}, with |Ai| = s = k−1
2

and Ai ∩ Aj = ∅ if i �= j.
For 1 ≤ r ≤ s, consider the following sets:

V0 = A1 ∪ A2 ∪ {a1},

V2k = A3 ∪ A4 ∪ {a2},

Vk = A1 ∪ A3 ∪ {a3},

V2r−1 = A3 ∪ {a3} ∪ Ar−1
4 ∪ Ar−1

1 ,

V2r = A2 ∪ {a1, a2} ∪ Ar
1 ∪ Ar−1

4 ,

Vk+2r = A1 ∪ {a3} ∪ Ar
3 ∪ Ar

2,

Vk+2r−1 = A4 ∪ {a1, a2} ∪ Ar−1
3 ∪ Ar

2.

Recall that we denote by vi the corresponding vertex to the subset Vi.
Note that v0v2k, vivi+1 ∈ E

(
K(2k +1, k)

)
for 0 ≤ i ≤ 2k − 1. Let C be the

subgraph induced by {vi}ki=0. We are going to prove that C is an isometric
subgraph of K(2k+1, k). In order to do that, it suffices to prove that if vi, vj ∈
V (C) with i < j, then d(vi, vj) = dC(vi, vj) = min{j − i, (2k + 1) − (j − i)}.
Since vivi+1 ∈ E (K(2k + 1, k)), we can assume that i + 1 < j.

We consider the following cases:
Case 1. 1 ≤ i < j ≤ k.

Case 1-A. i = 2r − 1, j = 2 l − 1, 1 ≤ r < l ≤ s. Since |V2r−1 ∩ V2 l−1| =
|A3 ∪ {a3} ∪ Al−1

4 ∪ Ar−1
1 | = 2 s + 1 − l + r = k − (l − r), so

d(v2r−1, v2 l−1) = min{2�k − (k + r − l)
, 2�k − (l − r)
 + 1} =
2(l − r) = j − i.

Case 1-B. i = 2r, j = 2 l. It is similar to Case A.
Case 1-C. i = 2r − 1, j = 2 l, r < l. Thus, |V2r−1 ∩ V2 l| =

∣
∣(Ar−1

4 ∩ Al−1
4

) ∪
(
Ar−1

1 ∩ Al
1

)∣∣ = l − r and d(v2r−1, v2 l) = min{2(k − (l − r)), 2(l −
r) + 1} = 2(l − r) + 1 = j − i.

Case 1-D. i = 2r, j = 2 l − 1, r < l. |V2r ∩ V2 l−1| =
∣
∣(Ar

1 ∩ Al−1
1

) ∪ (
Ar−1

4 ∩
Al−1

4

)∣∣ = (l−1)−r and d(v2r, v2 l−1) = min{2
(
k−(l−1−r)

)
, 2

(
l−

1 − r
)
+ 1} = min{2(k − (l − r)) + 1, 2(l − r) − 1} = 2(l − r) − 1 =

j − i = dC(v2r, v2 l−1).
Case 2. k ≤ i < j ≤ 2k + 1. It is similar to Case 1.
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Case 3. 1 ≤ i ≤ k ≤ j ≤ 2k + 1. We have the following cases:

Case 3-A. i = 2r − 1, j = k + 2 l − 1. |V2r−1 ∩ Vk+2 l−1| =
∣
∣
∣Al−1

3 ∪ Ar−1
4

∣
∣
∣ =

(l−1)+(s−(r−1)) = s+ l−r and d(v2r−1, vn+2 l−1) = min{2(k−
(s+ l − r)), 2(s+ l − r)+1} = min{k − 2(l − r)+1, k +2 l − 2r} =
min{(2k + 1) − (j − i), j − i}.

Case 3-B. i = 2r, j = k + 2 l − 1. |V2r ∩ Vk+2 l−1| =
∣
∣
∣Ar−1

4 ∪ Al
2 ∪ {a1, a2}

∣
∣
∣ =

s + 1 + r − l and

d(v2r, vk+2l−1) = min{2 (k − (s + 1 + r − l)) , 2 (s + 1 + r − l)}
= min{k − 1 − 2r − 2l, k + 2 + 2r − 2l}
= min{j − i, 2k + 1 − (j − i)} = dC(v2r, vk+2l−1).

Case 3-C. i = 2r − 1, j = k + 2 l. |V2r−1 ∩ Vk+2 l| =
∣
∣
∣Ar−1

1 ∪ Al
3 ∪ {a3}

∣
∣
∣ =

(r − 1) + (s − l) + 1 = s − l + r and

d(v2r−1, vk+2l) = min{2 (k − (s − l + r)) , 2 (s − l + r) + 1}
= min{2 (k + 1 + 2l − 2r) , 2 (k − 2l + 2r)}
= min{j − i, (2k + 1) − (j − i)} = dC(v2r−1, vk+2l).

