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groups
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Abstract. Let G be a topological group, and let C(G) denote the algebra of continuous,
complex valued functions on G. We determine the solutions f, g, h ∈ C(G) of the Levi-
Civita equation

g(xy) = g(x)g(y) + f(x)h(y), x, y ∈ G,

that extends the cosine addition law. As a corollary we obtain the solutions f, g ∈ C(G)
of the cosine subtraction law g(xy∗) = g(x)g(y) + f(x)f(y), x, y ∈ G where x �→ x∗ is a
continuous involution of G. That x �→ x∗ is an involution, means that (xy)∗ = y∗x∗ and
x∗∗ = x for all x, y ∈ G.
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1. Introduction

Let S denote a semigroup, G a topological group and x → x∗ a continuous
involution of G, i.e., (xy)∗ = y∗x∗ and x∗∗ = x for all x, y ∈ G.

We shall determine the solutions g, f, h ∈ C(G) of the Levi–Civita func-
tional equation

g(xy) = g(x)g(y) + f(x)h(y), x, y ∈ G. (1.1)

The Eq. (1.1) occurs in connection with 2-dimensional representations (see
Lemma 3.2), apart from being a generalization of the cosine addition law
which is the special case h = −f .

Example 1.1 shows that there are examples of solutions (g, f, h) of (1.1)
such that g is not central, which in particular implies that g is not abelian.
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Example 1.1. Let G = SL(2,R) = {x =
(

x11 x12

x21 x22

)
| det x = 1}. On this

group G we define the three continuous functions

g(x) := x11, f(x) := x12, h(x) := x21 for x =
(

x11 x12

x21 x22

)
∈ G.

The triple (g, f, h) is a solution of (1.1), as is easy to verify, but none of its
components g, f , h is central.

Our results about (1.1) enable us find the solutions g, f ∈ C(G) the cosine
subtraction law

g(xy∗) = g(x)g(y) + f(x)f(y), x, y ∈ G. (1.2)

In the abstract of his paper [2] Ebanks writes “The main objective is to solve
g(xy∗) = g(x)g(y) + f(x)f(y) for unknown functions g, f : S → C, where x �→
x∗ is an anti-homomorphic involution. Until now this equation has not been
solved on non-commutative semigroups, nor even on non-Abelian groups with
x∗ = x−1. We solve this equation on semigroups under the assumption that
g is central, and on groups generated by their squares under the assumption
that x∗ = x−1”.

Our Example 6.8 reveals that the cosine subtraction law with the involution
x∗ = x−1 can have solutions such that g is not central.

The main results of the present paper are: (1) We determine the solutions
of the generalization (1.1) of the cosine addition law (Proposition 4.1 and
Theorem 5.1), and (2) we apply this to solve the cosine subtraction law (1.2)
(Proposition 6.4 and Theorem 6.3). An important feature of our paper is that
it treats non-abelian situations like the one in Example 1.1. We do not assume
any kind of commutativity, not even that some functions shall be central or
abelian. Our results generalize much of the earlier work on the cosine addition
and subtraction laws on groups.

The present paper about the extension (1.1) of the cosine addition law
parallels [6] that discusses the extension f(xy) = f(x)h(y) + g(x)f(y) of the
sine addition law on groups.

2. Notations and terminology

Throughout the paper S denotes a semigroup, and G denotes a group with
identity element e. We incorporate the Hausdorff property in the definition of
a topological group.

If X is a topological space we let C(X) be the algebra of continuous, com-
plex valued functions on X. If a group has not been assigned a topology we
shall tacitly endow it with the discrete topology; in this case C(G) is the
algebra of all complex valued functions on G.
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If X1 and X2 are sets and fi : Xi → C, i = 1, 2, then we define f1 ⊗ f2 :
X1 × X2 → C by (f1 ⊗ f2)(x1, x2) := f1(x1)f2(x2) for (x1, x2) ∈ X1 × X2.
Note that f1 ⊗ f2 = 0 ⇐⇒ f1 or f2 vanishes.

C
∗ := C \ {0}.

A character χ of G is a homomorphic χ : G → C
∗.

Let ϕ : S → C be a function. We say that ϕ is additive if ϕ(xy) = ϕ(x) +
ϕ(y) for all x, y ∈ S, multiplicative if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ S. ϕ is
said to be central if ϕ(xy) = ϕ(yx) for all x, y ∈ S, abelian if ϕ(x1x2 · · · xn) =
ϕ(xπ(1)xπ(2)···xπ(n)) for all x1, x2, . . . , xn ∈ S, all permutations π of n elements
and all n = 2, 3, . . . .

If x �→ x∗, x ∈ S, is an involution of S, i.e., (xy)∗ = y∗x∗ and x∗∗ = x for
all x, y ∈ S, we define for any function F : S → C the function F ∗ : S → C

by F ∗(x) := F (x∗) for x ∈ S. We say that F is even if F ∗ = F , and F is said
to be odd if F ∗ = −F . An example of an involution is the group inversion
x �→ x−1, when S is a group. If x∗ = x−1 we write F̌ instead of F ∗.

Definition 2.1. Let V �= {0} be a complex vector space and let L(V ) be the
algebra of all linear maps from V to V .
(a) A semigroup representation of S on V is a map π : S → L(V ) such that

π(xy) = π(x)π(y) for all x, y ∈ S.
(b) Let π be a semigroup representation of S on V . A subset W ⊆ V is said

to be π-invariant if π(x)W ⊆ W for all x ∈ S.
(c) A semigroup representation π of S on V is irreducible if {0} and V are

the only π-invariant subspaces of V .
(d) A representation of G on V is a semigroup representation π of G on V

such that π(e) = I.
(e) Let S be a topological semigroup and π be a semigroup representation

of S on finite dimensional vector space V . We say that π is continuous if
the map π : S → L(V ) is continuous.

3. A connection to representations

This section discusses the functional equation

g(xy) = g(x)g(y) + f(x)h(y), x, y ∈ S, (3.1)

where S is a semigroup and g, f, h : S → C are the unknown functions. (3.1)
is a natural extension of (1.1) from groups to semigroups. The section relates
(3.1) to semigroup representations of S on C

2. At the end of the section we
let S be a group.

(c) of Lemma 3.1 is admittedly special and out of place at this point, but
it will be used later in the proof of Theorem 6.4.

