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Probabilistic Stirling numbers and applications

José A. Adell and Beáta Bényi

Abstract. We introduce probabilistic Stirling numbers of the first kind sY (n, k) associated
with a complex-valued random variable Y satisfying appropriate integrability conditions,
thus completing the notion of probabilistic Stirling numbers of the second kind SY (n, k)
previously considered by the first author. Combinatorial interpretations, recursion formulas,
and connections between sY (n, k) and SY (n, k) are given. We show that such numbers
describe a large subset of potential polynomials, on the one hand, and the moments of sums of
i. i. d. random variables, on the other, establishing their precise asymptotic behavior without
appealing to the central limit theorem. We explicitly compute these numbers when Y has a
certain familiar distribution, providing at the same time their combinatorial meaning.
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1. Introduction

Stirling numbers of the first and second kinds, respectively denoted by s(n, k)
and S(n, k), are among the most fascinating integer arrays in mathematics,
having numerous applications in combinatorics, number theory, probability
theory, and other fields. From a combinatorial viewpoint, S(n, k) counts the
number of partitions of an n element set into k distinct blocks, whereas |s(n, k)|
gives the number of permutations of [n] = {1, 2, . . . , n} into k distinct cy-
cles. Analytically, such numbers can be defined in various equivalent ways (cf.
Abramowitz and Stegun [1, p. 824] and Comtet [8, Chapter 5]). For instance,

(x)n =
n∑

k=0

s(n, k)xk and xn =
n∑

k=0

S(n, k)(x)k, (1)
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where (x)n = x(x − 1) · · · (x − n + 1), n ≥ 1 ((x)0 = 1), or via their generating
function as

logk(1 + z)
k!

=
∞∑

n=k

s(n, k)
zn

n!
, |z| < 1 and

(ez − 1)k

k!
=

∞∑

n=k

S(n, k)
zn

n!
, z ∈ C. (2)

Stirling numbers have been generalized in many different ways (see, for
instance, Hsu and Shiue [11], Luo and Srivastava [14], Cakić et al. [7], El-
Desouky et al. [9], Kim et al. [12], and Bényi et al. [6], among many others).

Denote by G0 the set of complex-valued random variables Y such that

Ee|zY | < ∞, |z| ≤ r, (3)

for some r > 0, where E stands for mathematical expectation. Probabilis-
tic Stirling numbers of the second kind SY (n, k) associated with the random
variable Y ∈ G0 were defined in [4] by

(
EezY − 1

)k

k!
=

∞∑

n=k

SY (n, k)
zn

n!
. (4)

These numbers have found applications in analytic number theory, such as
extensions of the classical formula for sums of powers on arithmetic progres-
sions (cf. [4]) and explicit expressions for a large class of Appell polynomials
(see [5]). Applications in probability theory, especially to computing moments
of sums of independent identically distributed random variables and Edge-
worth expansions are given in [2].

The aim of this paper is to complete definition (4) by introducing proba-
bilistic Stirling numbers of the first kind sY (n, k), showing at the same time
various applications of them. To this end, consider the cumulant generating
function of Y ∈ G0, that is,

KY (z) = logEezY =
∞∑

n=k

κn(Y )
zn

n!
. (5)

We define probabilistic Stirling numbers of the first kind, sY (n, k), associated
with Y ∈ G0 via their generating function as

(KY (z))k

k!
=

∞∑

n=k

(−1)n−ksY (n, k)
zn

n!
. (6)

If Y = 1, we see from (4) and (6) that
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sY (n, k) = δn,k and SY (n, k) = S(n, k). (7)

Suppose that Y has the exponential density ρ(θ) = e−θ, θ ≥ 0, and denote
the rising factorial by 〈x〉n = x(x + 1) · · · (x + n − 1), n ≥ 1 (〈x〉0 = 1). It will
be shown in formula (45) below that in this case we have

sY (n, k) = s(n, k) and SY (n, k) =
(

n

k

)
〈k〉n−k = L(n, k), (8)

where L(n, k) are the Lah numbers (cf. [13]), sometimes also called the Stirling
numbers of the third kind. Thus, probabilistic Stirling numbers generalize the
classical ones, although associated with different random variables.