Case 3-D. i = 2r, j = k+2 l. |V2r ∩ Vk+2 l| =
∣
∣Al1

2 ∪ Ar
1

∣
∣ = (s−r)+l = s−r+l

and d(v2r, vk+2 l) = min{2 (k − (s − r + l)) , 2 (s − r + l) + 1} =
min{k +1+2r +2 l, k −2r +2 l} = min{(2k +1)− (j − i), j − i} =
dC(v2r, vk+2 l).

Since C is an isometric subgraph of K(2k +1, k), Theorem 2.6 and Lemma
2.5 give δ(C) = 2k+1

4 ≤ δ (K(2k + 1, k)). �

4.1.2. k is even. In this case we have that if vi, vj ∈ V
(
K(2k + 1, k)

)
and

d(vi, vj) = diam V (K (2k + 1, k)) = k, then |Vi ∩ Vj | = s = k/2 and A2k+1 =
A1 ∪ A2 ∪ A3 ∪ A4 ∪ {a}.

Theorem 4.11. If k is even, then

δ (K(2k + 1, k)) =
k + 1

2
.

Proof. Lemma 2.2 gives δ (K(2k + 1, k)) ≤ k+1
2 . Let us prove the converse

inequality. Consider the following sets:

Wj =

{
A1 ∪ Ai

2 ∪ Ai
3 if j = 2i, 0 ≤ i ≤ k/2,

Ai−1
2 ∪ Ai

3 ∪ A4 ∪ {v} if j = 2i − 1, 1 ≤ i ≤ k/2,
(1)

W ′
j =

{
A

k/2−i
2 ∪ A

k/2−i
3 ∪ A4 if j = 2i, 0 ≤ i ≤ k/2,

A1 ∪ A
k/2−i
2 ∪ A

k/2−i+1
3 ∪ {v} if j = 2i − 1, 1 ≤ i ≤ k/2.

(2)
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Let x and y be the midpoints of w0w
′
0 and wkw

′
k respectively. Let P and P ′

two geodesics joining x to y such that P ∩V (K (2k + 1, k)) = {w0, w1, . . . , wk}
and P ′ ∩ V (K (2k + 1, k)) = {w′

0, w
′
1, . . . , w

′
k}. Let z and p be the midpoints

of P ′ and P respectively, i.e., z = w′
k/2 and p = wk/2. Consider the geodesic

triangle T = P ∪ [yz] ∪ [xz] in K(2k + 1, k), and let us prove that δ(T ) ≥ k+1
2 .

If k/2 is even, we have Wk/2 = W2(k/4) = A1 ∪ A
k/4
2 ∪ A

k/4
3 .

For 0 ≤ i ≤ k/2 we have
∣
∣Wk/2 ∩ W ′

2i

∣
∣ =

∣
∣
∣Ak/4

2 ∩ A
k/2−i
2

∣
∣
∣+

∣
∣
∣Ak/4

3 ∩ A
k/2−i
3

∣
∣
∣.

For 1 ≤ i ≤ k/2 we have
∣
∣Wk/2 ∩ W ′

2i−1

∣
∣ = |A1| +

∣
∣
∣Ak/4

2 ∩ A
k/2−i
2

∣
∣
∣ +

∣
∣
∣Ak/4

3 ∩ A
k/2−i+1
3

∣
∣
∣.

Therefore, we have

∣
∣Wk/2 ∩ W ′

j

∣
∣ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k/4 + i if j = 2i, 0 ≤ i < k/4,
k/2 if j = 2i, i = k/4,
3k/4 − i if j = 2i, k/4 < i ≤ k/2,
3k/4 − i if j = 2i − 1, 1 ≤ i < k/4,
k/2 if j = 2i − 1, k/4 ≤ i ≤ k/4 + 1,
k/4 − 1 + i if j = 2i − 1, k/4 + 1 < i ≤ k/2.

(3)

Corollary 4.9 gives

d(wk/2, w
′
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2(k/4 + i) + 1 if j = 2i, 0 ≤ i < k/4,
k if j = 2i, i = k/4,
2(3k/4 − i) + 1 if j = 2i, k/4 < i ≤ k/2,
k − 2(k/4 − i) if j = 2i − 1, 1 ≤ i < k/4,
k if j = 2i − 1, k/4 ≤ i ≤ k/4 + 1,
k − 2(k/4 − 1 + i − k/2) if j = 2i − 1, k/4 + 1 < i ≤ k/2.

(4)

If k/2 is odd, then we have Wk/2 = W2(�k/4�)−1 = A
�k/4�−1
2 ∪A

�k/4�
3 ∪A4 ∪

{v}.
For 0 ≤ i ≤ k/2 we have

∣
∣Wk/2 ∩ W ′

2i

∣
∣ =

∣
∣
∣A�k/4�−1

2 ∩ A
k/2−i
2

∣
∣
∣ +

∣
∣
∣A�k/4�

3 ∩ A
k/2−i
3

∣
∣
∣ + |A4| .

