
Aequat. Math.
c© The Author(s) 2024
https://doi.org/10.1007/s00010-024-01051-7 Aequationes Mathematicae

Global centers of a family of cubic systems

Raul Felipe Appis and Jaume Llibre

Abstract. Consider the family of polynomial differential systems of degree 3, or simply cubic
systems

x′ = y, y′ = −x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3,

in the plane R
2. An equilibrium point (x0, y0) of a planar differential system is a center if

there is a neighborhood U of (x0, y0) such that U\{(x0, y0)} is filled with periodic orbits.
When R

2 \ {(x0, y0)} is filled with periodic orbits, then the center is a global center. For
this family of cubic systems Lloyd and Pearson characterized in Lloyd and Pearson (Comput
Math Appl 60:2797–2805, 2010) when the origin of coordinates is a center. We classify which
of these centers are global centers.

Mathematics Subject Classification. Primary 34A34; Secondary 34C25, 37C37, 14R15.
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1. Introduction and statement of the main result

Let P,Q : R2 −→ R be polynomials and consider the differential system

x′ = P (x, y), y′ = Q(x, y). (1)

Denote by X(x, y) = (P (x, y), Q(x, y)) the vector field associated to the dif-
ferential system (1). The degree d of system (1) is the maximum of the degrees
of the polynomials P and Q. Here the apostrophe denotes derivative with re-
spect to the time t. A point (x0, y0) is an equilibrium point of system (1) if
X(x0, y0) = (0, 0).

An equilibrium point (x0, y0) of system (1) is a center if there is a sim-
ply connected open neighborhood W of (x0, y0) such that (x0, y0) is the only
equilibrium point in W and all the trajectories contained in W\{(x0, y0)} are
periodic. The largest simply connected open neighborhood P of (x0, y0) such
that P\{(x0, y0)} is filled of periodic trajectories is called the period annulus.
When P = R

2 the point (x0, y0) is a global center.
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Dulac [5] and Poincaré [13] were the first in studying the centers of the
differential systems in the plane. While Conti [4] was the first in studying the
global centers.

To classify the centers of polynomial differential systems as well as to de-
termine the necessary and sufficient conditions to know whether a center is
global are in general difficult problems.

Kapteyn [8] and Bautin [2] classified the centers of the polynomial differen-
tial systems of degree 2, the quadratic centers. For degrees higher than 2 the
classification of all centers remain unsolved.

Galleotti and Villarini [7] proved that polynomial differential systems of
even degree do not admit global centers, a shorter proof was given in [10].

The classification of the global centers for homogeneous polynomial dif-
ferential systems is well known, see for instance [3]. The classification of the
global centers of quasi-homogeneous polynomial differential systems is also
well studied, see [9].

In this paper we classify the global centers of the following family of cubic
polynomial differential systems

x′ = y, y′ = −x+a1x
2 +a2xy +a3y

2 +a4x
3 +a5x

2y +a6xy2 +a7y
3. (2)

Lloyd and Pearson in [12] classified when the origin of coordinates of systems
(2) is a center. This result is stated as follows.

Theorem 1. The origin of system (2) is a center if and only if one of the
following five conditions holds:

(i) a2 = a5 = a7 = 0;
(ii) a1 = a3 = a5 = a7 = 0;
(iii) a4 = a3(a1 + a3), a5 = −a2(a1 + a3) and (a1 + 2a3)a6 + a2

3(a1 + a3) =
a7 = 0;

(iv) a5+3a7+a2(a1+a3) = 0, 9a6a
2
2+2a4

2+27a7μ+9μ2 = 0, a4a
2
2+a5μ = 0,

(3a7μ + μ2 + a6a
2
2)a5 − 3a7μ

2 − a6a
2
2μ = 0 where μ = 3a7 + a2a3;

(v) a5 +3a7 +a2(a1 +a3) = 0, 18a4a5 −27a4a7 +9a5a
2
1 +9a5a6 +2a5a

2
2 = 0,

27a4a1 + 4a5a2 + 9a3
1 + 2a1a

2
2 = 0, 18a2

4 + 9a4a
2
1 + 2a4a

2
2 + 2a2

5 = 0,
18a4a2 + 9a5a1 + 9a5a3 + 9a2

1a2 − 27a1a7 + 9a6a2 + 2a3
2 = 0.

The next two results help for classifying the global centers of the cubic
polynomial differential systems (2).

Proposition 2. If the origin of a differential system (2) is a global center, then
a7 = 0.