The paper is organized as follows. In the next section, we give a combina-
torial meaning of probabilistic Stirling numbers in connection with binomial
convolution of sequences. In Sect. 3, we show various properties of such num-
bers, namely, connections between SY (n, k) and sY (n, k), recursion formulas,
computations of moments and cumulants in terms of such numbers, and their
behavior with respect to sums of independent random variables. Two applica-
tions are considered in Sect. 4. On the one hand, we show that a large subset
of potential polynomials can be explicitly written in terms of probabilistic
Stirling numbers. On the other hand, we obtain explicit formulas for the mo-
ments of standardized sums of independent identically distributed random
variables. This allows us to provide for such moments explicit rates of conver-
gence with exact leading coefficients, without appealing to the central limit
theorem. Finally, Sect. 5 is devoted to obtaining closed formulas for SY (n, k)
and sY (n, k), together with their combinatorial interpretations, for some fa-
miliar random variables Y . Specifically, we consider centered subordinators,
in particular, Poisson and gamma processes, and normally distributed random
variables.

2. Combinatorial interpretation

Let N0 be the set of non-negative integers. Throughout this paper, we assume
that k, n ∈ N0, x ∈ R, and z ∈ C with |z| ≤ r, for some r > 0, where r may
change from line to line. The following definitions and properties can be found
in [3]. Denote by H the set of complex sequences u = (un)n≥0 for which the
generating function

G(u, z) :=
∞∑

n=0

un
zn

n!
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is well defined. If u,v ∈ H, we define its binomial convolution u × v = ((u ×
v)n)n≥0 as

(u × v)n =
n∑

j=0

(
n

j

)
ujvn−j . (9)

It turns out that the sequence u × v ∈ H and is characterized by

G(u × v, z) = G(u, z)G(v, z). (10)

In addition, (H,×) is an abelian group with identity element e = (δn0)n≥0.
Given u(m) = (u(m)

n )n≥0 ∈ H, m = 1, . . . , k, we have u(1) × · · · × u(k) ∈ H and

(u(1) × · · · × u(k))n =
∑

j1+···+jk=n

n!
j1! · · · jk!

u
(1)
j1

· · · u(k)
jk

. (11)

Such a sequence is characterized by

G(u(1) × · · · × u(k), z) = G(u(1), z) · · · G(u(k), z). (12)

We define a partition of a set [n] := {1, 2, . . . , n} as a collection of pairwise
disjoint subsets, called blocks whose union is [n]. Let Πn denote the set of all
set partitions of [n]. A set partition is given by the list of its blocks. We write
the blocks in increasing order according to their least element, for example
σ = {1, 7, 8}{2, 3, 9, 10}{4}{5, 6} ∈ Π10. Let #σ denote the number of blocks
in σ and |B| the number of elements in the block B ∈ σ. If the order of the
blocks is not arbitrary, we obtain an ordered set partition.

The right hand side of equality (11) counts the ordered set partitions with
k distinct blocks such that the ith block has size ji |Bi| = ji and is weighted
by u

(i)
ji

. The weight of the set partition is defined as the product of the weights
of its blocks.

To see that, let j1 + · · · + jk = n be a composition of n with k parts, that
denote the sizes of the blocks. We choose first j1 elements from n to create
the first block in

(
n
j1

)
ways, then we choose j2 elements for the second block

in
(
n−j1

j2

)
ways and so on, which gives

(
n

j1,j2,...,jk

)
possibilities. Every such

partition has the weight u
(1)
j1

· · · u(k)
jk

. Summing over all compositions of n, we
get formula (11).

By ignoring the order of the blocks, from (11) and (12) the following com-
binatorial expression follows

[
zn

n!

]
Gk(u, z)

k!
=

∑

σ∈Πn
#σ=k

∏

B∈σ

u|B|. (13)

Remark 1. In terms of the symbolic method, this identity is nothing else
but the so called SETk construction. See for details the book of Flajolet and
Sedgewick [10].
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Considering the definition of probabilistic Stirling numbers of the second
kind by the generating function (4) and setting G(u, z) = EezY −1 (un = EY n

in this setting) in (13), we obtain the following combinatorial definition of
probabilistic Stirling numbers

SY (n, k) =
∑

σ∈Πn
#σ=k

∏

B∈σ

EY |B|. (14)

Note that the definition ensures that the composition makes sense, since
the constant term in the power series EezY − 1 is 0.