For 1 ≤ i ≤ k/2 we have
∣
∣Wk/2 ∩ W ′

2i−1

∣
∣ =

∣
∣
∣A�k/4�−1

2 ∩ A
k/2−i
2

∣
∣
∣ +

∣
∣
∣A�k/4�

3 ∩ A
k/2−i+1
3

∣
∣
∣ + 1.

∣
∣Wk/2 ∩ W ′

j

∣
∣ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k − (�k/4
 + i) if j = 2i, 0 ≤ i < 
k/4�,
k/2 if j = 2i, 
k/4� ≤ i ≤ �k/4
,

k/4� + i if j = 2i, �k/4
 < i ≤ k/2,

k/4� + i if j = 2i − 1, 1 ≤ i < �k/4
,
k/2 if j = 2i − 1, i = �k/4
,
k/2 + �k/4
 − i if j = 2i − 1, �k/4
 < i ≤ k/2.

(5)
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d(wk/2, w
′
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2(�k/4
 + i) if j = 2i, 0 ≤ i < 
k/4�,
k if j = 2i, 
k/4� ≤ i ≤ �k/4
,
k − 2(i − �k/4
) if j = 2i, �k/4
 < i ≤ k/2,
2 (
k/4� + i) + 1 if j = 2i − 1, 1 ≤ i < �k/4
,
k if j = 2i − 1, i = �k/4
,
2 (k/2 + �k/4
 − i) + 1 if j = 2i − 1, �k/4
 < i ≤ k/2.

(6)

In both cases we have d(wk/2, w
′
j) ≥ k/2 + 1 for 0 ≤ j ≤ k and

δ (K(2k + 1, k)) ≥ δ(T ) ≥ d(p, [xz] ∪ [yz]) = min{d(p, {w′
i}ki=0), d(p, {x, y}}

= min{k/2 + 1, k/2 + 1/2} =
k + 1

2
.

�

4.2. Diameters 2 and 3

In this subsection we compute the precise value of δ (K (2k + m, k)) when
m ≥ k − 1 (i.e., diam V (K (2k + m, k)) = 2), and we obtain good bounds of
δ (K (2k + m, k)) when (k − 1)/2 ≤ m < k − 1 (i.e., diam V (K (2k + m, k)) =
3).

Theorem 4.12. If K(2k + m, k) is the Kneser graph with m ≥ k − 1 (i.e.,
diam V (K (2k + m, k)) = 2), then

δ (K (2k + m, k)) =
3
2
.

Proof. Let A, B and C be pairwise disjoint sets such that |A| = |B| = n,
|C| = n − 1. Consider the following sets:

W0 = A, W1 = B1 ∪ C, W2 = A1 ∪ B1,

W ′
0 = B, W ′

1 = A1 ∪ C, W ′
2 = B1 ∪ A1.

Let x and y be the midpoints of w0w
′
0 and w2w

′
2, respectively. Consider

the geodesics P and P ′ joining x and y such that P ∩ V (K (2k + m, k)) =
{w0, w1, w2} and P ′ ∩ V (K (2k + m, k)) = {w′

0, w
′
1, w

′
2}. Let z = w1 and T be

the geodesic triangle T = {[xz], [yz], P ′}. We have

2 = d(w′
1, {w0, w1, w2}) > d(w′

1, {x, y}) = 3/2,

3
2

= d(w′
1, {x, y}) = d(w′

1, [xz] ∪ [yz])

≤ δ (K (2k + m, k)) ≤ diam V (K (2k + m, k)) + 1
2

=
3
2
.

Therefore, we conclude

δ (K (2k + m, k)) =
3
2
.
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�

Theorem 4.13. If (k − 1)/2 ≤ m < k − 1 (i.e., diam V (K (2k + m, k)) = 3),
then

7
4

≤ δ (K (2k + m, k)) ≤ 2.

Proof. Lemma 2.2 gives the upper bound. Let A, B, C, U , V be pairwise
disjoint sets such that |A| = 1, |B| = k − m − 1, |C| = m, |U | = k − 1,
|V | = m + 1. Consider the following sets:

W0 = A ∪ U, W1 = B ∪ C1 ∪ V 1, W2 = V 1 ∪ U, W3 = A ∪ B ∪ C,

W ′
0 = B ∪ V, W ′

1 = A ∪ C ∪ U |u|−m, W ′
2 = U |u|−m ∪ V, W ′

3 = W3.

Let x be the midpoint of w0w
′
0 and y = w3. Consider the geodesics, P and

P ′, joining x and y such that P ∩ V (K (2k + m, k)) = {w0, w1, w2, w3} and
P ′ ∩ V (K (2k + m, k)) = {w′

0, w
′
1, w

′
2, w

′
3}.

Note that d(w1, {w′
0, w

′
1, w

′
2, w

′
3}) = d(w2, {w′

0, w
′
1, w

′
2}) = 2 and so, we

have d(w1, P
′) = d(w1, w0) + 1/2 = 3/2 and d(w2, P

′) = d(w2, w
′
3) = 1.