Lemma 3.1. Let g, f, h : S → C where f ⊗ h �= 0, satisfy (3.1). Then
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(a) There exists exactly one function k : S → C such that the matrix valued

function ρ :=
(

g f
h k

)
: S → M(2,C) is a semigroup representation of

S on C
2.

(b) If S is a topological semigroup and g, f, h ∈ C(S), then k ∈ C(S) and so
ρ is continuous.

(c) If x �→ x∗ is an involution of S and h = f∗, then g + k is even.

Proof. (a) Combining that g(x(yz)) = g((xy)z) with (3.1) we find that

f(x)[h(yz) − h(y)g(z)] = [f(xy) − g(x)f(y)]h(z) for all x, y, z ∈ S. (3.2)

By assumption f �= 0, so there exists x0 ∈ S such that f(x0) �= 0. Putting
x = x0 in (3.2) we obtain that

h(yz) = h(y)g(z) + k(y)h(z), y, z ∈ S, (3.3)

where k(y) := [f(x0y)−g(x0)f(y)]/f(x0), y ∈ S. When we put (3.3) into (3.2)
we get, using the assumption h �= 0, that

f(xy) = g(x)f(y) + f(x)k(y), x, y ∈ S. (3.4)

(3.1), (3.4) and (3.3) are formulas for right translates of g, f and h. A
similar formula holds for k. Indeed,

k(xy) = k(x)k(y) + h(x)f(y), x, y ∈ S. (3.5)

The idea for the derivation of (3.5) is to reduce the number of independent
variables that the functions depend on, from 3 to 2 to 1. The details are: The
definition of k, (3.4) and (3.1) gives us that

f(x0)k(xy) = f(x0(xy)) − g(x0)f(xy) = f((x0x)y) − g(x0)f(xy)

= g(x0x)f(y) + f(x0x)k(y) − g(x0)[g(x)f(y) + f(x)k(y)]

= [g(x0)g(x) + f(x0)h(x)]f(y) + [g(x0)f(x) + f(x0)k(x)]k(y)

− g(x0)g(x)f(y) − g(x0)f(x)k(y)

= f(x0)h(x)f(y) + f(x0)k(x)k(y) = f(x0)[k(x)k(y) + h(x)f(y)],

from which (3.5) follows, because f(x0) �= 0.
The four formulas (3.1), (3.3), (3.4) and (3.5) mean that the matrix valued

function
(

g f
h k

)
: S → M(2,C) is a semigroup representation.

The uniqueness of k remains. However, the semigroup representation prop-
erty gives us that (3.4) holds, and (3.4) implies that k is uniquely determined
by g, f and h, since f �= 0.

(b) can be seen from the formula k(y) := [f(x0y)−g(x0)f(y)]/f(x0) derived
above.

(c) Using the homomorphism property ρ(xy) = ρ(x)ρ(y) at the entries
no. (1, 2) and (2, 1) we get that (3.4) and f∗(xy) = f∗(x)g(y) + k(x)f∗(y)
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hold. Comparing the last identity in its equivalent form f(xy) = g∗(x)f(y) +
f(x)k∗(y) to (3.4) we find that

[g(x) − g∗(x)]f(y) = −f(x)[k(y) − k∗(y)]. (3.6)

Since f �= 0 there is a constant c ∈ C such that g − g∗ = cf . Substituting
this into (3.6) we find that k − k∗ = −cf , so g − g∗ = k∗ − k, and hence
g + k = g∗ + k∗ = (g + k)∗.

For later reference we note a kind of converse to Lemma 3.1(a).

Lemma 3.2. Let
(

g f
h k

)
be a semigroup representation of S on C

2. Then the

triple g, f, h : S → C satisfies (3.1).

Proof. Elementary matrix multiplication.

Our main interest in Lemma 3.1 is in the solutions (g, f, h) of (3.1) when
S is a topological group G and not just a semigroup. In the group case Propo-
sition 3.4 presents three criteria, each of which ensures ρ is a representation
and not just a semigroup representation.

The non-degeneracy conditions of Definition 3.3 are special cases of stan-
dard conditions in the theory of general Levi–Civita functional equations.

Definition 3.3. Let g, f, h : S → C be a solution of (3.1).
We say that the solution (g, f, h) is non-degenerate, if g and f are linearly

independent and simultaneously g and h are linearly independent. Otherwise
we say that (g, f, h) is degenerate.

Each of the non-degeneracy conditions of Definition 3.3 implies that g �= 0
and f ⊗ h �= 0.

Proposition 3.4 contains three characterisations of non-degeneracy of solu-
tions in the setting of groups.

Proposition 3.4. Let the triple g, f, h : G → C where f ⊗ h �= 0, satisfy (1.1),
and let ρ be the corresponding semigroup representation of G on C

2 from
Lemma 3.1. The following statements are equivalent.
(a) The solution (g, f, h) of (1.1) is non-degenerate.
(b) ρ is a representation of G on C

2.
(c) g(e) = 1.
(d) g is not proportional to a character of G.

Proof. Note that g �= 0, because g = 0 implies the contradiction f ⊗ h = 0.
(a) ⇒ (b). Taking x = e in (1.1) we find that (g(e)−1)g+f(e)h = 0, which

by the non-degeneracy gives us that g(e) = 1 and f(e) = 0. Taking y = e in
(1.1) we get similarly that h(e) = 0. Furthermore

k(e) =
1

f(x0)
(f(x0) − g(x0)f(e)) =

1
f(x0)

(f(x0) − g(x0) · 0) = 1,
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so the definition of ρ gives that ρ(e) = I.
(b) ⇒ (c) is a triviality by the definition of ρ.
(c) ⇒ (d). Assume g(e) = 1. Suppose for contradiction that g = g(e)χ

for some character χ of G. Now g = χ, since g(e) = 1 by assumption, so
g(xy) = g(x)g(y), which according to (1.1) means that f ⊗ h = 0. This is the
desired contradiction.