Similarly, from (6) and setting G(u, z) = KY (z) (un = κn(Y ) in this set-
ting) in (13), we obtain

sY (n, k) = (−1)n−k
∑

σ∈Πn
#σ=k

∏

B∈σ

κ|B|(Y ). (15)

In other words, SY (n, k) is the weighted sum of all set partitions of n into k
blocks, such that the weight of a block of size j is defined as the jth moment of
the random variable Y , while |sY (n, k)| is the weighted sum of all set partitions
of n into k blocks, such that the weight of a block of size j is the jth cumulant
of the random variable Y .

Example 2. Observe that

SY (4, 2) = 4EY 3
EY + 3(EY 2)2,

since we have 4 partitions of 4 with blocks of size 3 − 1:

1 − 234, 2 − 134, 3 − 124, 4 − 123

and 3 partitions with blocks of sizes 2 − 2:

12 − 34, 13 − 24, 14 − 23.

Moment sequences and the sequences of cumulants are sometimes known
as enumerating sequences (or weighted enumerating sequences) of combina-
torial objects. The above definitions lead to combinatorial interpretations of
probabilistic Stirling numbers associated with a specific random variable Y .

For instance, if Y = 1, the moment EY j = 1 for all j and the cumulants κj

are all zero except for j = 1, i.e., κ1(Y ) = 1 and κj(Y ) = 0 for j ≥ 2. Hence,
(7) is immediate by the above definitions (14) and (15).

Similarly, if Y has the exponential density ρ(θ) = e−θ, θ ≥ 0, it is known
that EY j = j!, the number of permutations of a j element set. Weighting a
block by the number of permutations of its elements simply means that (14)
counts in this special case in how many ways we can order the set [n] into k
linearly ordered subsets, which is exactly the combinatorial definition of the
Lah numbers. On the other hand, the cumulants are given by κj(Y ) = (j−1)!,
and we see that in this case definition (15) gives the number of ways to partition
[n] into k blocks such that the elements in each block are ordered except one
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element, say the least. But this is the definition of a permutation written in
cycle notation and having exactly k distinct cycles. This is the combinatorial
definition of classical Stirling numbers of the first kind, so (8) follows. We will
give some other examples in Sect. 5.

3. Main properties

Probabilistic Stirling numbers of the first and second kinds are closely con-
nected. In fact, we can compute SY (n, k) in terms of sY (n, k) with the help
of classical Stirling numbers of the second kind. A similar converse property
is also true, as shown in the following result.

Theorem 3. Let Y ∈ G0. Then,
n∑

k=0

SY (n, k)(x)k =
n∑

k=0

(−1)n−ksY (n, k)xk. (16)

As a consequence,

SY (n, k) =
n∑

j=k

(−1)n−jsY (n, j)S(j, k) (17)

and

sY (n, k) = (−1)n−k
n∑

j=k

SY (n, j)s(j, k). (18)

Proof. Let z ∈ C with
∣∣EezY − 1

∣∣ < 1. Using (4) and the binomial expansion,
we have

(EezY )x = (EezY − 1 + 1)x =
∞∑

k=0

(x)k
(EezY − 1)k

k!
(19)

=
∞∑

k=0

(x)k

∞∑

n=k

SY (n, k)
zn

n!
=

∞∑

n=0

zn

n!

n∑

k=0

SY (n, k)(x)k. (20)

On the other hand, we get from (6)

(EezY )x = exKY (z) =
∞∑

k=0

xk (KY (z))k

k!
=

∞∑

k=0

xk
∞∑

n=k

(−1)n−ksY (n, k)
zn

n!
(21)

=
∞∑

n=0

zn

n!

n∑

k=0

(−1)n−ksY (n, k)xk. (22)

Thus, identity (16) follows by equating the coefficients in (19) and (21).
Starting from (16), we have by the second equality in (1)
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n∑

k=0

SY (n, k)(x)k =
n−j∑

j=0

(−1)n−jsY (n, j)xj =
n∑

j=0

(−1)n−jsY (n, j)
j∑

k=0

S(j, k)(x)k

=
n∑

k=0

(x)k

n∑

j=k

(−1)n−jsY (n, j)S(j, k).

Therefore, (17) follows by equating the coefficients in the last expression. For-
mula (18) is shown in a similar way. �

It will be proved in Theorem 7 below that identity (16) is in fact the
explicit expression of a certain potential polynomial of degree n. On the other
hand, when applied to specific random variables, formulas (17) and (18) give
rise to different identities. For instance, if Y = 1 (resp. if Y is exponentially
distributed), we obtain from (7) and (18) (resp. from (8) and (17)) the well
known identities

n∑

j=k

S(n, j)s(j, k) = δn,k and
n∑

j=k

(−1)n−js(n, j)S(j, k) = L(n, k).