Proposition 3. A differential system (2) has the unique equilibrium point (0, 0)
if and only if either a1 = a4 = 0, or a2

1 + 4a4 < 0.

In the following result we classify the global centers of system (2). In what
follows from Proposition 2 we assume that a7 = 0, and from Proposition 3
that a4 ≤ 0.



Global centers of a family

Theorem 4. Assume that the unique equilibrium of the differential system (2)
is the (0, 0). Under the condition (i) of Theorem 1 the cubic polynomial dif-
ferential system (2) has a global center if and only if one the following two
conditions holds:

(a) a6 < 0;
(b) a3 = a6 = 0 and a4 < 0.

Under the condition (ii) of Theorem 1, the cubic polynomial differential
system (2) has a global center if and only if one the following three conditions
holds:

(c) a4 = 0 and a2
2 + 4a6 < 0;

(d) a4 < 0 and a6 < 0;
(e) a6 = 0 and a2

2 + 8a4 < 0.

Under the conditions (iii), (iv) and (v) of Theorem 1, the classification of
the global center of system (2) is reduced to conditions (i) and (ii).

In Sect. 2 we present some tools that we need for proving Theorem 4. In
Sect. 3 we initially prove Propositions 2 and 3 and after we prove Theorem 4.

2. Preliminary results

2.1. The Poincaré compactification

To determine conditions in order that a center of a polynomial differential
system in R

2 be global, we need to study the behavior of the flow at infinity,
so we recall the Poincaré compactification of a polynomial differential system
(1), essential for the study of the dynamics in a neigborhood of the infinity of
the polynomial differential systems.

Let R
2 ≡ {(x1, x2, 1); x1, x2 ∈ R} and the sets H+ = {(x1, x2, x3) ∈

S
2; x3 > 0}, H− = {(x1, x2, x3) ∈ S

2; x3 < 0} and S
1 ≡ {(x1, x2, x3) ∈

S
2; x3 = 0}, where S

2 = {(x1, x2, x3) ∈ R
3; x2

1 + x2
2 + x2

3 = 1}. In order to
study a vector field over S

2 we consider six local charts that cover the whole
sphere S

2. So, for i = 1, 2, 3, let

Ui = {(x1, x2, x3) ∈ S
2; xi > 0} and Vi = {(x1, x2, x3) ∈ S

2; xi < 0}.

Consider the diffeomorphisms ϕi : Ui −→ R
2 and ψi : Vi −→ R

2 given by

ϕi(x1, x2, x3) = ψi(x1, x2, x3) =
(

xj

xi
,
xk

xi

)

with j, k �= i and j < k. The sets (Ui, ϕi) and (Vi, ψi) are called the local charts
over S

2.
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Let f± : R2 −→ H± be the central projections from R
2 to S

2 given by

f±(x1, x2) = ±
(

x1

Δ(x1, x2)
,

x2

Δ(x1, x2)
,

1
Δ(x1, x2)

)

where Δ(x1, x2) =
√

x2
1 + x2

2 + 1. In other words f±(x1, x2) is the intersection
of the straight line through the points (0, 0, 0), (x1, x2, 1) ∈ R

3 with H±. Note
that f+ = ϕ−1

3 and f− = ψ−1
3 . Moreover, the maps f± induces over H± vector

fields analytically conjugate to system (1). Indeed, f+ induces on H+ = U3

the vector field X1(y) = Df+(ϕ3(y))X(ϕ3(y)), and f− induces on H− = V3

the vector field X2(y) = Df−(ψ3(y))X(ψ3(y)). Thus we obtain a vector field
on S

2\S1 that admits an analytic extension p(X) on S
2, see for more details

[6, chapter 5]. The vector field p(X) is called the Poincaré compactification.
Denote (u, v) = ϕi(x1, x2, x3) = ψi(x1, x2, x3). The expression of p(X) in

the chart U1 is

u′ = vd

[
Q

(
1
v
,
u

v

)
− uP

(
1
v
,
u

v

)]
, v′ = −vd+1P

(
1
v
,
u

v

)
.

The expression of p(X) in U2 is

u′ = vd

[
P

(
u

v
,
1
v

)
− uQ

(
u

v
,
1
v

)]
, v′ = −vd+1Q

(
u

v
,
1
v

)
.

The expression of p(X) in U3 is

u′ = P (u, v), v′ = Q(u, v).

For i = 1, 2, 3 the expression of p(X) in the chart Vi differs of the expression
in Ui only by the factor (−1)d−1.

