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Shannon’s entropy and its bounds for some a priori known
equiprobable states

Eleutherius Symeonidis and Flavia-Corina Mitroi-Symeonidis

Abstract. It is known that Shannon’s entropy is nonnegative and its maximum value is
reached for equiprobable events. Adding or removing impossible events does not affect Shan-
non’s entropy. However, if we increase the number of events and consider not necessarily all
of them equiprobable, but at least as many of them as the initial number of equiproba-
ble events, how does Shannon’s entropy change? We study the lower bound of the interval
where the probability value of the a priori assumed equiprobable states must belong when
the entropy increases.
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1. Introduction

Shannon’s entropy [9] is defined as

H(P ) ≡ −
n∑

i=1

pi log pi,

where P = (p1, . . . , pn) is a finite probability distribution. (Here and elsewhere
in this paper, log denotes the natural logarithm.) It is nonnegative and its
maximum value is H(U) = log n, where U = (1/n, . . . , 1/n). Throughout the
paper we use the convention 0 log 0 = 0.

The known recursivity (grouping) property of Shannon’s entropy (see for
instance [1,2]) states that

H (p1, p2, . . . , pn) = H (p1 + p2, . . . , pn) + (p1 + p2)H
(

p1
p1 + p2

,
p2

p1 + p2

)
.

(1.1)
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Apparently the simple question ”how do slight modifications of the proba-
bilities affect the entropy?” does not have many answers in the literature, and
we stated in [6] the following open problem.

Open Problem. Find the lower bound (threshold) a (k) ≥ 0 such that, if
the probability distribution P = (p1, . . . , pn) has at least k nonzero and equal
components ≥ a (k), then the Shannon entropy H (P ) attains its minimum
when n− k components of P are zero. In other words, find the best (smallest)
a (k) such that

H (p1, . . . , pn−k, p, . . . , p) ≥ H (0, . . . , 0, 1/k, . . . , 1/k)

for all probability distributions P = (p1, . . . , pn−k, p, . . . , p) ∈ R
n
+ such that

p > 0 and a (k) ≤ p ≤ 1/k (k ≤ n − 1). Obviously a (k) ≤ 1/k.

2. Main results

Our starting point now is the following answer given in [3], useful for computer
assisted analysis of the experimental data.

Proposition 1. Let the probability distribution P = (p1, . . . , pn) be such that it
has at least k nonzero and equal components pn−k+1 = · · · = pn = p. The best
(smallest) a (k) ≥ 0 such that

H (p1, . . . , pn−k, p, . . . , p) ≥ H (0, . . . , 0, 1/k, . . . , 1/k) , (2.1)

for all P for which additionally a (k) ≤ p ≤ 1/k holds, is the value of the
abscisse of the first intersection of the horizontal line y = log(k) and the graph
of the function

fk (p) = −kp log (p) − (1 − kp) log (1 − kp) , 0 ≤ p ≤ 1/k.

Figure 1 shows these intersections for k = 1, . . . , 5.
In [3], the proof of this result was reduced to the fact that a (k) is given as

the smallest solution p of the equation

− kp log (p) − (1 − kp) log (1 − kp) = log(k). (2.2)

The maximum of the function fk (p) is log (k + 1) . Therefore, we are interested
in the part of the graph which is in between the horizontal lines y = log(k)
and y = log(k + 1). The line y = log(k) meets the graph of fk (p) twice: one
point has as abscisse the required bound a (k) , the other is situated at the
right endpoint of the domain of fk (p) , p = 1/k.

In [3] we also provided some particular estimates of interest for a (k) , found
with the computer package MATLAB, needed for practical purposes, as in
Fig. 1.

In what follows, we look for a nicer formula (however still implicit) of the
first solution of the equation (2.2), a (k) . As a result, the equation (2.2) is
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Figure 1. The plot of the function fk (p) for k = 1, . . . , 5

solved also in the case when k is not an integer, and we consider this fact of
some theoretical importance.
If x := kp, equation (2.2) takes the form

F (k, x) := log k + x log
x

k
+ (1 − x) log(1 − x) = 0. (2.3)

Since F (k, x) = (1 − x) log k + x log x+ (1 − x) log(1 − x), (2.3 ) is solvable in
k, and the solution is

k =
x

x
x−1

1 − x
, 0 < x < 1.

As a result we obtain p = a(k) as a function of x = kp:

p = p(x) =
x

k
= (1 − x)x

1
1−x . (2.4)

In Fig. 2 (generated with MATLAB as well) we plot the function (1 − x)x
1

1−x

and the straight lines x
k for k = 1, . . . , 5. The intersections correspond to a (k)

for k = 1, . . . , 5.

Proposition 2. With the above notation, it holds that

0 < a (k) ≤ 1/(k + 1),

for k ≥ 2.

Proof. It is straightforward to observe, as an immediate consequence of the
recursivity of Shannon’s entropy (1.1), that

H (p1, p2, . . . , pk+2) ≥ H (p1 + p2, . . . , pk+2) .

In the case p1 + p2 = 1/(k + 1), p3 = · · · = pk+2 = 1/(k + 1) this yields

H(p1, p2, 1/(k + 1), . . . , 1/(k + 1))︸ ︷︷ ︸)
k terms

≥ H (1/(k + 1), . . . , 1/(k + 1)) = log(k + 1),
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Figure 2. The plot of the function (1 − x)x
1

1−x and the
straight lines x

k for k = 1, . . . , 5

and we can infer that for all n > k it holds that

H(p1, . . . , pn−k, 1/(k + 1), . . . , 1/(k + 1)︸ ︷︷ ︸)
k terms

≥ log(k + 1) ≥ H (0, . . . , 0, 1/k, . . . , 1/k)

for all positive p1, . . . , pn−k such that p1 + · · · + pn−k = 1/(k + 1).
Then for p = 1/(k+1) inequality (2.1) holds true, therefore a (k) ≤ 1/(k+

1). �

Geometrically speaking, this means that the intersection of the graph of
the function (1 − x)x

1
1−x with the straight line x

k has a lower ordinate than
the intersection of the straight line x

k+1 with the vertical line x = 1.

Remark 1. Note that, according to Corollary 2 in [3], one also has

−kp log p − (1 − kp) log(1 − kp) ≤ H (p1, . . . , pn−k, p, . . . , p)

≤ −kp log p − (1 − kp) log
1 − kp

n − k
≤ log n.

The first equality holds true for p1 = · · · = pn−k−1 = 0, pn−k = 1 − kp, the
second equality is valid for p1 = · · · = pn−k = 1−kp

n−k . The last equality holds
true for p = 1/n. In this paper we studied an alternative way to determine the
domain of p such that

log k ≤ −kp log p − (1 − kp) log(1 − kp).

Such studies become of practical interest when one uses redistributing algo-
rithms to analyze the time series, as in the papers [4–8].
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