(d) ⇒ (a). Assuming (d) we shall prove that {g, f} and {g, h} are linearly
independent. We will derive a contradiction supposing {g, f} linearly depen-
dent. The case of {g, h} being linearly dependent can be treated in a similar
way, so we omit it. Now f = αg for some α ∈ C

∗, since g �= 0 and f ⊗ h �= 0,
so (1.1) becomes g(xy) = g(x)g(y) + αg(x)h(y). Putting x = e here gives
(1 − g(e))g = αg(e)h. We see that g(e) �= 0, because g(e) = 0 implies the
contradiction g = 0, so we find that

h =
1 − g(e)
αg(e)

g = βg, where β :=
1 − g(e)
αg(e)

,

which transforms (1.1) further to

g(xy) = g(x)g(y) + αβg(x)g(y) = (1 + αβ)g(x)g(y), x, y ∈ G.

For y = e we get, since g �= 0, that (1 + αβ)g(e) = 1. Thus

g(xy) =
1

g(e)
g(x)g(y), x, y ∈ G.

This formula reveals χ := g/g(e) is a character, which contradicts (d). �

Specializing Lemma 3.1 from a semigroup S to a group G we get in Corol-
lary 3.5 roughly speaking a bijection between representations of G on C

2 and
solutions of the functional equation (1.1) on G. The details are as follows.

Corollary 3.5. Let G be a topological group.

The mapping
(

g f
h k

)
�→ (g, f, h) is a bijection of the set of continuous

representations x �→
(

g(x) f(x)
h(x) k(x)

)
∈ M(2,C), x ∈ G, of G on C

2 having

f ⊗h �= 0 onto the set of continuous solutions (g, f, h) of (1.1) having g(e) = 1
and f ⊗ h �= 0.

Proof. Let ρ :=
(

g f
h k

)
: G → GL(2,C) be a continuous representation of G

on C
2 with f ⊗ h �= 0. From Lemma 3.2 we see that (g, f, h) is a continuous

solution of (1.1) with f ⊗h �= 0. Furthermore ρ(e) = I because ρ is a represen-
tation, and so g(e) = 1. This proves that the image of the mapping is in the
desired range. The mapping is injective, because k is unique (Lemma 3.1(a)).

It remains to prove that the mapping is surjective, so let (f, g, h) be a
continuous solution of (1.1) with g(e) = 1 and f ⊗ h �= 0. Let ρ denote the
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corresponding semigroup representation of G on C
2 introduced in Lemma 3.1.

Since g(e) = 1 we read from Proposition 3.4 that ρ is a representation. The
mapping sends ρ to (g, f, h), showing the surjectivity. �

4. The degenerate solutions of (1.1)

Proposition 4.1. The degenerate solutions of (1.1) are the triples g, f, h : G →
C listed below.
(a) g is multiplicative function, f = 0 and h is arbitrary.
(b) g is multiplicative function, f is arbitrary and h = 0.
(c) There exist a character χ of G and constants α ∈ C\{0, 1} and β ∈ C

∗

such that g = αχ, f = αβχ and h = (1 − α)β−1χ.

Proof. It is easy to verify that the formulas of the proposition define degenerate
solutions of (1.1), so it is left to show that each degenerate solution (g, f, h)
falls into one of the three possibilities.

Let (g, f, h) be a degenerate solution of (1.1). If f ⊗ h = 0 then g is mul-
tiplicative function, and f = 0 and h is arbitrary, so the solution falls into
possibility (a), or h = 0 and f is arbitrary and hence the solution (g, f, h) falls
into possibility (b). In what remains of the proof we suppose that f ⊗ h �= 0.
In this case g, f, h �= 0 and, according to Proposition 3.4(d), g is proportional
to character χ of G, i.e., there exists a constant α ∈ C

∗ such that g = αχ.
Since (g, f, h) is degenerate at least one of the pairs {g, f} and {g, h} is linearly
dependent. We suppose that {g, f} is linearly dependent. The case of {g, h}
being linearly dependent can be treated in a similar way, so we omit it. Now
f = βg for some β ∈ C

∗, so f = αβχ. Substituting g = αχ and f = αβχ
into (1.1) we find after cancellations that (1 − α)χ = βh, which is possibility
(c). �

5. The non-degenerate solutions of (1.1)

In this section we list the continuous, non-degenerate solutions of (1.1) and
deduce some of their properties.

Theorem 5.1. Let G be a topological group. The continuous, non-degenerate
solutions of (1.1) are the triples g, f, h ∈ C(G) listed below, where c0 ∈ C,
c ∈ C

∗, c1 ∈ C \ {0, 1}, and χ, μ ∈ C(G) are characters of G.
(a) There exists a function k ∈ C(G) such that the matrix valued function(

g f
h k

)
is a continuous, irreducible representation of G on C

2.

(b) g = (1 + A)χ, f = c−1(g − χ), h = −c(g − χ), where A ∈ C(G) is a
non-zero additive function on G.
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(c) g = c1χ + (1 − c1)μ, f = c−1(g − μ), h = −c(g − χ), where χ �= μ.
(d) g = A+c0χ+(1−c0)μ, f = c−1(g−μ), h = −c(g−χ), where χ �= μ, A :=

A([y0, ·])χ. Here A ∈ C([G,G])\{0} is an additive function satisfying the
following transformation law

A(xyx−1) =
μ(x)
χ(x)

A(y), for all x ∈ G and y ∈ [G,G],

and y0 ∈ G is chosen such that χ(y0) �= μ(y0).
The classes (a)–(b) are mutually disjoint.
In (b) and (c) the functions g, f and h are abelian, but they are not central

in (a) and (d), so they are in particular not abelian.
In (a) the set {g, f, h, k} is linearly independent.
In (d) both {A, χ, μ} and {g, f, h} are linearly independent.

Proof. We will first show that any continuous, non-degenerate solution of
(1.1) falls into one af the cases (a)–(d). So let (g, f, h) be a continuous, non-
degenerate solution of (1.1). Then f ⊗ h �= 0, and according to Proposition
3.4(c), we have g(e) = 1. So, by applying Corollary 3.5, there exists a function

k ∈ C(G) such that the matrix valued function ρ :=
(

g f
h k

)
is continuous

representation of G on C
2.