Note that we can identify the infinity of R2 with the set S1. Two points for
each direction in R

2 provide two antipodal points of S1. An equilibrium point
of p(X) on S

1 is called infinite equilibrium point and an equilibrium point on
S
2\S1 is called a finite equilibrium point. Observe that the infinite equilibrium

points are in correspondence with the points (u, 0) on the charts U1, V1, U2 and
V2. Thus, if (x1, x2, 0) ∈ S

1 is an infinite equilibrium point, then your antipode
(−x1,−x2, 0) is also a infinite equilibrium point.

Denote by Pi and Qi the homogeneous parts of degree i of the polynomials
P and Q, respectively. Consider the polynomials

F (s) = Qd(1, s) − sPd(1, s) and G(s) = Pd(s, 1) − sQd(s, 1). (3)

So a point (s, 0) ∈ S
1 ∩ (U1 ∪ V1) is an infinite equilibrium point if and only if

F (s) = 0. Analogously (s, 0) ∈ S
1 ∩ (U2 ∪ V2) is an infinite equilibrium point

if and only if G(s) = 0. Note that, if (s, 0) ∈ U1 ∪ V1, then

Dp(X)(s, 0) =
[
F ′(s) Qd−1(1, s) − sPd−1(1, s)

0 −Pd(1, s)

]
, (4)
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and if (s, 0) ∈ U2 ∪ V2, then

Dp(X)(s, 0) =
[
G′(s) Pd−1(s, 1) − sQd−1(s, 1)

0 −Qd(s, 1)

]
. (5)

2.2. The vertical homogeneous blow-up

Let (x0, y0) be an equilibrium point of system (1). Denote by λ1 and λ2 the
eigenvalues of the Jacobian matrix DX(x0, y0). It is said that

(a) (x0, y0) is hyperbolic if λ1 and λ2 have no zero real part;
(b) (x0, y0) is semi-hyperbolic if λ1λ2 = 0 and λ2

1 + λ2
2 �= 0;

(c) (x0, y0) is nilpotent if λ1 = λ2 = 0 and the matrix DX(x0, y0) is not the
zero matrix;

(d) (x0, y0) is linearly zero if the matrix DX(x0, y0) is the zero matrix.

The hyperbolic and semi-hyperbolic equilibrium points are also called elemen-
tary equilibrium points

In the following we present an important technique for determining the
local phase portrait around an equilibrium point when it is neither hyper-
bolic, nor semi-hyperbolic. This method determine the local phase portrait
of an equilibrium point using changes of variables called vertical blow-ups.
The idea of a blow-up is to turn a non-elementary equilibrium point into a
vertical straight line and study the phase portrait in a neighborhood of this
straight line, applying a new blow-up to the equilibrium points which appear
on this straight line if necessary. In general, such equilibrium points are less
degenerate. For more details see [6, chapter 3].

We consider

P (x, y) = Pm(x, y) + · · · , Q(x, y) = Qn(x, y) + · · ·

in system (1), where Pm and Qn are homogeneous polynomials of degree m ≥ 1
and n ≥ 1 respectively, and the dots mean higher order terms in x and y of m
in the polynomial P and of n in the polynomial Q. Consider the polynomial

F(x1, x2) =

⎧⎨
⎩

xQm(x1, x2) − yPm(x1, x2) if m = n
−yPm(x1, x2) if m < n
xQn(x1, x2) if n < m

.

The homogeneous polynomial F is called the characteristic polynomial of sys-
tem (1) and the straight lines through the origin defined by the real linear
factors of the polynomial F are called the characteristic directions at the ori-
gin, see for more details [1].
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The vertical blow-up is the changes of variables (x1, x2) −→ (u1, u2) where
(x1, x2) = (u1, u1u2). The new system in the variables u1 and u2 is given by

u′
1 = x′

1 = P (u1, u1u2), u′
2 =

x1x
′
2 − x′

1x2

x2
1

=
Q(u1, u1u2) − u2P (u1, u1u2)

u1
.

(6)
Note that the vertical blow-up is a diffeomorphism of R

2\{(0, x2)} to
R

2\{(0, u2)} that swaps the second quadrant for the third quadrant, and vice
versa.

The following result establishes relationships between the equilibrium at
the origin of system (1) and the equilibrium points on the line u1 = 0 of
system (6), for more details see [1].