Let z and p be the midpoints of w′
1w

′
2 and P , respectively. Consider the

geodesic triangle T = {[xz], [yz], P}. Note that p ∈ [w1w2] and

2d(p, P ′) = d(p,w1) + d(w1, P
′) + d(p,w2) + d(w2, P

′)

= diam V (K (2k + m, k)) + 1/2.

Therefore,

δ (K (2k + m, k)) ≥ d(p, P ′) =
diam V (K (2k + m, k)) + 1/2

2
=

7
4
.

�

4.3. Odd diameter

In this subsection we study the hyperbolicity constant of Kneser graphs with
odd diameter D and 1 < m < (k − 1)/2. Unless otherwise specified we assume
D = 2r + 1. Note that it suffices to consider the case 1 < m < (k − 1)/2 (i.e.,
D ≥ 5), since the case r = 1 was studied previously.

Theorem 4.14. If diam V (K (2k + m, k)) = D is odd and 1 < m < (k − 1)/2,
then

D + 1/2
2

≤ δ (K (2k + m, k)) ≤ D + 1
2

.

Proof. Lemma 2.2 gives the upper bound. Let us prove the lower bound.
Let D = 2r + 1. If wi, wj ∈ V (K (2k + m, k)) satisfy d(wi, wj) = D,

Proposition 4.7 gives (r − 1)m + 1 ≤ |Wi ∩ Wj | ≤ k − rm − 1.
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Let A, B, C, U , V be pairwise disjoint sets such that |A| = (r − 1)m + 1,
|B| = k − rm − 1 = (r − 1)m + l, |C| = m, |U | = k − (r − 1)m − 1 = rm + l,
|V | = rm + 1, with 1 ≤ l ≤ m.

If r is even, we consider the following sets:

Wj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aim ∪ U ∪ V im if j = 2i, 0 ≤ i < r/2,

A(i−1)m ∪ B ∪ C ∪ V im if j = 2i − 1, 1 ≤ i ≤ r/2,

A(i−1)m+1 ∪ U ∪ V (i−1)m+1 if j = 2i, r/2 ≤ i ≤ r,

A(i−2)m+1 ∪ B ∪ C ∪ V (i−1)m+1 if j = 2i − 1, r/2 < i ≤ r + 1.

(7)

W ′
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bim ∪ U im ∪ V if j = 2i, 0 ≤ i < r/2,

A ∪ B(i−1)m ∪ C ∪ U im if j = 2i − 1, 1 ≤ i ≤ r/2,

B(i−1)m+l ∪ U (i−1)m+l ∪ V if j = 2i, r/2 ≤ i ≤ r,

A ∪ B(i−2)m+l ∪ C ∪ U (i−1)m+l if j = 2i − 1, r/2 < i ≤ r + 1.

(8)

Note that for r/2 ≤ i ≤ r we have

W ′
2i = B(i−1)m+l ∪ U (i−1)m+l ∪ V = W ′

2(r/2+h)

= B|B|−(r/2−h)m ∪ U |U |−(r/2+1−h)m ∪ V

with 0 ≤ h ≤ r/2.
If r is odd, we consider the following sets:

Wj=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aim ∪ U ∪ V im if j=2i, 0 ≤ i < r/2,

A(i−1)m ∪ B ∪ C ∪ V im if j=2i − 1, 1 ≤ i ≤ �r/2
,
A(i−1)m+1 ∪ U ∪ V (i−1)m+1 if j=2i, r/2 < i ≤ r,

A(i−2)m+1 ∪ B ∪ C ∪ V (i−1)m+1 if r < j=2i − 1, �r/2
 < i ≤ r+1.

(9)

W ′
j=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bim ∪ U im ∪ V if j=2i, 0 ≤ i < r/2,

A ∪ B(i−1)m ∪ C ∪ U im if j=2i−1, 1 ≤ i ≤ �r/2
,
B(i−1)m+l ∪ U (i−1)m+l ∪ V if j=2i, r/2 < i ≤ r,

A ∪ B(i−2)m+l ∪ C ∪ U (i−1)m+l if r < j=2i − 1, �r/2
 < i ≤ r+1.

(10)

Let x be the midpoint of w0w
′
0 and y = wD = w′

D. Let P and P ′ be
geodesics joining x to y such that P ∩ V (K (2k + m, k)) = {w0, w1, . . . , wd}
and P ′ ∩V (K (2k + m, k)) = {w′

0, w
′
1, . . . , w

′
d}. Consider the geodesic triangle

T = {[xw′
r], [yw′

r], P}. Let p be the midpoint of P , we have p ∈ wrwr+1.
We are going to prove that d (wr, P

′ ∩ V (K (2k + m, k))) ≥ r + 1 and
d (wr+1, P

′) = r.
Assume that r is even. We have Wr = A(r/2−1)m+1 ∪ U ∪ V (r/2−1)m+1 and

Wr+1 = A(r/2−1)m+1 ∪ B ∪ C ∪ V (r/2)m+1.
For 0 ≤ i < r/2, we have

|Wr ∩ W ′
2i| =

∣
∣
∣
(
A(r/2−1)m+1 ∪ U ∪ V (r/2−1)m+1

)
∩

(
Bim ∪ U im ∪ V

)∣
∣
∣
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=
∣
∣
∣V (r/2−1)m+1

∣
∣
∣ +

∣
∣U im

∣
∣ = (r/2 − 1)m + 1 + im

= (r/2 − 1 + i)m + 1.