If ρ is irreducible, then the solution (g, f, h) falls into class (a). So, in what
remains of the proof we may assume that ρ is not irreducible. Then, according

to [6, Proposition 4.4], there exist a matrix P =
(

α β
γ δ

)
∈ GL(2,C) (so

Δ := det P = αδ − βγ �= 0), characters χ, μ ∈ C(G) (they may coincide) and
a function ϕ ∈ C(G) such that(

g f
h k

)
= P

(
μ ϕ
0 χ

)
P−1 (5.1)

and

ϕ(xy) = ϕ(x)χ(y) + μ(x)ϕ(y) for all x, y ∈ G. (5.2)

From (5.1) we get g = Δ−1(αδμ − αγϕ − βγχ). Since g is not proportional
to a character (see Proposition 3.4(d)) if follows that α �= 0 and γ �= 0. This
allows us to reformulate g to

g = cΔ−1(α2ϕ + αβ(χ − μ)) + μ (5.3)

where c := −γα−1 �= 0. From (5.1) we find furthermore that

f = c−1(g − μ) and h = −c(g − χ), (5.4)

According as χ = μ or χ �= μ we have the following possibilities:
The possibility χ = μ. Applying [4, Theorem 4.1(d)] we derive from (5.2)

that ϕ = Aχ where A ∈ C(G) is additive, and then we get from (5.3) that
g = (1 − αγΔ−1A)χ. Now, writing A instead of −αγΔ−1A, we obtain that
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g = (1 + A)χ with A ∈ C(G) additive. A �= 0 because g is not proportional to
a character. In view of (5.4) the solution (g, f, h) falls into class (b).

The possibility χ �= μ and ϕ, χ and μ linearly dependent. Using [5, Propo-
sition 5] we derive from (5.2) that there exists a constant a ∈ C such that
ϕ = a(χ − μ). Hence, (5.3) implies that

g = cΔ−1(aα2(χ − μ) + αβ(χ − μ)) + μ = c1χ + (1 − c1)μ,

where c1 := cΔ−1(aα2 + αβ) ∈ C. Note that c1 ∈ C\{0, 1}, because g is not
proportional to a character. Combining this with (5.4), the solution (g, f, h)
falls into class (c).

The possibility χ �= μ and ϕ, χ and μ linearly independent. Then, choosing
y0 ∈ G such that χ(y0) �= μ(y0), we deduce from (5.2), by [5, Theorem 11(a)],
that ϕ = A([y0, ·])χ + λ(χ − μ), where λ ∈ C and A ∈ C([G,G])\{0} is a
additive function satisfying the transformation law

A(xyx−1) =
μ(x)
χ(x)

A(y), for all x ∈ G and y ∈ [G,G].

Note that A �= 0 because ϕ, χ and μ are linearly independent. Now, substitut-
ing the expression for ϕ into (5.3) we get that

g = cΔ−1
(
α2A([y0, ·])χ + λα2(χ − μ) + αβ(χ − μ)

)
+ μ.

So that, by putting c0 := cΔ−1(λα2 +αβ) ∈ C, writing A instead of cΔ−1α2A
and then defining A := A([y0, ·])χ, we obtain that g = A + c0χ + (1 − c0)μ.
Thus, taking (5.4) into account, the solution (g, f, h) falls into class (d).

Conversely, all the triples (g, f, h) described in (a)–(d) are continuous, non-
degenerate solutions of the functional equation (1.1). We prove this as follows.

Let (g, f, h) be of the form described in (a). We note that f ⊗ h �= 0: If

f = 0, then ρ =
(

g 0
h k

)
has C

(
0
1

)
as a non-trivial, invariant subspace,

contradicting the irreducibility of ρ. Similarly we deduce that h �= 0. Now we
get from Corollary 3.5 that (g, f, h) is a continuous solution of (1.1). Finally
(g, f, h) is non-degenerate, because ρ is a representation (Proposition 3.4).

In (b)–(d) we have g(x)g(y) + f(x)h(y) = g(x)χ(y) + μ(x)g(y) − μ(x)χ(y)
for all x, y ∈ G, when we in (b) interpret μ as χ. This allows us to check by
elementary computations that g(xy) = g(x)g(y) + f(x)h(y) for all x, y ∈ G in
(b)-(d), i.e., that (g, f, h) is a solution of (1.1). We omit the details, except for
noting that the check of (d) uses the formula A(xy) = A(x)χ(y) + μ(x)A(y)
from [6, Proposition 5.3(a)].

If (g, f, h) has one of the forms in (b)–(d) then a case by case inspection
shows that g(e) = 1. Moreover f ⊗ h �= 0. Indeed, suppose for a contradiction
that f ⊗h = 0, i.e., that f = 0 or h = 0. We suppose f = 0, and omit the case
h = 0, because it can be treated in a similar way. We proceed as follows.

In (b) we get g = χ, which implies that Aχ = 0, contradicting A �= 0.
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In (c) we get that g = μ, and then c1χ + (1 − c1)μ = μ, which contradicts
that χ and μ are distinct characters.

In (d) we get that g = μ, so A+ c0χ+(1− c0)μ = μ, from which we deduce
that A is central, and then, according to [6, Proposition 5.3(b)], that A = 0,
contradicting A �= 0 in (d).

Finally, by Proposition 3.4 the solution (g, f, h) is non-degenerate.
The statements about independence.
About (a). From the irreducibility of the representation ρ we deduce by [4,

Corollary E.12] that the space of matrix coefficients of ρ is 4-dimensional. So
the set {g, f, h, k} is linearly independent.

About (d). By [6, Proposition 5.3(c)], the set {A, χ, μ} is linearly indepen-
dent. In view of the formulas in (d) we read that⎛

⎝g
f
h

⎞
⎠ =

⎛
⎝ 1 c0 1 − c0

c−1 c−1c0 −c−1c0
−c c(1 − c0) −c(1 − c0)

⎞
⎠

⎛
⎝A

χ
μ

⎞
⎠ .