Theorem 5. Let ϕ be a trajectory of the differential system (1) tending to ori-
gin when t −→ +∞ (or t −→ −∞) tangent to one of the two directions θ
determined by tan θ = w �= ±∞. Assume that F �≡ 0. Then

(i) the straight line (x1, wx1) is a characteristic direction;
(ii) the point (u1, u2) = (0, w) is a equilibrium point of system (6) and
(iii) a trajectory ϕ as in the hypothesis is in biunivocal correspondence with a

trajectory of system (6) tending to an equilibrium point (0, w).

The next result provides necessary and sufficient conditions in order that a
polynomial differential system in the plane R

2 has a global center, for a proof
see [11].

Proposition 6. A polynomial differential system in R
2 without a line of equi-

librium points at infinity has a global center if and only if it has a unique finite
equilibrium point which is a center and all the local phase portraits of the infi-
nite equilibrium points are formed by two hyperbolic sectors having all of them
both separatrices on the infinite circle S

1.

3. Proofs

Proof of Proposition 2. We have from (2) and (3) that

G(s) = −s(a4s
3 + a5s

2 + a6s + a7).

Thus the origin of the chart U2 is always an infinite equilibrium point and
G′(0) = −a7. If a7 �= 0 then, from (5) and Theorem 2.15 of [6], the origin of
the local chart U2 is a hyperbolic node with eigenvalues −a7 of multiplicity
two. Therefore the origin of (2) cannot be global center because there are
trajectories going or coming from the origin of the local chart U2. Therefore
a7 = 0. �
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Proof of Proposition 3. The equilibrium points of system (2) are of the form
(x, 0) where x is a real root of the polynomial

h(x) = x(−1 + a1x + a4x
2).

Therefore, the origin is the unique equilibrium point of system (2) if and only
if the polynomial h(x) has no nonzero roots if and only if either a1 = a4 = 0.
or a2

1 + 4a4 < 0. �

Proof of Theorem 4. By Proposition 2 we can assume a7 = 0. From the result
of Proposition 3 we divide the proof into two cases.
Case 1. a1 = a4 = 0.

Suppose that statement (i) of Theorem 1 holds. Then a6 �= 0, otherwise
the differential system (2) would have degree 2, and consequently cannot have
a global center. System (2) in the chart U2 writes

u′ = u2v2 − a6u
2 − a3uv + v2, v′ = v(uv2 − a6u − a3v).

Note that u = 0 is not a characteristic direction at the origin of U2. Doing
the vertical blow up (u, v) = (u1, u1v1) and eliminating with a rescaling of the
time the common factor u1 between u′

1 and v′
1 we obtain

u′
1 = P1(u1, v1)
= u1(u2

1v
2
1 + v2

1 − a3v1 − a6), v′
1 = Q1(u1, v1) = −v3

1 ,

with the Jacobian matrix

D(P1, Q1)(0, 0) =
[−a6 0

0 0

]
.

As Q1(0, v1) = −v3
1 it follows, by Theorem 2.19 of [6] that, if a6 > 0, then

(u1, v1) = (0, 0) is a semi-hyperbolic node, and consequently system (2) cannot
have a global center because there are trajectories of system (2) going or
coming from the infinity. If a6 < 0, then (u1, v1) = (0, 0) is a semi-hyperbolic
saddle. Going back through the vertical blow up we conclude that the origin
of U2 is formed by two hyperbolic sectors having both separatrices at infinity,
see Fig. 1.

Now system (2) in the chart U1 becomes

u′ = −u2v2 + a3u
2v + a6u

2 − v2, v′ = −uv3.

Since u = 0 is not a characteristic direction at the origin of U1, doing the
vertical blow up (u, v) = (u1, u1v1) and eliminating the common factor u1

between u′
1 and v′

1 we obtain

u′
1 = P1(u1, v1) = u1(−u2

1v
2
1 + a3u1v1 − v2

1 + a6),

v′
1 = Q1(u1, v1) = v1(v2

1 − a3u1v1 − a6),
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Figure 1. Blow up of the equilibrium point (0, 0) of the local
chart U2 in case 1

Figure 2. Blow up of the equilibrium point (0, 0) of the local
chart U1 in case 1

with

D(P1, Q1)(0, 0) =
[
a6 0
0 −a6

]
.

If a6 < 0, then (u1, v1) = (0, 0) is a hyperbolic saddle. Going back through the
vertical blow up we obtain that the origin of U1 is formed by two hyperbolic
sectors having both separatrices at infinity, see Fig. 2.