For r/2 < i ≤ r:

|Wr ∩ W ′
2i|

=
∣
∣
∣
(
A(r/2−1)m+1 ∪ U ∪ V (r/2−1)m+1

)
∩

(
B(i−1)m+l ∪ U (i−1)m+l ∪ V

)∣
∣
∣

=
∣
∣
∣V (r/2−1)m+1

∣
∣
∣ +

∣
∣
∣U (i−1)m+l

∣
∣
∣

= (r/2 − 1)m + 1 + (i − 1)m + l = (r/2 + i − 2)m + 1 + l.

If l = m, then |Wr ∩ W ′
2i| = (r/2 + i − 1)m + 1. Note that (r − 1)m + 1 <

rm + 1 ≤ (r/2 + i − 1)m + 1 ≤ (r + r/2 − 1)m + 1 = rm + 1 + (r/2)m. If
i = r/2 + m′ with 1 ≤ m′ ≤ r/2, then |Wr ∩ W ′

2i| = (r + m′ − 1)m + 1 and so,
d(wr, w

′
2i) = D − 2(m′ − 1) − 1.

If l < k, then

|Wr ∩ W ′
2i| = (r/2 + i − 1)m + 1 ≥ (r − 1)m + l + 1

= |B| + 1 = k − rm − 1 + 1 = k − rm.

If i = r/2 + m′ with 1 ≤ m′ ≤ r/2, then |Wr ∩ W ′
2i| = (r + m′ − 2)m + l + 1 =

(r −1)m+ l+(m′ −1)m+1 = k − rm−1+(m′ −1)m+1 = k − (r −m′ +1)m
and so, d(wr, w

′
2i) = 2(r − m′ + 1).

For 1 ≤ i ≤ r/2 we have

|Wr ∩ W ′
2i−1|

=
∣
∣
∣
(
A(r/2−1)m+1 ∪ U ∪ V (r/2−1)m+1

)
∩

(
A ∪ B(i−1)m ∪ C ∪ U im

)∣
∣
∣

=
∣
∣
∣A(r/2−1)m+1

∣
∣
∣ +

∣
∣
∣U im

∣
∣
∣ = |A| − ((r/2 − 1)m + 1) + |U | − (im)

= k − (r/2 − 1 + i)m − 1.

For j = 2i − 1 with r/2 < i ≤ r + 1 (note that r < j), we have

|Wr ∩ W ′
2i−1|

=
∣
∣
∣
(
A(r/2−1)m+1 ∪ U ∪ V (r/2−1)m+1

)
∩

(
A ∪ B(i−2)m+l ∪ C ∪ U (i−1)m+l

)∣
∣
∣

=
∣
∣
∣A(r/2−1)m+1

∣
∣
∣ +

∣
∣
∣U (i−1)m+l

∣
∣
∣

= |A| − ((r/2 − 1)m + 1) + |U | − ((i − 1)m + l)

= k − (r/2 + i − 2)m − 1 − l.

Consider i = r/2 + m′, with 1 ≤ m′ ≤ r/2 + 1. We have

|Wr ∩ W ′
2i−1|

= k − (r/2 + i − 2)m − 1 − l = k − (r/2 + r/2 + m′ − 2)m − 1 − l
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= k − (r + m′ − 2)m − 1 − l = k − (r − 1)m − 1 − (m′ − 1)m − l

= |U | − (m′ − 1)m − l = rm + l − (m′ − 1)m − l = (r − m′ + 1)m.

We have

|Wr ∩ W ′
j | =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(r/2 − 1 + i)m + 1 if j = 2i, 0 ≤ i < r/2,
k − (r/2 − 1 + i)m − 1 if j = 2i − 1, 1 ≤ i ≤ r/2,
(r − 2)m + 1 + l if j = r,
(r/2 + i − 2)m + 1 + l if j = 2i, r/2 < i ≤ r,
k − (r/2 + i − 2)m − 1 − l if j = 2i − 1, r/2 < i ≤ r + 1,

(11)

d(wr, w
′
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(r/2 − 1 + i) + 3 if j = 2i, 0 ≤ i < r/2,
2(r/2 + i) if j = 2i − 1, 1 ≤ i ≤ r/2,
D if j = r and l = m,
D − 1 if j = r and l < m,
D − 2m′ + 1 if j = 2i, r/2 < i ≤ r

i = r/2 + m′, 1 ≤ m′ ≤ r/2,
D if j = r + 1, l = m,
D − 1 if j = r + 1, l < m,
D − 2m′ + 2 if j = 2i − 1, i = r/2 + m′,

1 < m′ ≤ r/2 + 1.