The matrix has determinant 1 �= 0, so {g, f, h} is also linearly independent.
The statements about centrality.
About (a). If g is central we infer from (1.1) that {f, h} is linearly depen-

dent, which contradicts that the set {g, f, h, k} is linearly independent. If f is
central we get from (3.4) that f(x)(g(y) − h(y)) = f(y)(g(x) − h(x)) for all
x, y ∈ G, so {f, g − h} is linearly dependent, contradicting that {g, f, h, k} is
linearly independent. A similar argument works when h is assumed central;
here (3.3) is used. We conclude that the functions g, f and h are not central,
and so they are in particular not abelian.

About (d). Note that χ and μ are central, and c �= 0. Suppose for contra-
diction that one of the functions g, f and h is central. Then we get from the
formulas in (d) that g is central, and hence so is A. According to [6, Proposition
5.3(b)] we have A = 0, which contradicts that A �= 0 in (d).

About (b) and (c). From the formulas in (b) and (c) we get that g, f and
h are abelian.

The disjointness of the classes (a)-(d).
The function g is central in (b) and (c), while it is not in (a) and (d), so

(a) and (b), (a) and (c), (b) and (d), (c) and (d) are disjoint.
(b) and (c). If (b) and (c) have a solution (g, f, h) in common, then g =

(1+A)χ1 = c1χ+(1−c1)μ for some characters χ1, χ, μ ∈ C(G) and an additive
function A ∈ C(G)\{0}. So Aχ1 = −χ1 + c1χ + (1 − c1)μ. According to [1,
Lemma 4.4] we have that Aχ1 = 0. But χ1 is a character of G, so we arrive at
the contradiction A = 0.

(a) and (d). Suppose for contradiction that (a) and (d) have a solution
(g, f, h) in common. We define the equivalence modulo span{g, f, h} in C(G)
by writing, for all F1, F2 ∈ C(G), F1 ≡ F2 iff F1−F2 ∈ span{g, f, h}. From the
formulas of f and h in (d) we get that χ ≡ 0 and μ ≡ 0. Let x ∈ G be arbitrary
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but fixed. We get from (3.4) that f(x)k = f(x·) − g(x)f . Using the formula
for f in (d) on the first term on the right we derive that f(x)k = c−1g(x·) −
c−1μ(x)μ−g(x)f . Thus f(x)k ≡ g(x·). Moreover, using the formula for g in (d)
we infer that g(x·) ≡ A(x·). Since A(x·) = A(x)χ + μ(x)A (by [6, Proposition
5.3(a)]) and A ≡ g we derive that f(x)k ≡ 0. Hence, f(x)k ∈ span{g, f, h}.
Now, by the non-degeneracy of (g, f, h) we have f �= 0. So choosing x ∈ G such
that f(x) �= 0 we deduce that k ∈ span{g, f, h}, contradicting that {g, f, h, k}
is linearly independent in (a). So (a) and (d) are disjoint. �

Remark 5.2. The cosine addition law on a group G is is the special case of
(1.1) in which h = −f , i.e., it is

g(xy) = g(x)g(y) − f(x)f(y), x, y ∈ G. (5.5)

Noting that g is central (the right hand side of (5.5) is symmetric in x and
y) we read from the statements in Theorem 5.1 after (d) that the classes (a)
and (d) are void. Thus we regain the classic formulas for the non-degenerate
solutions of (5.5) on groups.

6. Application to the cosine subtraction law

For involutions x �→ x∗ of semigroups Ebanks [2, Theorem 3.2(b)] solved the
functional equation g(xy∗) = g(x)g(y) + f(x)f(y) under the assumption that
g is central.

In this section we apply our main results (Proposition 4.1 and Theorem 5.1)
and get rid of the assumption that g is central. We determine the continuous
solutions on topological groups G of the cosine subtraction law (1.2), i.e., of

g(xy∗) = g(x)g(y) + f(x)f(y), x, y ∈ G, (6.1)

where x �→ x∗ is a continuous involution of G. Proposition 6.3 gives all solutions
g, f ∈ C(G) of (6.1) such that g and f are linearly dependent, while the linearly
independent solutions of (6.1) can be found in Theorem 6.4. The special case
of the group inversion is treated in Corollary 6.7.

Lemma 6.1. Let G be a group endowed with an involution x �→ x∗. Let g, f :
G → C satisfy the cosine subtraction law (6.1). Then
(a) g is even, i.e., g∗ = g.
(b) g is central ⇔ f∗ = f or f∗ = −f .

Proof. (a). The right hand side of (6.1) is symmetric in x, y, so g(xy∗) = g(yx∗)
for all x, y ∈ G, which gives (a) for y = e.

(b). Let x, y ∈ G be arbitrary. Writing (6.1) for the pairs (x, y∗) and (y, x∗),
using (a) and subtracting the two identities obtained we derive that

g(xy) − g(yx) = f(x)f∗(y) − f∗(x)f(y). (6.2)
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⇒ If g is central, then (6.2) implies that f and f∗ are linearly dependent.
If f = 0 then f = f∗ = −f∗. If f �= 0 then there exists a constant α ∈ C such
that f∗ = αf . Hence f = α2f . As f �= 0 we get that α ∈ {1,−1}, so that
f∗ = f or f∗ = −f .

⇐ The converse is due to (6.2). �

Lemma 6.2 connects the solutions of the cosine subtraction law to our
theory above for the cosine addition law.

Lemma 6.2. Let G be a topological group endowed with a continuous involution
x �→ x∗.

The set of solutions (g, f) ∈ C(G)2 of the cosine addition law (6.1) such
that {g, f} is linearly independent equals the set of pairs (g, f) ∈ C(G)2 such
that
(i) (g, f, f∗) is a non-degenerate solution of (1.1), i.e., satisfies

g(xy) = g(x)g(y) + f(x)f∗(y), x, y ∈ G, and (6.3)

(ii) g∗ = g.