In summary, by Proposition 6 system (2) has a global center, and statement
(a) of Theorem 4 is proved.

Assume that statement (ii) of Theorem 1 holds. We have a6 �= 0, otherwise
the differential system (2) would be quadratic. System (2) in the chart U2 is

u′ = u2v2 − a2u
2v − a6u

2 + v2, v′ = uv(v2 − a2v − a6).

Observe that v = 0 is the only characteristic direction at the origin of U2.
Doing the vertical blow up (u, v) = (u1, u1v1) and eliminating the factor u1 it
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follows

u′
1 = P1(u1, v1) = u1(u2

1v
2
1 − a2u1v1 + v2

1 − a6), v′
1 = Q1(u1, v1) = −v3

1 ,

and

D(P1, Q1)(0, 0) =
[−a6 0

0 0

]
.

If a6 > 0, then (u1, v1) = (0, 0) is a semi-hyperbolic node, and then system
(2) cannot have a global center. If a6 < 0, then (u1, v1) = (0, 0) is a semi-
hyperbolic saddle, and going back through the vertical blow up we conclude
that the origin of U2 is formed by two hyperbolic sectors, see Fig. 1.

System (2) in the chart U1 is

u′ = −u2v2 + a6u
2 + a2uv − v2, v′ = −uv3.

Since u = 0 is not a characteristic direction at the origin of U1, doing the
vertical blow up (u, v) = (u1, u1v1) and eliminating the factor u1 we get the
system

u′
1 = P1(u1, v1) = u1(−u2

1v
2
1 − v2

1 + a2v1 + a6),
v′
1 = Q1(u1, v1) = v1(v2

1 − a2v1 − a6).

This differential system on the straight line u1 = 0 has the equilibria (0, 0) and
(0, (a2±

√
a2
2 + 4a6)/2) if a2

2+4a6 ≥ 0. By Theorem 2.15 of [6] the equilibrium
(0, 0) is always a hyperbolic saddle.

When a2
2 + 4a6 > 0 by Theorem 2.19 of [6] the two equilibria (0, (a2 ±√

a2
2 + 4a6)/2) are semi-hyperbolic saddle-nodes, so the differential system

cannot have a global center.
If a2

2 + 4a6 = 0, then doing blow ups the local phase portrait of the equi-
librium point (0, a2/2) is formed by two hyperbolic sectors separatec by two
parabolic sectors, so again the differential system cannot have a global center.

Then going back through the vertical blow ups, we conclude that the origin
of U1 is formed by two hyperbolic sectors when a2

2 + 4a6 < 0, see for instance
Fig. 2. Therefore statement (c) of Theorem 4 is proved.

If statement (iii) of Theorem 1 holds, then a3 = a5 = 0 and the study
comes down to statement (ii).

Now, suppose that either statement (iv) or (v) of Theorem 1 holds. If
a2 = 0, then a5 = 0 and consequently the study comes down to statement (i).
If a2 �= 0, then a3 = a5 = 0 and the study comes down to statement (ii).
Case 2. a2

1 + 4a4 < 0.
Assume that statement (i) of Theorem 1 holds. We have from (3) that

F (s) = a4 + a6s
2. If a6 > 0 and

p± = ±
√−a4

a6
,
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then (p±, 0) are equilibrium points at infinity in the chart U1 with F ′(p±) =
2a6p

± �= 0. So from (4) we have that (p±, 0) are semi-hyperbolic saddles,
nodes or saddle-nodes. Then system (2) cannot have a global center. So we
can suppose that a6 ≤ 0, and consequently there are no infinite equilibrium
points in the chart U1. System (2) in the chart U2 becomes

u′ = −a4u
4 − a1u

3v + u2v2 − a6u
2 − a3uv + v2,

v′ = v(−a4u
3 − a1u

2v + uv2 − a6u − a3v).

Since u = 0 is not a characteristic direction at the origin of U2, doing the
vertical blow up (u, v) = (u1, u1v1) and eliminating the factor u1 we obtain

u′
1 = P1(u1, v1) = u1(u2

1v
2
1 − a1u

2
1v1 − a4u

2
1 + v2

1 − a3v1 − a6),

v′
1 = Q1(u1, v1) = −v3

1 ,
(7)

and

D(P1, Q1)(0, 0) =
[−a6 0

0 0

]
.

If a6 < 0, then (u1, v1) = (0, 0) is a semi-hyperbolic saddle. Going back through
the vertical blow up we conclude that the origin of U2 is formed by two hy-
perbolic sectors and consequently follows statement (a), see Fig. 1.