Also, if Y is exponentially distributed, we obtain from (1), (8), and (16)

n∑

k=0

L(n, k)(x)k =
n∑

k=0

(−1)n−ks(n, k)xk = (−1)n(−x)n = 〈x〉n , (23)

which is the known way to define Lah numbers as connecting coefficients be-
tween rising and falling factorials.

An easy consequence of Theorem 3 concerning moments and cumulants of
random variables is given in the following result.

Corollary 4. Let Y ∈ G0. Then,

EY n =
n∑

j=1

(−1)n−jsY (n, j)

and

κn(Y ) =
n∑

j=1

(−1)j−1(j − 1)!SY (n, j).

Proof. The first equality follows by setting k = 1 in (17) and noting that

SY (n, 1) = EY n and S(j, 1) = 1, j ≥ 1. (24)

The second one follows by choosing k = 1 in (18) and observing that

(−1)n−1sY (n, 1) = κn(Y ) and s(j, 1) = (−1)j−1(j − 1)!, j ≥ 1. (25)
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The proof is complete. �

Considering Corollary 4 from a combinatorial viewpoint, the first equality
says that the nth moment can be calculated as the sum over all partitions
such that a block of size j is weighted by the jth cumulant. More precisely,

EY n =
∑

σ∈Πn

∏

B∈σ

κ|B|.

This is in accordance with the combinatorial representation given by Speed
[17]. Similarly, in the formula for the nth cumulant, all partitions are counted
and the weight EY j is given to a block of size j, so we have

κn(Y ) =
∑

σ∈Πn

(−1)#σ−1(#σ − 1)!
∏

B∈σ

EY |B|.

In Speed [17], this formula is derived by using the Möbius function of the
partition lattice.

Probabilistic Stirling numbers can be recursively computed, as shown in
the following result.

Theorem 5. Let Y ∈ G0. For any n ≥ k ≥ 1, we have

sY (n, k) =
1
k

n−1∑

j=k−1

(
n

j

)
sY (j, k − 1)(−1)n−1−jκn−j(Y ) (26)

and

SY (n, k) =
1
k

n−1∑

j=k−1

(
n

j

)
SY (j, k − 1)EY n−j . (27)

In particular,

sY (k, k) = (κ1(Y ))k and SY (k, k) = (EY )k. (28)

Proof. Starting with the identity

(KY (z))k

k!
=

(KY (z))k−1

(k − 1)!
KY (z)

k
,

and applying (9) and (10), we see that

(−1)n−ksY (n, k) =
1
k

n∑

j=0

(
n

j

)
(−1)j−k−1sY (j, k − 1)(−1)n−j−1sY (n − j, 1)

=
1
k

n∑

j=0

(
n

j

)
(−1)j−k−1sY (j, k − 1)κn−j(Y ),
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where we have used (25) in the last equality. Hence, (26) follows from the fact
that

SY (n, k) = sY (n, k) = 0, n < k. (29)

The proof of (27) follows a similar pattern, starting from the identity
(
EezY − 1

)k

k!
=

(
EezY − 1

)k−1

(k − 1)!
EezY − 1

k

and using (24) and (29). Finally, we have from (26)

sY (k, k) = sY (k − 1, k − 1)κ1(Y ).

Thus, the first equality in (28) follows by induction on k. The second one is
shown in a similar way. �

We also provide a combinatorial proof for Theorem 5. We rewrite formula
(26) in a slightly different form as

ksY (n, k) =
n−k+1∑

n−j=1

[(
n

n − j

)
κn−j(Y )

] [
(−1)n−1−jsY (j, k − 1)

]
.

The left hand side counts the weighted sum of partitions of [n] into k blocks
with a mark on one of the blocks. The right hand side does the same. First, we
choose n − j elements, form a block with them and associate with this block
the weight κn−j(Y ). This block is the marked block. Then we create from the
remaining j elements a partition into k − 1 blocks and weight the blocks by
the cumulants. Summing over all possible values of n − j we get all the cases.
The second formula can be proven in a similar manner.

Formulas (28) express the fact that there is only one way k elements can
form a partition with k blocks, namely, that each block is a singleton.

