
Aequat. Math.
c© The Author(s) 2024
https://doi.org/10.1007/s00010-024-01053-5 Aequationes Mathematicae

On some classes of multiplicative functions

Pentti Haukkanen

Abstract. An arithmetical function f is multiplicative if f(1) = 1 and f(mn) = f(m)f(n)
whenever m and n are coprime. We study connections between certain subclasses of mul-
tiplicative functions, such as strongly multiplicative functions, over-multiplicative functions
and totients. It appears, among others, that the over-multiplicative functions are exactly
same as the totients and the strongly multiplicative functions are exactly same as the so-
called level totients. All these functions satisfy nice arithmetical identities which are recursive
in character.
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1. Introduction

An arithmetical function is a complex valued function defined on the set of
positive integers. An arithmetical function f is said to be multiplicative if
f(1) = 1 and

f(mn) = f(m)f(n) (1)

whenever (m,n) = 1. Multiplicative functions constitute perhaps the most
important class of arithmetical functions. There are in the literature various
superclasses and subclasses of multiplicative functions, see e.g. [7,10,12,14,15]

A multiplicative function f is completely multiplicative if (1) holds for all
m,n. The power function Nk(n) = nk is an example of completely multiplica-
tive functions. The function λk is another example of completely multiplicative
functions, where λk(n) = kΩ(n) and Ω(n) is the total number of prime factors
of n with Ω(1) = 0. See [16].

A multiplicative function f is strongly multiplicative if f(pa) = f(p) for all
primes p and integers a (≥ 1), see [11,12]. The function Ek is an example of
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strongly multiplicative functions, where Ek(n) = kω(n) and ω(n) is the number
of distinct prime factors of n with ω(1) = 0.

A multiplicative function is over-multiplicative if there exists an arithmeti-
cal function F with F (1) = 1 such that

f(mn) = f(m)f(n)F ((m,n)) (2)

for all positive integers m,n, see [12]. Euler’s totient function φ(n) is defined
as the number of integers x (mod n) with (x, n) = 1. Euler’s totient function
φ possesses the property

φ(mn)φ((m,n)) = φ(m)φ(n)(m,n) (3)

for all positive integers m,n, see [2]. Dedekind’s totient ψ(n) is defined as

ψ(n) = n
∏

p|n

(
1 +

1
p

)
,

where the product is over the distinct primes p dividing n. Dedekind’s totient
ψ satisfies the arithmetical equation

ψ(mn)ψ((m,n)) = ψ(m)ψ(n)(m,n) (4)

for all positive integers m,n, see [8]. Therefore the functions φ and ψ are
over-multiplicative with F (n) = n/φ(n) and F (n) = n/ψ(n).

Equation (2) is closely related to

f(mn)f((m,n)) = f(m)f(n)g((m,n)), (5)

see [3,8]. We consider this equation at the end of this paper.
The Dirichlet convolution of two arithmetical functions f and g is defined

as

(f � g)(n) =
∑

d|n
f(d)g(n/d).

The function δ, defined as δ(1) = 1 and δ(n) = 0 otherwise, serves as the
identity under the Dirichlet convolution. An arithmetical function f possesses
a Dirichlet inverse f−1 if and only if f(1) �= 0. The Dirichlet inverse of a
completely multiplicative function f is of the form f−1 = μf , where μ is the
Möbius function.

A multiplicative function f is said to be a totient if there exist completely
multiplicative functions ft and fv such that f = ft � f−1

v . See [6,10,14,16].
Totients can be characterized with various arithmetical equations, see [6]. For
example, an arithmetical function f is a totient if and only if there is a com-
pletely multiplicative function h such that

f(mn) = f(m)
∑

d|n
γ(d)|m

f(n/d)h(d) (6)
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for all positive integers m and n, where γ is the strongly multiplicative function
with γ(p) = p for all primes p. In this case fv = h.

It is well known that Euler’s totient function φ can be written as

φ = N ∗ μ = N ∗ ζ−1,

where N(n) = n and ζ(n) = 1 for all positive integers n. Thus φ is a totient
in the sense of the above definition with φt = N and φv = ζ.