Now suppose a6 = 0. Then both coordinate axes u1 = 0 and v1 = 0 are
characteristic directions. Doing the twist (u2, v2) = (u1+v1, v1), that translates
the direction u1 = 0 to u2 = v2, system (7) becomes

u′
2 = u3

2v
2
2 − 3u2

2v
3
2 + 3u2v

4
2 − v5

2 − a1u
3
2v2 + 3a1u

2
2v

2
2 − 3a1u2v

3
2 + a1v

4
2

−a4u
3
2 + 3a4u

2
2v2 + (1 − 3a4)u2v

2
2 + (a4 − 2)v3

2 − a3u2v2 + a3v
2
2 ,

v′
2 = −v3

2 .
(8)

First suppose a3 �= 0. Then doing the vertical blow up (u2, v2) = (u3, u3v3)
in (8) and eliminating the common factor u3 we obtain

u′
3 = P3(u3, v3) = u3[−u3

3v
5
3 + 3u3

3v
4
3 − 3u3

3v
3
3 + a1u

2
3v

4
3 + u3

3v
2
3 − 3a1u

2
3v

3
3

+ 3a1u
2
3v

2
3 + (a4 − 2)u3v

3
3 − a1u

2
3v3 + (1 − 3a4)u3v

2
3

+ 3a4u3v3 + a3v
2
3 − a4u3 − a3v3],

v′
3 = Q3(u3, v3) = − v3(v3 − 1)[−u3

3v
4
3 + 2u3

3v
3
3 − u3

3v
2
3 + a1u

2
3v

3
3 − 2a1u

2
3v

2
3

+ a1u
2
3v3 + (a4 − 2)u3v

2
3 − 2a4u3v3 + a4u3 + a3v3].

(9)
So the unique equilibrium points of system (9) in the v3−axis are (0, 0) and
(0, 1). Since

D(P3, Q3)(0, 1) =
[
0 0
0 −a3

]

the equilibrium (0, 1) is a semi-hyperbolic saddle-node. Consequently system
(2) cannot have a global center.
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Figure 3. Blow up’s of the equilibrium point (0, 0) of the
local chart U2 under the case 2 with a3 = a6 = 0

Now assume that a3 = 0. Then we can eliminate another common factor
u3 in system (9) and we have

u′
3 = P3(u3, v3) = u3[−u2

3v
5
3 + 3u2

3v
4
3 − 3u2

3v
3
3 + a1u3v

4
3 + u2

3v
2
3 − 3a1u3v

3
3

+ 3a1u3v
2
3 + (a4 − 2)v3

3 − a1u3v3 + (1 − 3a4)v2
3

+ 3a4v3 − a4],

v′
3 = Q3(u3, v3) = − v3(v3 − 1)[−u2

3v
4
3 + 2u2

3v
3
3 − u2

3v
2
3 + a1u3v

3
3 − 2a1u3v

2
3

+ a1u3v3 + (a4 − 2)v2
3 − 2a4v3 + a4].

(10)
Then the equilibrium points (0, v3) of system (10) are determined by the zeros
of the polynomial

v3(v3 − 1)p(v3) = 0,

where p(v3) = (a4 − 2)v2
3 − 2a4v3 + a4. Since a4 < 0 and the discriminant of

p is 8a4 it follows that (0, 0) and (0, 1) are the unique equilibrium points of
system (10), with

D(P3, Q3)(0, 0) =
[−a4 0

0 a4

]
and D(P3, Q3)(0, 1) =

[−1 0
0 2

]
.

Therefore both equilibrium points are hyperbolic saddles. Going back through
the changes of variables we obtain that the origin of the chart U2 is formed by
two hyperbolic sectors. Therefore statement (b) is proved (Fig. 3).

Suppose (ii) holds in Theorem 1. System (2) in the chart U2 writes

u′ = −a4u
4 + u2v2 − a2u

2v − a6u
2 + v2, v′ = uv(−a4u

2 + v2 − a2v − a6).

Now, doing the vertical blow up (u, v) = (u1, u1v1) and eliminating the com-
mon factor u1 we get

u′
1 = P1(u1, v1) = u1(u2

1v
2
1−a4u

2
1−a2u1v1+v2

1−a6), v′
1 = Q1(u1, v1) = −v3

1 ,

and

D(P1, Q1)(0, 0) =
[−a6 0

0 0

]
.
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Therefore if a6 > 0, then (u1, v1) = (0, 0) is a semi-hyperbolic node, and
consequently the center of system (2) cannot be global. So, since a4 < 0 and
a6 ≤ 0, this implies that there are no infinite equilibrium points on the local
chart U1.