Proof. Suppose (g, f) ∈ C(G)2 is a solution of (6.1) such that {g, f} is linearly
independent. From Lemma 6.1(a) we read that g∗ = g. Replacing y by y∗ in
(6.1) we find that

g(xy) = g(x)g∗(y) + f(x)f∗(y) = g(x)g(y) + f(x)f∗(y), x, y ∈ G,

so that (g, f, f∗) is a solution of (6.3). Since g∗ = g we have {g, f∗} = {g∗, f∗},
and the latter set is linearly independent, because so is {g, f}.

Let conversely (g, f) ∈ C(G)2 satisfy (i) and (ii). Replacing y by y∗ in (6.3)
we get by the help of Lemma 6.1(a) that

g(xy∗) = g(x)g∗(y) + f(x)f(y) = g(x)g(y) + f(x)f(y), x, y ∈ G,

which shows that (g, f) is a solution of (6.1). Since (g, f, f∗) by assumption is
non-degenerate, we have that {g, f} is linearly independent. �

Proposition 6.3 below solves (6.1) when {g, f} is linearly dependent.

Proposition 6.3. Let G be a topological group endowed with a continuous invo-
lution x �→ x∗. The solutions g, f ∈ C(G) of the cosine subtraction law (6.1)
such that {g, f} is linearly dependent are the following.
(i) g = χ where χ ∈ C(G) a multiplicative function such that χ∗ = χ, and

f = 0.
(ii) There exist a character χ ∈ C(G) such that χ∗ = χ and a constant

β ∈ C\{0,−i, i} such

g =
1

1 + β2
χ and f =

β

1 + β2
χ.
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Proof. Let g, f ∈ C(G) be a solution of (6.1) such that {g, f} is linearly
dependent.

Suppose first that f = 0. Here g(xy∗) = g(x)g(y). Replacing y by y∗ and
using that g is even (Lemma 6.1(a)) we get that g(xy) = g(x)g(y), so that
χ := g ∈ C(G) is multiplicative. This is (i).

Suppose next that f �= 0. It follows from (6.1) that g �= 0 as well, so
f = βg for some β ∈ C

∗. This reduces (6.1) to g(xy∗) = (1 + β2)g(x)g(y). We
observe that β �= ±i, because β = ±i implies the contradiction g = 0. Using
again that g is even we get that g(xy) = (1 + β2)g(x)g(y), which gives us that
χ := (1 + β2)g ∈ C(G) is a character. This is (ii).

The converse is immediate, so we omit the details. �

In Theorem 6.4 we solve the cosine subtraction law (6.1) when {g, f} is
linearly independent. The theorem is the main result of section 6.

Theorem 6.4. Let G be a topological group endowed with a continuous invo-
lution x �→ x∗. The solutions g, f ∈ C(G) of the cosine subtraction law (6.1)
such that {g, f} is linearly independent are the following.
(1) There exists a function k ∈ C(G) such that the matrix valued function

ρ :=
(

g f
f∗ k

)
is a continuous, irreducible representation of G on C

2 sat-

isfying ρ(x∗) = (ρ(x))t for all x ∈ G, where (ρ(x))t denotes the transpose
of the matrix ρ(x).

(2) g = (1 + A)χ, f = ±i(g − χ), where A ∈ C(G) is a non-zero, additive
function on G such that A∗ = A, and χ ∈ C(G) is a character of G such
that χ∗ = χ.

(3) g = μ+μ∗

2 , f = ±i(g − μ), where μ ∈ C(G) is a character of G such that
μ∗ �= μ.

(4) g = μ+c2χ
1+c2 , f = c−1(g − μ), where χ, μ ∈ C(G) are characters of G such

that χ �= μ, χ∗ = χ and μ∗ = μ, and c ∈ C\{0, i,−i} is a constant.
(5) g = A + c0μ

∗ + (1 − c0)μ, f = ±i(g − μ), where c0 ∈ C is a constant
and μ ∈ C(G) is a character of G such that μ∗ �= μ. Furthermore A :=
A([y0, ·])μ∗ where A ∈ C([G,G])\{0} is an additive function satisfying
the transformation law

A(xyx−1) =
μ(x)
μ∗(x)

A(y) for all x ∈ G and y ∈ [G,G],

and y0 ∈ G is chosen such that μ∗(y0) �= μ(y0). Finally

A − A∗ = (2c0 − 1)(μ − μ∗). (6.4)

The classes (1) - (5) are mutually disjoint.
In (2), (3) and (4) the functions g and f are abelian. They are not central

in (1) and (5), so they are in particular not abelian in these classes.
g is even.
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In (2) and (4) f is even, and it is odd in (3), but it is neither even nor odd
in (1) and (5).

In (1) the functions g, f , f∗ and k are linearly independent. In (5) both
{A, μ, μ∗} and {g, f, f∗} are linearly independent.

Proof. We get the solutions g, f ∈ C(G) of (6.1) such that {g, f} is linearly
independent by the help of Lemma 6.2. According to the lemma we shall find
the non-degenerate solutions of (1.1) of the form (g, f, f∗) and impose the
condition that g∗ = g. The non-degenerate solutions of (1.1) are written down
in (a)-(d) of Theorem 5.1, so we shall go through these points one by one to
get (1)–(5) of the present theorem.

(a) Here there exists k ∈ C(G) such that ρ :=
(

g f
f∗ k

)
is a continuous,

irreducible representation of G on C
2. It follows from Lemma 3.1(c) that g is

even if and only if ρ(x∗) = ρ(x)t for all x ∈ G. This gives (1).
(b) (g, f, f∗) is of the form from Theorem 5.1(b). Using that g∗ = g we

obtain that f∗ = −c(g − χ) = c−1(g − χ∗), and so that

(1 + c2)g = c2χ + χ∗, (6.5)

which implies that (1 + c2)g ∈ span{χ, χ∗}. As g = (1 + A)χ we get that
(1 + c2)Aχ ∈ span{χ, χ∗}. From [1, Lemma 4.4] we deduce that 1 + c2 = 0.
Hence c ∈ {−i, i}. Substituting this in (6.5) we obtain χ∗ = χ. Since g =
(1 + A)χ is even we see that A∗ = A. The converse is easy, and we obtain (b).