Dedekind’s totient ψ can be written as ψ = N ∗|μ|. It is another example of
a totient, since |μ| = λ−1, where |μ|(n) = |μ(n)| and λ is Liouville’s function,
which is a completely multiplicative function such that λ(p) = −1 for all primes
p. Note that λ = λ−1.

A totient f is said to be a level totient if ft = ζ. See [6,16]. The functions Ek

are examples of level totients. In fact, it can be verified that Ek = E1 �λ−1
1−k =

ζ � λ−1
1−k. See [16].

Totients belong to the class of rational arithmetical functions. In fact, to-
tients are rational arithmetical functions of order (1, 1). See [9,16].

We denote by C,S,O, T , and L, respectively, the class of completely mul-
tiplicative functions, the class of strongly multiplicative functions, the class
of over-multiplicative functions, the class of totients, and the class of level
totients. The symbol CL refers to the class of usual products of completely
multiplicative functions and level totients. For a class A of arithmetical func-
tions let A• denote the class of those arithmetical functions f ∈ A for which
f(n) �= 0 for all n. In this paper we show that S = L, O = T , L � CL � T
and L• � (CL)• = T •.

2. Results

Theorem 2.1. S = L.

Proof. Suppose that f ∈ S. Then f(pa) = f(p) for all primes p and integers a
(≥ 1). Let fv be a completely multiplicative function such that fv(p) = 1−f(p)
for all primes p. Then (ζ�f−1

v )(pa) = (ζ�(μfv))(pa) = 1−fv(p) = f(p) = f(pa)
for all primes p and integers a (≥ 1). Thus f = ζ � f−1

v , which means that
f ∈ L.

Suppose that f ∈ L. Then for all primes p and all integers a ≥ 1, f(pa) =
(ζ � f−1

v )(pa) = (ζ � (μfv))(pa) = 1 − fv(p), which does not depend on a. Thus
f(pa) = f(p), that is, f ∈ S. �

Proposition 2.1. (See [6]) A multiplicative function f is a totient if and only
if for each prime p there exists a complex number z(p) such that

f(pa) = f(p) [z(p)]a−1 (7)

for all a ≥ 1. In this case z(p) = ft(p).
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Theorem 2.2. O = T .

Proof. Suppose that f ∈ O. Then there exists an arithmetical function F such
that f(mn) = f(m)f(n)F ((m,n)) for all m,n. Let m = pa−1 and n = p,
where p is a prime and a is an integer (≥ 2). Thus f(pa) = f(pa−1)f(p)F (p).
Applying this recursion we obtain f(pa) = f(p) [f(p)F (p)]a−1 for all primes p
and integers a (≥ 1). Thus, according to Proposition 2.1, f ∈ T .

Suppose that f ∈ T . Then, according to Proposition 2.1,

f(pa) = f(p) [ft(p)]a−1 (8)

for all primes p and integers a (≥ 1). Let F be a multiplicative function such
that

F (pa) =

{
ft(p)
f(p) if f(p) �= 0,

0 if f(p) = 0
(9)

for all primes p and integers a (≥ 1). We show that (2) holds. Since f and F
are multiplicative, it suffices to show that

f(pa+b) = f(pa)f(pb)F (pmin{a,b}) (10)

for all primes p and integers a, b (≥ 0). If a = 0 or b = 0, then (10) holds.
Suppose that a �= 0 and b �= 0. We distinguish two cases: f(p) = 0, f(p) �= 0.