Probabilistic Stirling numbers of the first kind have a simple behavior with
respect to the sum of independent random variables. In this regard, if (Yk)k≥1

is a sequence of independent copies of Y ∈ G0, we denote

Wm = Y1 + · · · + Ym, m ∈ N0 \ {0}, (W0 = 0). (30)

Theorem 6. Let X and Y be two independent random variables in G0. Then,

sX+Y (n, k) =
k∑

m=0

n∑

j=0

(
n

j

)
sX(j,m)sY (n − j, k − m). (31)

In addition,

sWm
(n, k) = mksY (n, k). (32)
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Proof. Since X and Y are independent, we have

(KX+Y (z))k

k!
=

(KX(z) + KY (z))k

k!
=

k∑

m=0

(KX(z))m

m!
(KY (z))k−m

(k − m)!
.

Therefore, (31) follows from (9) and (10). Formula (32) readily follows from
the fact that

KWm
(z) = mKY (z).

The proof is complete. �

In [4, Th. 4.6], a very involved formula for SX+Y (n, k) was given. An easier
alternative computing SX+Y (n, k) is to successively apply formulae (31) and
(17).

4. Potential polynomials and moments

Let B(z) be an analytic function at z = 0 such that B(0) = 1. The potential
polynomials P(x) = (Pn(x))n≥0 associated with B(z) are defined (see Comtet
[8, Section 3.5] and Wang [21]) by means of the generating function

G(P(x), z) =
∞∑

n=0

Pn(x)
zn

n!
= B(z)x.

Note that Pn(0) = 1. In this paper, we consider the subset P of potential
polynomials such that

∞∑

n=0

Pn(x)
zn

n!
=

(
EezY

)x
, (33)

for some Y ∈ G0. For such polynomials, we give the following result.

Theorem 7. Let P(x) ∈ P. Then,

Pn(x) =
n∑

k=0

SY (n, k)(x)k =
n∑

k=0

(−1)n−ksY (n, k)xk. (34)

In addition, we have for any m ∈ N0

EWn
m = Pn(m) =

n∑

k=0

SY (n, k)(m)k =
n∑

k=0

(−1)n−ksY (n, k)mk. (35)

Proof. Formula (34) readily follows from (19), (21), and (33). Choosing x = m
in (33), we get from (30)

∞∑

n=0

Pn(m)
zn

n!
=

(
EezY

)m
= EezWm =

∞∑

n=0

EWn
m

zn

n!
.
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This shows (35) and completes the proof. �

Theorem 7 has both an analytic and a probabilistic reading. On the one
hand, formula (34) gives us explicit expressions for the potential polynomials
in P in terms of probabilistic Stirling numbers. A similar expression to the first
equality in (34) in terms of Bell polynomials was given by Comtet [8, p.141]
and [21]. On the other hand, formula (35) allows us to compute moments
of sums of independent identically distributed random variables by means of
probabilistic Stirling numbers.

In this last respect, formulas become simpler for centered random variables.
In fact, denote by G1 the set of random variables Y ∈ G0 such that EY = 0. On
the other hand, if Z is a random variable having the standard normal density,
it is well known that

EZ2n =
(2n)!
n!2n

. (36)

Lemma 8. Assume that Y ∈ G1 and denote by σ2 = EY 2. Then,

sY (n, k) = SY (n, k) = 0, n < 2k. (37)

As a consequence,

(−1)nsY (2n, n) = SY (2n, n) = E(σZ)2n, (38)

as well as

(−1)n+1sY (2n + 1, n) = SY (2n + 1, n) = n(2n + 1)
EY 3

3σ2
E(σZ)2n. (39)

Proof. In [2], it was shown that SY (n, k) = 0 for n < 2k. Thus, (37) readily
follows from (18). On the other hand, the second equalities in (38) and (39)
were shown in [2]. Therefore, formulae (38) and (39) follow from (18) and (37),
after observing that S(k, k) = 1 for k ∈ N0. �

Suppose that Y ∈ G1 is real valued. It is well known (cf. [20]) that the
standardized sums Wm/(σ

√
m) fulfill the asymptotic result

lim
m→∞E

(
Wm

σ
√

m

)n

= EZn, n ∈ N0. (40)

The usual way to prove (40) is based on the central limit theorem satisfied
by Wm/(σ

√
m). Note that if n is odd, the limit in (40) is zero and therefore

no information about the speed of convergence for odd moments can be in-
ferred from (40). Here, we provide the following non asymptotic result without
appealing to the central limit theorem.
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Corollary 9. Assume that Y ∈ G1 and let σ2 = EY 2. Then,

E

(
Wm

σ
√

m

)2n

=
1

σ2n

n∑

k=0

SY (2n, k)
(m)k

mn
=

1
σ2n

n∑

k=0

(−1)ksY (2n, k)
1

mn−k

= EZ2n + O

(
1
m

)
,

and

E
W 2n+1

m

(σ
√

m)2n
=

1
σ2n

n∑

k=0

SY (2n + 1, k)
(m)k

mn
=

1
σ2n

n∑

k=0

(−1)ksY (2n + 1, k)
1

mn−k

= n(2n + 1)
EY 3

3σ2
EZ2n + O

(
1
m

)
.