(12)

Note that d(wr, w
′
j) ≥ r + 1 for 0 ≤ j ≤ D, therefore d(wr, P

′)
= min{d(wr, {x, y}), d(wr, P ∩ V (K (2k + m, k)))} = d(wr, x) = r + 1/2.

Similarly, we have Wr+1 = W2(r/2+1)−1 = A(r/2−1)m+1∪B∪C∪V (r/2)m+1.
Let us consider their intersections and the distances from w′

j to wr+1 =
w2(r/2+1)−1.

For 0 ≤ i < r/2:

|Wr+1 ∩ W ′
2i| =

∣
∣
∣
(
A(r/2−1)m+1 ∪ B ∪ C ∪ V (r/2)m+1

)
∩

(
Bim ∪ U im ∪ V

)∣
∣
∣

=
∣
∣
∣Bim

∣
∣
∣ +

∣
∣
∣V (r/2)m+1

∣
∣
∣ = |B| − (im) + |V | − ((r/2)m + 1)

= k − (r/2 + i)m − 1.

Then d(wr+1, w
′
2i) = 2(r/2+i+1), for 0 ≤ i < r/2. Note that d(wr+1, w

′
2i) ≥

r + 2.
For r/2 ≤ i ≤ r:

|Wr+1 ∩ W ′
2i|

=
∣
∣
∣
(
A(r/2−1)m+1 ∪ B ∪ C ∪ V (r/2)m+1

)
∩

(
B(i−1)m+l ∪ U (i−1)m+l ∪ V

)∣
∣
∣

=
∣
∣
∣B(i−1)m+l

∣
∣
∣ +

∣
∣
∣V (r/2)m+1

∣
∣
∣ = |B| − ((i − 1)m + l) + |V | − ((r/2)m + 1)

= (r − 1)m + l − (i − 1)m − l + rm + 1 − (r/2)m − 1 =
(

3
2
r − i

)
m.
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For r/2 + 1 ≤ i ≤ r we have
(
3
2r − i

)
m ≤ (r − 1)m and so, Proposition 4.7

gives d(wr+1, w
′
2i) = 2(32r−i)+1. If i = r/2 and l = m, then d(wr+1, w

′
2i) = D;

if i = r/2 and l < m, then d(wr+1, w
′
2i) = D − 1.

For 1 ≤ i ≤ r/2:

|Wr+1 ∩ W ′
2i−1|

=
∣
∣
∣
(
A(r/2−1)m+1 ∪ B ∪ C ∪ V (r/2)m+1

)
∩

(
A ∪ B(i−1)m ∪ C ∪ U im

)∣
∣
∣

=
∣
∣
∣A(r/2−1)m+1

∣
∣
∣ +

∣
∣
∣B(i−1)m

∣
∣
∣ + |C| = (r/2 − 1)m + 1 + (i − 1)m + m

= (r/2 − 1 + i)m + 1.

Since i ≤ r/2, we have |Wr+1 ∩W ′
2i−1| = (r/2− 1+ i)m+1 ≤ (r − 1)m+1

and Proposition 4.7 gives d(wr+1, w
′
2i) = 2(r/2 − 1 + i) + 3. In particular, if

i = r/2, then d(wr+1, w
′
2i) = D; if i = 1, then d(wr+1, w

′
2i−1) = r + 3.

For r/2 < i ≤ r + 1:

|Wr+1 ∩ W ′
2i−1|

=
∣
∣
∣
(
A(r/2−1)m+1∪B∪C∪V (r/2)m+1

)
∩

(
A ∪ B(i−2)m+l ∪ C ∪ U (i−1)m+l

)∣
∣
∣

=
∣
∣
∣A(r/2−1)m+1

∣
∣
∣ +

∣
∣
∣B(i−2)m+l

∣
∣
∣ + |C| = (r/2 − 1)m + 1 + (i − 2)m + l + m

= (r/2 + i − 2)m + 1 + l.

If i = r/2 + i′ with 1 ≤ i′ ≤ r/2 + 1, then

(r/2 + i − 2)m + 1 + l = (r/2 + r/2 + i′ − 2)m + 1 + l = (r + i′ − 2)m + 1 + l

= (r − 1)m + l + 1 + (i′ − 1)m = |B| + 1 + (i′ − 1)m

= k − rm − 1 + 1 + (i′ − 1)m = k − (r + 1 − i′)m.

So, Proposition 4.7 gives d(wr+1, w
′
2i−1) = 2(r+1−i′) with 1 ≤ i′ ≤ r/2+1.

Note that if i′ = r/2+1 then d(wr+1, w
′
2(r/2+1)−1) = d(wr+1, w

′
D) = r. Hence,

d(wr+1, P
′) = d(wr+1, w

′
D) = r.