If a6 < 0, then (u1, v1) = (0, 0) is a semi-hyperbolic saddle and going back
through the vertical blow up we have that the origin of U2 is formed by two
hyperbolic sectors, see Fig. 1. Then statement (d) follows.

Assume a6 = 0. Doing the change of variables (u2, v2) = (u1 + v1, v1)
and then doing the vertical blow up (u2, v2) = (u3, u3v3) and eliminating the
commun factor u2

3 we obtain

u′
3 = P3(u3, v3) = − u3[u2

3v
5
3 − 3u2

3v
4
3 + 3u2

3v
3
3 − u2

3v
2
3 + (a2 − a4 + 2)v3

3

+ (3a4 − 2a2 − 1)v2
3 + (a2 − 3a4)v3 + a4],

v′
3 = Q3(u3, v3) = v3(v3 − 1)[u2

3v
4
3 − 2u2

3v
3
3 + u2

3v
2
3 + (a2 − a4 + 2)v2

3

+ (2a4 − a2)v3 − a4].
(11)

The equilibrium points of system (11) are (0, 0), (0, 1) and the points (0, v3)
such that v3 be a real zero of the polynomial

q(v3) = (a2 − a4 + 2)v2
3 + (2a4 − a2)v3 − a4 = 0.

The points (0, 0) and (0, 1) are hyperbolic saddles because

D(P3, Q3)(0, 0) =
[−a4 0

0 a4

]
and D(P3, Q3)(0, 1) =

[−1 0
0 2

]
.

First we assume that a2 = a4 − 2. Suppose a4 �= −2. Then

p0 =
(

0,
a4

a4 + 2

)

is an equilibrium point of system (11) with

D(P3, Q3)(p0) =

⎡
⎢⎣− a2

4

(a4 + 2)2
0

0 − 2a4

a4 + 2

⎤
⎥⎦ .

If a4 < −2, then p0 is a hyperbolic stable node and system (2) cannot have a
global center. If −2 < a4 < 0, then p0 is a hyperbolic saddle. However, going
back through the change of variables there are trajectories that tend to the
origin of U2, see Fig. 4. Hence the center of system (2) cannot be global.

When a4 = −2, the unique infinite equilibrium points of system (11) are
(0, 0) and (0, 1). Going back through the changes of variables it follows that
the origin of U2 has an elliptic sector, so the differential system cannot have a
global center, see Fig. 4.

Suppose a4 �= a2 + 2. The discriminant of the polynomial q is a2
2 + 8a4.
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Figure 4. Blow-up’s of the equilibrium point (0, 0) of the
local chart U2 under the case 2 with a2 = a4 − 2 and −2 <
a4 < 0

Assume a2
2 + 8a4 = 0. Then, since a4 < 0 we have that a2 �= −4, 0, and

q0 =
(

0,
a2

a2 + 4

)

is an equilibrium point of system (11) with

D(P3, Q3)(q0) =

⎡
⎣− a2

2

(a2 + 4)2
0

0 0

⎤
⎦ .

Note that the vector field over the line u3 = 0 is given by

(P3(0, v3), Q3(0, v3)) =
(

0,
1
8
v3(v3 − 1)[(a2 + 4)v3 − a2]2

)
.

Consequently, q0 is a semi-hyperbolic saddle-node and system (2) cannot have
a global center, because going back through the changes of variables there are
orbits which go or come from the origin of the local chart U2.

Now assume that a2
2 + 8a4 > 0. So a2 �= 0 because a4 < 0. Then

p± =

(
0,

a2 − 2a4 ±
√

a2
2 + 8a4

2(a2 − a4 + 2)

)

are equilibrium points of system (11). Denote a2
2 + 8a4 = b2 with b > 0. Then

D(P3, Q3)(p−) =

⎡
⎢⎣− (a2 − b)2(a2 + b + 4)2

32
0

0
b(a2 − b)(a2 + b + 4)2

8

⎤
⎥⎦ ,

where −(a2 − b)2(a2 + b + 4)2/32 < 0.



R.F. Appis, J. Llibre AEM

If a2 < 0 it follows that b(a2 − b)(a2 + b + 4)2/8 < 0, and then p− is a
hyperbolic stable node and system (2) cannot have a global center.