(c) (g, f, f∗) is of the form from Theorem 5.1(c). Using that g∗ = g and the
formulas of f and f∗ we obtain like in (2) that

(1 + c2)g = c2χ + μ∗. (6.6)

Now g∗ = g, so c2χ∗ + μ = c2χ + μ∗, which implies that

c2χ∗ − c2χ + μ − μ∗ = 0. (6.7)

As c �= 0 we get from (6.7) that χ = χ∗ ⇔ μ = μ∗. Due to the linear
independence of distinct characters ([4, Theorem 3.18]) (here χ and μ) we
obtain from (6.7), that there are two possibilities χ = μ∗ and χ = χ∗.

The first possibility is χ = μ∗. Here χ∗ = μ, and (6.7) reduces to (1 +
c2)(χ − μ) = 0. So c ∈ {−i, i}. Since g∗ = g we get that c1χ + (1 − c1)χ∗ =
c1χ

∗ + (1 − c1)χ. Now χ and χ∗ are distinct characters of G, so from their
linear independence we deduce that c1 = 1−c1, and so that c1 = 1

2 . This gives
us the formulas of (3). The converse is easily checked.

The second possibility is χ = χ∗. Here μ = μ∗, and (6.6) becomes (1+c2)g =
c2χ + μ. Now 1 + c2 �= 0 because χ and μ are distinct characters of G, so
g = μ+c2χ

1+c2 and c �= ±i. This gives us the formulas of (4). The converse is easily
verified.
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(d) (g, f, f∗) is of the form from Theorem 5.1(d). Thus

g = A + c0χ + (1 − c0)μ,

where χ, μ ∈ C(G) are continuous, different characters of G, and c0 ∈ C is a
constant. A �= 0 by the last line of Theorem 5.1. Note the y0 ∈ S occurring in
A is chosen so that χ(y0) �= μ(y0). Furthermore

f =
1
c
(g − μ) and f∗ = −c(g − χ)

for some constant c ∈ C
∗. From g = g∗ it follows that

A + c0χ + (1 − c0)μ = A∗ + c0χ
∗ + (1 − c0)μ∗,

so that

A − A∗ = c0(χ∗ − χ) + (1 − c0)(μ∗ − μ). (6.8)

Applying the involution ∗ to the formula for f∗ we get that f = −c(g∗ −χ∗) =
−c(g − χ∗). When we combine this with the formula for f we get that

1
c
(g − μ) = −c(g − χ∗),

which implies that

(c2 + 1)g = c2χ∗ + μ.

When we here insert the formula for g we get the identity

(1 + c2)A + (1 + c2)(c0χ + (1 − c0)μ) = c2χ∗ + μ.

If 1+ c2 �= 0 then A is central and hence A = 0 by [6, Proposition 5.3(b)]. But
this is a contradiction since A �= 0, so 1 + c2 = 0 or equivalently c = ∓i. The
identity reduces to 0 = c2χ∗ + μ, or equivalently that χ = μ∗.

For the initial formulas of the present point (d) we now get that

g = A + c0μ
∗ + (1 − c0)μ,

A − A∗ = (2c0 − 1)(μ − μ∗),

f = ±i(g − μ).

We have thus obtained the formulas and the conditions under (5).
Conversely, if (5) holds, then g, f ∈ C(G) is a solution of the cosine sub-

traction law (6.1) such that f and g are linearly independent. The main point
in the verification of this is to show that g(xy∗) = g(x)g(y) + f(x)f(y). This
uses the formula A(xy) = A(x)μ∗(y) + μ(x)A(y) for x, y ∈ G, which is [6,
Proposition 5.3(a)] with χ = μ∗.
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We next sketch why the classes (1)–(5) are mutually disjoint: By a case
by case inspection we see that if (g, f) is as in Theorem 6.4(1), respectively
(2), respectively (3) or (4), respectively (5), then (g, f, h) where h = f∗, is in
Theorem 5.1(a), respectively (b), respectively (c), respectively (d). Due to the
disjointness in Theorem 5.1 we get disjointness in Theorem 6.4 as well, except
that we need to verify that the classes (3) and (4) are disjoint. We leave this to
the reader; the fact that distinct characters are linear independent is a crucial
ingredient.

The functions g and f are abelian in (2), (3) and (4) as the formulas of them
disclose. In (1), respectively (5), (g, f, f∗) is in Theorem 5.1(a), respectively
(d), with h = f∗, so as mentioned in Theorem 5.1 g and f are not central.

We have that g is even by Lemma 6.1(a). In (2) and (4) we get that f is even
from the formula for it because g∗ = g. In (3) we get f = ±i(g−μ) = ±iμ∗−μ

2 ,
which shows that f is odd.

As we saw above, g is not central in (1) and (5), so we deduce by Lem-
ma 6.1(b), that f is neither even nor odd. �

We illustrate Theorem 6.4 by two corollaries that show how it simplifies
in some important cases, because both (1) and (5) of the theorem are void
in the corollaries. We see in particular that all the continuous solutions are
abelian. The first corollary holds for any continuous involutions, while the
second corollary deals with the group inversion.

Corollary 6.5. Let G be a nilpotent, connected topological group with a contin-
uous involution x �→ x∗. The solutions g, f ∈ C(G) of the cosine subtraction
law (6.1) are the following pairs.

(i) g = (1 + A)χ, f = Aχ, where A ∈ C(G) is an additive function on G
such that A∗ = A, and χ ∈ C(G) is a multiplicative function on G such
that χ∗ = χ.

(ii) g = μ+μ∗

2 , f = μ−μ∗

2i , where μ ∈ C(G) is a character of G such that
μ∗ �= μ.

(iii) g = μ+c2χ
1+c2 , f = c

1+c2 (χ − μ), where χ, μ ∈ C(G) are different mul-
tiplicative functions on G such that χ∗ = χ and μ∗ = μ, and where
c ∈ C\{0, i,−i} is a constant.