If f(p) = 0, then, according to (8), f(pa+b) = f(pa) = f(pb) = 0, and thus
(10) holds. If f(p) �= 0, then, according to (8) and (9),

f(pa+b) = f(p) [ft(p)]a+b−1 = f(p) [ft(p)]a−1
f(p) [ft(p)]b−1 ft(p)

f(p)

= f(pa)f(pb)F (pmin{a,b}),

and thus (10) holds.
Now, we have proved that (10) holds. Thus (2) holds, that is, f ∈ O. �

Remark. It is easy to see that Equations (1)–(6) are recursive in character. For
example, for a recursive character of Equation (2), see the proof of Theorem
2.2. The function values are totally determined by certain “initial values”. It is
easy to see and well known that a multiplicative function is totally determined
by its values at prime powers, and a completely multiplicative function is to-
tally determined by its values at primes. A strongly multiplicative function
is likewise totally determined by its values at primes. According to Proposi-
tion 2.1, a totient f is totally determined by the values of f and ft at primes. It
can be shown that a totient f is also totally determined by the values of f and
fv at primes or by the values of ft and fv at primes. A level totient f is totally
determined by the values of f (or fv) at primes. From the proof of Theorem
2.2 we see that an over-multiplicative function f is totally determined by the
values of f and F at primes.

Theorem 2.3. L � CL � T .
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Proof. Since ζ ∈ C, it follows that L ⊆ CL. It is clear that φ �∈ S = L, by
Theorem 2.1. However, φ = N �μ = N(ζ �μ 1

N ), where N, 1
N ∈ C. Thus φ ∈ CL

and therefore L is a proper subclass of CL.
Assume that f ∈ CL. Then f = g(ζ�μh), where g, h ∈ C. Thus f = g�(μgh),

where g, gh ∈ C, and therefore f ∈ T . This proves that CL ⊆ T . Next we show
that μ ∈ (T \CL). Since μ = δ�μζ, where δ, ζ ∈ C, we have μ ∈ T . Assume that
μ ∈ CL, that is, μ ∈ CS, by Theorem 2.1. Then μ = gh, where g ∈ C, h ∈ S,
and thus for each prime p, g(p)h(p) = −1 and g(p2)h(p2) = g(p)2h(p) = 0,
which is impossible. Therefore μ �∈ CL. So we have proved that μ ∈ (T \ CL)
and further that CL is a proper subclass of T . �

Theorem 2.4. L• � (CL)• = T •.

Proof. From Theorem 2.3 we can conclude that L• ⊆ (CL)•. Since φ ∈ (CL)• \
L•, we see that L• is a proper subclass of (CL)•.

From Theorem 2.3 we also can conclude that (CL)• ⊆ T •. We prove that
T • ⊆ (CL)•. Assume that f ∈ T •, that is, f ∈ T and f(n) �= 0 for all n. Since
f(pa) = ft(pa)−ft(pa−1)fv(p) = ft(p)a−1(ft(p)−fv(p)), we see that ft(p) �= 0
for all primes p. It is thus possible to define a completely multiplicative function
g as g(p) = fv(p)/ft(p) for all primes p. Then [ft(ζ � μg)](pa) = ft(p)a[1 −
fv(p)/ft(p)] = ft(pa) − ft(pa−1)fv(p) = f(pa) for all primes p and integers a
(≥ 1). Thus f = ft(ζ � μg) ∈ (CL)•. This proves that T • ⊆ (CL)• and further
that (CL)• = T •. �

Remark. A problem related to Equation (2) is to characterize the arithmetical
functions f with f(1) = 1 satisfying Equation (5) for all positive integers
m,n, where g is a completely multiplicative function. In fact, Apostol and
Zuckerman [3] have shown that an arithmetical function f with f(1) = 1
satisfies (5) if and only if f is multiplicative and

f(pa+b)f(pb) = f(pa)f(pb)g(pb) (11)

for all primes p and integers a ≥ b ≥ 1. Apostol and Zuckerman [3] assume
that g is a completely multiplicative function. Their result holds even more
generally, namely if g is a multiplicative function, see [13].

We obtain a more illustrative result if we assume that f possesses Property
O which is defined as follows: an arithmetical function f satisfies Property O if
for each prime p, f(p) = 0 implies f(pa) = 0 for all a > 1. Under this condition,
(5) is a characterization of totients if g is a completely multiplicative function.
See [8]. If f is always nonzero, then (5) reduces to (2) with F = g/f and again,
(5) is a characterization of totients.

Equation (5) has been studied in [1,2,5,6]. For further material relating to
this type of equations we refer to [4,13].
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