Proof. The result follows from (35), Lemma 8, and some simple computa
tions. �

Whenever EY 3 	= 0, Corollary 9 tells us that the order of magnitude of
EW 2n

m and EW 2n+1
m is mn, as m → ∞, providing at the same time the exact

leading constants.
Another interesting consequence for the potential polynomials is the fol-

lowing.

Corollary 10. Let P(x) ∈ P with associated random variable Y ∈ G1. Then,

Pn(x) =
�n/2�∑

k=0

SY (n, k)(x)k =
�n/2�∑

k=0

(−1)n−ksY (n, k)xk,

where �x� stands for the integer part of x.

Proof. Apply (37) to formula (34). �

According to Corollary 10 and (38), P2n(x) has exact degree n, whereas
P2n+1(x) has exact degree n, whenever EY 3 	= 0, as follows from (39). If
EY 3 = 0, then P2n+1(x) has degree at most n − 1.

5. Centered subordinators and other examples

Let X = (X(t))t≥0 be a centered subordinator, that is, a stochastic process
starting at the origin, having independent stationary increments, and such
that EX(t) = t, t ≥ 0. The characteristic function of this process is given by
(cf. Steutel and van Harn [18, p. 107] and [2])

EeiξX(t) = exp
(

tE

(
eiξT−1

T

))
= exp

(
iξtEeiξUT

)
, ξ ∈ R, (41)
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where U is a random variable uniformly distributed on [0, 1] and independent
of the non-negative random variable T , which determines X. Here, we assume
that T ∈ G0.

Let (Uj)j≥1 and (Tj)j≥1 be two sequences of independent copies of U and
T , respectively. Assume that both sequences are mutually independent and for
k ∈ N0 \ {0} denote

Vk = U1T1 + · · · + UkTk (V0 = 0). (42)

With the preceding notations and assumptions, we give the following result.

Proposition 11. For any t ≥ 0, we have

sX(t)(n, k) = (−1)n−ktk
(

n

k

)
EV n−k

k .

Proof. By (41), we have

KX(t)(z) = tzEezUT ,

thus implying, by virtue of (42), that
(KX(t)(z)

)k

k!
=

tkzk

k!
EezVk =

tkzk

k!

∞∑

m=0

EV m
k

zm

m!
= tk

∞∑

n=k

(
n

k

)
EV n−k

k

zn

n!
.

Therefore, the conclusion follows from (6). �

We provide a combinatorial interpretation of Proposition 11.

Proposition 12. For any t ≥ 0, (−1)n−ksX(t)(n, k) is the weighted sum of
partitions of [n] into k distinct blocks such that block Bi has the weight tET

|Bi|
i .

Proof. We have by the multinomial theorem and by the independence of the
random variables involved

EV n−k
k =

∑

j1+···+jk=n−k

(
n − k

j1, . . . , j2

)
E (U1T1)

j1 · · ·E(UkTk)jk

=
∑

j1+···+jk=n−k

(
n − k

j1, . . . , j2

)
EU j1

1 · · ·EU jk

k ET j1
1 · · ·ET jk

k .

Since EU j = 1/(j + 1) for a random variable U uniformly distributed on
[0, 1], we have

tk
(

n

k

)
EV n−k

k =
∑

j1+···+jk=n−k

(
n

k

)(
n − k

j1, . . . , j2

)
1

j1 + 1
· · · 1

jk + 1
tkET j1

1 · · ·ET jk

k .