Proof. The crux of the matter is that Theorem 6.4(1) is void by Lie’s theorem
(see [3, Theorem 29.42]) for nilpotent, connected groups, and that Theorem
6.4(5) is void because A = 0 for nilpotent groups by [6, Proposition 5.2].
We then get the corollary by combining Proposition 6.3 and Theorem 6.4,
mainly by replacing a couple of times the word “character” in Theorem 6.4
by “multiplicative function”; the ± is absorbed in A and or in an interchange
of μ and μ∗. The combining does not require anything about the topological
group G and its continuous involution. �
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The derivation of Corollary 6.7 uses the following elementary result about
characters on groups. We skip the proof of the lemma.

Lemma 6.6. Let χ be a character of a group G. If G is a connected, topological
group and χ ∈ C(G), or if G is generated by its squares, then χ̌ = χ ⇐⇒ χ =
1 so χ̌ �= χ ⇐⇒ χ �= 1.

Corollary 6.7 is a generalization of the classic result about the cosine sub-
traction law on 2-divisible, topological, abelian groups ([4, Corollary 4.17]).

Corollary 6.7. Let G be a a connected topological group or a group generated
by its squares. The solutions g, f ∈ C(G) of the cosine subtraction law

g(xy−1) = g(x)g(y) + f(x)f(y), x, y ∈ G,

are the following pairs.
(a) g = 0 and f = 0.
(b) g = 1

1+β2 and f = β
1+β2 , where β ∈ C\{i,−i} is a constant.

(c) g = (μ + μ̌)/2 and f = (μ − μ̌)/(2i), where μ ∈ C(G) is a character of G
such that μ �= 1.

Proof. We first prove that Theorem 6.4(1) is void under the assumptions of
Corollary 6.7. In (1) we are given a continuous, irreducible representation ρ of
G on C

2 of the form

ρ(x) =
(

g(x) f(x)
f̌(x) k(x)

)
∈ GL(2,C),

such that ρ(x−1) = (ρ(x))t for all x ∈ G.
Now D := det ρ : G → C

∗ is a continuous homomorphism of G into C
∗,

since ρ is a continuous group representation. The formula ρ(x−1) = (ρ(x))t

implies that D(x−1) = D(x) for all x ∈ G, so D = 1 by Lemma 6.6.
In terms of matrix elements the formula ρ(x−1) = (ρ(x))t says that

ρ(x−1) = ρ(x)−1 =
(

g(x) f(x)
f̌(x) k(x)

)−1

=
1

D(x)

(
k(x) −f(x)

−f̌(x) g(x)

)

=
(

k(x) −f(x)
−f̌(x) g(x)

)
= ρ(x)t =

(
g(x) f̌(x)
f(x) k(x)

)
,

from which we read that g = k. But this contradicts the statement from
Theorem 6.4 that the functions g, f , f∗ and k are linearly independent in
point (1).

We next prove that Theorem 6.4(5) is void under the assumptions of Corol-
lary 6.7 by arriving at a contradiction. We find from [6, Proposition 5.3(e)] that
A∗ = −A, which reduces (6.4) to 2A = (2c0 − 1)(μ − μ∗). This shows that A
and hence also g = A + c0μ

∗ + (1 − c0)μ are central. But g is not central in
(5) by a statement in Theorem 6.4 after point (5).
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Like in the proof of Corollary 6.5 only the points (i), (ii) and (iii) of Corol-
lary 6.5 remain.

Consider (i). We get from A∗ = A that A = 0, which reduces (i) to g = χ,
f = 0, where χ ∈ C(G) is a multiplicative function such that χ = χ̌. This
means by Lemma 6.6 that χ = 0 or χ = 1. Thus the solutions of (i) are
contained in (a) and (b).

Consider (ii). The solutions of (ii) are clearly contained in (c).
Consider (iii). There are different possibilities.
If μ = 0, then g = c2

1+c2 χ and f = c
1+c2 χ. Now χ �= 0, because χ �= μ = 0,

so since χ̌ = χ we have χ = 1 by Lemma 6.6. Taking β := 1/c we see that the
solutions are in (b). The possibility χ = 0 can be treated similarly. If χ �= 0
and μ �= 0 we find that χ = μ = 1. But this is a contradiction, because χ �= μ.

Conversely, it is easy to check that the pairs of functions defined in (a), (b)
and (c) are continuous solutions. �

Ebanks found in [2, Theorem 3.2(b)] the solutions g, f : S → C with g
central of the cosine subtraction law (6.1) for any semigroup S. We strike
out that g is central; the price is that our result (Theorem 6.4) is derived for
groups, not semigroups. Example 6.8 presents a solution {g, f} of (6.1) such
that g is not central, and so is off the scope of [2].

Example 6.8. We let G = S3 = {e, (12), (13), (23), (123), (132)} be the sym-
metric group on three objects. It is not generated by its squares. We equip the
finite group S3 with the discrete topology and the involution x∗ = x−1. The
following unitary, irreducible representation ρ of S3 on C

2 can be found in the
monograph Hewitt and Ross [3, (27.61)(a)].

ρ(e) =
(

1 0
0 1

)
, ρ(12) =

(−1 0
0 1

)
, ρ(13) =

(
1
2 −

√
3
2

−
√
3
2 − 1

2

)
,

ρ(23) =

(
1
2

√
3
2√

3
2 − 1

2

)
, ρ(123) =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
, ρ(132) =

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)
.

If A is a matrix, we let Aij denote its i, j’th entry. We define g(x) := ρ(x)11,
f(x) := ρ(x)12, h(x) := ρ(x)21 for x ∈ S3. Noting that ρ is not just a unitary
representation of S3 but also a representation by real valued matrices, we get
that

ρ(x∗) = ρ(x−1) = ρ(x)−1 = (ρ(x))t = ρ(x)t for x ∈ S3, (6.9)

which is one of the conditions in Theorem 6.4(1). By (6.9) we get that

h(x) = ρ(x)21 = (ρ(x)t)12 = (ρ(x−1))12 = f(x−1) = f∗(x) for x ∈ S3,

so h = f∗, and so ρ has the correct form for Theorem 6.4(1). Thus (g, f) is a
solution of (6.1) such that {g, f} linearly independent. According to Theorem
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6.4(1) g is not central, but this fact can of course also be verified directly:
g((23)(123)) = g(12) = −1, while g((123)(23)) = g(13) = 1/2.
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