If a2 > 0, then we have

D(P3, Q3)(p+) =

⎡
⎢⎣− (a2 + b)2(a2 − b + 4)2

32
0

0 −b(a2 + b)(a2 − b + 4)2

8

⎤
⎥⎦ ,

with −(a2+b)2(a2−b+4)2/32 < 0 and −b(a2+b)(a2−b+4)2/8 < 0. Thus p+

is a hyperbolic stable node and, consequently system (2) cannot have a global
center.

Finally assume that a2
2 + 8a4 < 0. Then (0, 0) and (0, 1) are the unique

equilibrium points, because the polynomial q is positive. Going back through
the changes of variables we obtain that the origin of U2 is formed by two
hyperbolic sectors. Therefore this completes the proof of statement (e).

Observe that statement (iii) of Theorem 1 cannot hold in Case 2, otherwise
a2
1 + 4a4 = (a1 + 2a3)2 ≥ 0, in contradiction with the fact that a2

1 + 4a4 < 0.
Assume that statement (iv) holds in Theorem 1. If a2 �= 0 we obtain

a6 = −2a2
2 + 9a2

3

9
, a4 = a3(a1 + a3) and a1 = −a3(9a2

3 + 4a2
2)

2a2
2

.

Therefore 81a6
3/(4a4

2) = a2
1 + 4a4 < 0, a contradiction.

Assume now that a2 = 0. Then the study boils down to studying global
centers under condition (i).

Suppose that statement (v) in Theorem 1 holds. Assume a2 �= 0. Then
a1 = −a3, a5 = a6 = 0, a4 = −(2a2

2 +9a2
3)/18 and a3(2a2

2 +9a2
3)/2 = 0. Hence

a3 = 0 and the only infinite equilibrium point is the origin of the chart U2.
System (2) in the chart U2 is

u′ =
a2
2u

4

9
+ u2v2 − a2u

2v + v2, v′ =
uv(a2

2u
2 + 9v2 − 9a2v)

9
.

Doing the vertical blow up (u, v) = (u1, u1v1) and eliminating the common
factor u1 between u′

1 and v′
1 we get

u′
1 = P1(u1, v1) =

u1(9u2
1v

2
1 + a2

2u
2
1 − 9a2u1v1 + 9v2

1

9
, v′

1 = Q1(u1, v1) = −v3
1 .

Doing the change of variables (u2, v2) = (u1 + v1, v1), after doing the ver-
tical blow up (u2, v2) = (u3, u3v3), and eliminating the commun factor u2

3,
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we obtain

u′
3 = P3(u3, v3) = − u3

9
[9u2

3v
5
3 − 27u2

3v
4
3 + 27u2

3v
3
3 − 9u2

3v
2
3

+ (a2
2 + 9a2 + 18)v3

3 − (3a2
2 + 18a2 + 9)v2

3

+ (3a2
2 + 9a2)v3 − a2

2],

v′
3 = Q3(u3, v3) =

v3(v3 − 1)
9

[9u2
3v

4
3 − 18u2

3v
3
3 + 9u2

3v
2
3

+ (a2
2 + 9a2 + 18)v2

3 − (2a2
2 + 9a2)v3 + a2

2].

(12)

Thus the equilibrium points of system (12) are (0, 0), (0, 1) and the points
(0, v3) such that v3 is a real zero of the polynomial

(a2 + 6)(a2 + 3)v2
3 − a2(2a2 + 9)v3 + a2

2 = 0.

We have

D(P3, Q3)(0, 0) =

⎡
⎢⎣

a2
2

9
0

0 −a2
2

9

⎤
⎥⎦ and D(P3, Q3)(0, 1) =

[−1 0
0 2

]
,

i.e., (0, 0) and (0, 1) are hyperbolic saddles.
If a2 = −6, then (0, 2) is a hyperbolic stable node, and consequently system

(2) cannot have a global center.
If a2 = −3, then (0,−1) is a hyperbolic saddle with

D(P3, Q3)(0,−1) =
[−1 0

0 2

]
.

Going back through the changes of variables we obtain that there are tra-
jectories that tend to the origin of U2, so system (2) cannot have a global
center.

Now if (a2 + 6)(a2 + 3) �= 0, then the point (0, a2/(a2 + 3)) is a hyperbolic
stable node and system (2) cannot have a global center.

Finally, if a2 = 0 then a5 = 0 the study boils down to studying global
centers under statement (i) of Theorem 1. �
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