Thus,

2d(p, [xw′
r] ∪ [xw′

r]) = d(wr, P
′) + d(p,wr) + d(p,wr+1) + d(wr+1, P

′)

= r + 1/2 + d(wr, p) + d(p,wr+1) + r = D + 1/2,

and therefore, δ (K (2k + m, k)) ≥ δ(T ) ≥ D+1/2
2 .

The case with odd r is similar. �

4.4. Even diameter

In this subsection we compute the precise value of the hyperbolicity constant
of Kneser graphs K(2k + m, k) with even diameter D and 1 < m < (k − 1)/2.
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Unless otherwise specified we assume D = 2r. Note that it suffices to consider
the case 1 < m < (k − 1)/2, since the case r = 1 was studied previously.

Proposition 4.7 gives the following result.

Proposition 4.15. Let K(2k +m, k) be a Kneser graph with 1 < m < (k −1)/2
and D = 2r, and let wi, wj ∈ V (K (2k + m, k)) with s = |Wi ∩ Wj |. The
following statements hold:
(1) If (r − 1)m + 1 ≤ s ≤ k − (r − 1)m − 1, then d(wi, wj) = D.
(2) If (j − 1)m + 1 ≤ s ≤ jm for 1 ≤ j ≤ r − 1, then d(wi, wj) = 2j + 1.
(3) If k − jm ≤ s ≤ k − (j − 1)m − 1 for 1 ≤ j ≤ r − 1, then d(wi, wj) = 2j.

Theorem 4.16. If K(2k +m, k) is a Kneser graph with 1 < m < (k − 1)/2 and
D is even, then

δ (K (2k + m, k)) =
D + 1

2
.

Proof. Lemma 2.2 gives δ (K (2k + m, k)) ≤ D+1
2 . Let us prove the converse

inequality.
Let D = 2r. If wi, wj ∈ V (K (2k + m, k)) with d(wi, wj) = D, then Propo-

sitions 4.7 and 4.15 give (r − 1)m + 1 ≤ |Wi ∩ Wj | ≤ k − (r − 1)m + 1.
Let A, B, C, U , V be pairwise disjoint sets such that |A| = |B| = (r −

1)m + 1 = s1, |C| = m, |U | = |V | = k − (r − 1)m − 1 = s2.
Consider the following sets:

Wj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aim ∪ Bim ∪ U if j = 2i, 0 ≤ i ≤ 
r/2�,
A(i−1)m ∪ Bim ∪ C ∪ V if j = 2i − 1, 1 ≤ i ≤ �r/2
,
A(i−1)m+1 ∪ B(i−1)m+1 ∪ U if j = 2i, 
r/2� < i ≤ r,

A(i−2)m+1 ∪ B(i−1)m+1 ∪ C ∪ V if j = 2i − 1, �r/2
 < i ≤ r.

(13)

W ′
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

As1−im ∪ Bs1−im ∪ V if j = 2i, 0 ≤ i < �r/2
,
As1−im ∪ Bs1−(i−1)m ∪ C ∪ U if j = 2i − 1, 1 ≤ i ≤ 
r/2�,
As1−(i−1)m−l ∪ Bs1−(i−1)m−l ∪ V if j = 2i, �r/2
 ≤ i ≤ r,

As1−(i−1)m−l ∪ Bs1−(i−2)m−l ∪ C ∪ U if j = 2i − 1, 
r/2� < i ≤ r.

(14)

Let x, y be the midpoints of w0w
′
0 and wDw′

D respectively. Let P and P ′ be
geodesics joining x and y such that P ∩ V (K (2k + m, k)) = {w0, w1, . . . , wd}
and P ′ ∩V (K (2k + m, k)) = {w′

0, w
′
1, . . . , w

′
d}. Consider the geodesic triangle

T = {[xw′
r], [yw′

r], P}. Let p be the midpoint of P , i.e., p = wr.
We are going to prove that d (wr, P

′ ∩ V (K (2k + m, k))) = r + 1.
Assume that r is even. Then Wr = W2(r/2) = A(r/2)m ∪ B(r/2)m ∪ U , and

for 0 ≤ i < �r/2
,
(r/2 − 1)m + 1 < (r/2)m + 1 ≤ s1 − im = (r − 1 − i)m + 1 ≤ (r − 1)m + 1,

|Wr ∩ W ′
2i| =

∣
∣
∣
(
A(r/2)m ∪ B(r/2)m ∪ U

)
∩

(
As1−im ∪ Bs1−im ∪ V

)∣
∣
∣
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=
∣
∣
∣A(r/2)m ∩ As1−im

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ Bs1−im

∣
∣
∣

=
∣
∣
∣A(r/2)m ∩ A(r−1−i)m+1

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ B(r−1−i)m+1

∣
∣
∣

=
∣
∣
∣A(r−1−i)m+1

∣
∣
∣ +

∣
∣
∣B(r/2)m

∣
∣
∣ = |A| − ((r − 1 − i)m + 1) + (r/2)m

= (r − 1)m + 1 − (r − 1)m − 1 + im + (r/2)m = (r/2 + i)m < s1.