(43)

We count the partitions of [n] into k non-empty blocks by enumerating the
possible cases with given block sizes. More precisely, given a composition of
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n into k parts j′
1 + · · · + j′

k = n, we count how many partitions there are
with |Bi| = j′

i, i ∈ [k] (note that j′
i > 0). First, we choose k elements from n

that we “put” into different blocks (ordering the so created—at the moment
one-element blocks—in increasing order). Let us call these elements in a block
the indicator element of the block. Now we choose from the remaining n − k
elements j′

1 − 1 elements and put them into the first block, then we choose
j′
2 − 1 elements from the remaining n − k − j′

1 + 1 elements, and so on. This
can be done in

(
n

k

)(
n − k

j′
1 − 1, . . . , j′

2 − 1

)

ways. However, in a block any of the elements could be the indicator element.
Therefore, in the enumeration above each partition is counted more times,
namely j′

1j
′
2 · · · j′

k times. We introduce the notation ji = j′
i − 1 (note that

ji ≥ 0) and obtain for given j1, . . . , jk with j1 + · · · + jk = n − k that the
number of partitions is

(
n

k

)(
n − k

j1, . . . , j2

)
1

j1 + 1
· · · 1

jk + 1
.

Associating with each block the weight tET
|Bi|
i and summing over all pos-

sible compositions, we obtain (43) and the proof is complete. �

Probabilistic Stirling numbers of the second kind SX(t)(n, k) can be com-
puted using (17) and Proposition 11.

When considering particular examples of centered subordinators, interest-
ing formulas can be obtained. As an illustration, we give the following two
examples.

5.1. The standard Poisson process (N(t))t≥0

This process satisfies (41) with T = 1. Explicit expressions for its associated
Stirling numbers are given in the following result.

Proposition 13. For any t ≥ 0, we have

sN(t)(n, k) = (−1)n−kS(n, k)tk and SN(t)(n, k) =
n∑

j=k

S(n, j)S(j, k)tj .

Proof. Choosing T = 1 in (41), we get

KN(t)(z) = t(ez − 1).

Thus, the first equality follows from (2) and (6), whereas the second one follows
from (17). The proof is complete. �
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Comparing Proposition 11 with the first equality in Proposition 13, we
obtain the following probabilistic representation for classical Stirling numbers
of the second kind

S(n, k) =
(

n

k

)
E(U1 + · · · + Uk)n−k.

Such a representation was already shown by Sun [19]. On the other hand,
we have from Corollary 4 and the first identity in Proposition 13

EN(t)n =
n∑

j=1

S(n, j)tj , t ≥ 0. (44)

This is known in the literature as Dobiński’s formula (cf. Pinsky [15]).
Next, we also prove Proposition 13 based on the combinatorial definitions

of probabilistic Stirling numbers. In the case of the standard Poisson process,
the cumulants are κn = t for all n ≥ 1. Substituting this into the combinatorial
definition of Stirling numbers of the first kind, we get

sY (n, k) = (−1)n−k
∑

σ∈Πn
#σ=k

∏

B∈σ

t.

This expression can be written in a simpler way. We associate with each
block in a partition a weight t, then we sum over all partitions with exactly
k distinct blocks. Since we fixed the number of blocks in the partition, each
partition that we take into account has weight tk. Hence,

sY (n, k) = (−1)n−k
∑

σ∈Πn

tk,

which is the first formula in Proposition 13.
Similarly, as given in (44), the moments of N(t) are the values of the

Touchard polynomials and our combinatorial definition gives

SY (n, k) =
∑

σ∈Πn
#σ=k

∏

B∈σ

|B|∑

j=1

S(|B|, j)tj ,

which has the following combinatorial interpretation. Given n objects, color
them with exactly k colors (each color should occur), i.e., partition them into
k distinct blocks. Create now a partition from the colored elements into j
monochrome blocks. Associate with each block the weight t. This coincides
with the second formula in Proposition 13, since we can also partition the n
elements into j blocks, with weights tj , and then color the blocks with k colors.
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5.2. The gamma process (Y (t))t≥0

For each t > 0, Y (t) has the gamma density

ρt(θ) =
θt−1

Γ(t)
e−θ, θ > 0.

It turns out (cf. [2]) that (Y (t))t≥0 is a centered subordinator satisfying (41),
where T has the exponential density ρ1(θ).

Proposition 14. For any t ≥ 0, we have

sY (t)(n, k) = s(n, k)tk and SY (t)(n, k) =
n∑

j=k

(−1)n−js(n, j)S(j, k)tj .

Proof. Since

KY (t)(z) = −t log(1 − z), |z| < 1,

we have from (2)
(KY (t)(z)

)k

k!
= tk

∞∑

n=k

(−1)n−ks(n, k)
zn

n!
.