Thus, we have d(wr, w2i) = 2(r/2 + i) + 1 ≥ r + 1 and d(wr, w0) = r + 1.
If �r/2
 ≤ i ≤ r, then

|Wr ∩ W ′
2i| =

∣
∣
∣
(
A(r/2)m∪B(r/2)m∪U

)
∩

(
As1−(i−1)m−l∪Bs1−(i−1)m−l∪V

)∣
∣
∣

=
∣
∣
∣A(r/2)m ∩ As1−(i−1)m−l

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ Bs1−(i−1)m−l

∣
∣
∣

=
∣
∣
∣A(r/2)m ∩ A(r−i)m

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ B(r−i)m

∣
∣
∣ .

If i = r/2, then |Wr ∩ W ′
2i| = |A| − (r/2)m + (r/2)m = s1 and so,

d(wr, w2i) = D. If i > r/2, then (r − i)m < (r/2)m and so,

|Wr ∩ W ′
2i| =

∣
∣
∣A(r/2)m

∣
∣
∣ +

∣
∣
∣B(r−i)m

∣
∣
∣ = |A| − (r/2)m + (r − i)m

= (r − 1)m + 1 − (r/2)m + (r − i)m = (3r/2 − 1 − i)m + 1.

We can write i = r/2+i′ with 1 ≤ i′ ≤ r/2 and so, |Wr∩W ′
2i| = (r−1−i′)m+1

and (r/2 − 1)m + 1 ≤ |Wr ∩ W ′
2i| ≤ (r − 2)m + 1 < s. Therefore, d(wr, w2i) =

2(r − 1 − i′) + 3 ≥ r + 1.
If 1 ≤ i ≤ 
r/2�, then

|Wr ∩ W ′
2i−1| =

∣
∣
∣
(
A(r/2)m ∪ B(r/2)m ∪ U

)
∩

(
As1−im ∪ Bs1−(i−1)m ∪ C ∪ U

)∣
∣
∣

=
∣
∣
∣A(r/2)m ∩ As1−im

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ Bs1−(i−1)m

∣
∣
∣ + |U |

=
∣
∣
∣A(r/2)m ∩ A(r−1−i)m+1

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ B(r−i)m+1

∣
∣
∣ + |U |.

Since 1 ≤ i ≤ r

2
, we have (r−i)m+1 >

(r

2

)
m and

∣
∣
∣B( r

2 )m ∩ B(r−i)m+1
∣
∣
∣ =

0. If i = r/2, then
∣
∣
∣A(r/2)m ∩ A(r/2−1)m+1

∣
∣
∣ = 0 and |Wr ∩ W ′

2i−1| = |U | = s2,

and so, d(wr, w2i−1) = D. If i < r/2, then
∣
∣
∣A(r/2)m ∩ A(r/2−1)m+1

∣
∣
∣ = (r/2 −

1−i)m+1 and |Wr∩W ′
2i−1| = |U |+(r/2−1−i)m+1 = |U |+1+(r/2−1−i)m =

k−(r/2+ i)m. Therefore, for 1 ≤ i < r/2, we have d(wr, w2i−1) = 2(r/2+ i) =
r + 2i ≥ r + 2.

If 
r/2� < i ≤ r, then

|Wr ∩ W ′
2i−1|

=
∣
∣
∣
(
A(r/2)m ∪ B(r/2)m ∪ U

)
∩

(
As1−(i−1)m−l ∪ Bs1−(i−2)m−l ∪ C ∪ U

)∣
∣
∣
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=
∣
∣
∣A(r/2)m ∩ As1−(i−1)m−l

∣
∣
∣ +

∣
∣
∣B(r/2)m ∩ Bs1−(i−2)m−l

∣
∣
∣ + |U |.

Since r/2 < i, we have s1 − (i − 1)m − 1 = (r − i)m < (r/2)m so∣
∣
∣A(r/2)m ∩ As1−(i−1)m−l

∣
∣
∣ = 0 and

∣
∣
∣B(r/2)m ∩ Bs1−(i−2)m−l

∣
∣
∣ = (i − r/2 − 1)m

and |Wr ∩W ′
2i−1| = k− ((3/2)r − i) m−1. Therefore, for r/2 < i ≤ r, we have

d(wr, w2i−1) = 2 ((3/2)r − i) + 2 ≥ r + 2.
Consequently, d (wr, P

′ ∩ V (K (2k + m, k))) = r + 1 and so,

δ (K (2k + m, k)) ≥ δ(T ) ≥ d(wr, [xw′
r] ∪ [yw′

r])

= min{d(wr, {x, y}), d(wr, P
′ ∩ V (K (2k + m, k))}

= min{r + 1/2, r + 1} =
D + 1

2
.

The argument with odd r is similar. �
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