This, together with (6), shows the first identity in Proposition 14. The second
one follows from (17).

For the random variable Y (1) having the exponential density, it was proved
in [4] that

SY (1)(n, k) =
(

n

k

)
〈k〉n−k = L(n, k). (45)

By the first identity in Proposition 14, we also have sY (1)(n, k) = s(n, k).
We provide an argument for the first equality in Proposition 14 based on

the combinatorial interpretation in Proposition 12. If T has the exponential
density, then ET j = j!, j ≥ 0. According to the definition of the weights of the
blocks, this gives a factor t(|Bi|−1)!, for i ∈ [k], which means that we actually
count the possible arrangements of the elements in each block after the indi-
cator element. In other words, we create now cycles, and (−1)n−ksX(t)(n, k)
is the total number of permutations with k cycles, which is (−1)n−ks(n, k)tk,
as stated. Stirling numbers of the second kind, SY (t)(n, k) counts partitions of
[n] into k linearly ordered blocks. The elements in block Bi are in one-to-one
correspondence with a permutation of {1, 2, . . . , |Bi|}. The associated weight
of the block Bi is now the number of cycles in this permutation. One can check
that both the original (combinatorial) definition of SY (t)(n, k) and the second
expression in Proposition 14 indeed count these objects.
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To conclude this section, we consider a random variable Z having the nor-
mal density

ρ(θ) =
1

σ
√

2π
e−(θ−μ)2/(2σ2), θ ∈ R, μ ∈ R, σ > 0.

Proposition 15. We have

sZ(n, k) = (−1)n−k

(
k

n − k

)
n!
k!

(
σ2

2

)n−k

μ2k−n, n = k, . . . , 2k, (46)

whereas sZ(n, k) = 0, otherwise.
In particular, if μ = 0, then

sZ(2k, k) = (−1)k
E(σZ)2k, sZ(n, k) = 0, n 	= 2k, (47)

and

SZ(2n, k) = S(n, k)E(σZ)2n. (48)

whenever k ≤ n. Otherwise, SZ(n, k) = 0.

Proof. Formula (46) follows from (6), the fact that

KZ(z) = μz +
σ2

2
z2, (49)

and some simple computations. On the other hand, suppose that μ = 0. From
(36) and (49), we see that

(KZ(z))k

k!
=

σ2k

2k

(2k)!
k!

z2k

(2k)!
= E(σZ)2k z2k

(2k)!
,

which shows (47). Finally, we have from (17) and (47)

SZ(2n, k) =
2n∑

j=k

(−1)jsZ(2n, j)S(j, k) = (−1)nsZ(2n, n)S(n, k) = S(n, k)E(σZ)2n,

whenever k ≤ n. This shows (48) and completes the proof. �

Combinatorially, (46) can be seen as follows. Since in the case of the normal
distribution only two cumulants are nonzero, κ1(Z) = μ and κ2(Z) = σ2, only
blocks with 1 or 2 elements will have a weight other than zero. Actually, such
sets are in one-to-one correspondence with matchings of the complete graph Kn

on the vertices {1, 2, . . . , n}. Such a partition with k blocks has n−k pairs and k
singletons. Choose n−k elements in

(
n

n−k

)
ways and then choose for each chosen

element a pair from the remaining k elements in k(k − 1) · · · (k − (n − k) + 1)
ways. However, the order of the elements in the block does not matter, so we
have to divide by 2k. Associating the weight μ with each singleton and σ2 with
each pair, we obtain the factor (σ2)n−kμ2k−n and we have shown (46).

If μ = 0 only pairs survive, so in this case all blocks in the partition have
exactly two elements, which are in one-to-one correspondence with perfect
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matchings of the complete graph K2k. It is well known that the number of
perfect matchings is given by the double factorial ([16, A001147])

(2k − 1)!! = 1 · 3 · 5 · · · (2k − 1) =
(2j)!
j!2j

.

We associate with each pair the weight σ2. We obtain (47) after substituting
formula (36).

For seeing (48) combinatorially, note that the combinatorial definition of
probabilistic Stirling number of the second kind implies that SZ(2n, k) counts
partitions of 2n into k blocks such that each block includes an even number of
elements (since only moments of even order are nonzero). Such partitions can
be constructed by first creating pairs (in (2n−1)!! ways), and then partitioning
these n pairs into k blocks (in S(n, k) ways). This is exactly formula (48), after
considering the weights and writing again (36) instead of the double factorial.
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