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A note on the Radiant formula and its relations to the sliced
Wasserstein distance
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Abstract. In this note, we show that the squared Wasserstein distance can be expressed as
the average over the sphere of one dimensional Wasserstein distances. We name this new
expression for the Wasserstein Distance Radiant Formula. Using this formula, we are able
to highlight new connections between the Wasserstein distances and the Sliced Wasserstein
distance, an alternative Wasserstein-like distance that is cheaper to compute.
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1. Introduction and basic notation

In modern mathematical language, the p-th power of the Wasserstein distance
between two probability measures over R

d, namely μ and ν, is defined as

W p
p (μ, ν) = min

π∈Π(μ,ν)

∫
Rd×Rd

lpp(x, y)dπ, (1)

where lpp(x, y) =
∑d

i=1 | xi − yi |p and Π(μ, ν) is the set of measures over
R

d × R
d whose marginals are μ and ν, [1].

Due to its ability of capturing the weak topology of the space of probabil-
ity measures, the family of W p

p distances has found a natural home in many
applied fields, such as Computer Vision [2,3], generative models [4–6], and
clustering [7,8]. For this reason, much effort has been spent to find cheap ways
to compute the value of W p

p given two measures. When μ and ν are discrete
measures, the minimization problem (1) can be cast as an Linear Programming
(LP) problem. Due to the separability of the lpp cost functions, it is possible
to lower the complexity of these LP problems, [9,10]; however, for many ap-
plied tasks, this is yet not enough to make W p

p an efficient alternative to
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other metrics. Therefore several cheap-to-compute alternatives to the Wasser-
stein distance have been proposed: some approaches rely on adding an entropy
regularization term [11–13] to the objective of (1), while other approaches con-
siders topological equivalent alternatives, like, for example, the Fourier Based
metrics [14,15]. Another successful alternative is the Sliced Wasserstein Dis-
tance (SWD) [16,17]. The SWD computes the distance between two measures
by comparing their projection on all possible affine 1-dimensional sub-spaces of
R

d. Since the Wasserstein distance between measures supported over a line can
be computed through an explicit formula, the SWD can be computed without
solving a minimization problem.

In this note, we propose a general methodology to relate the original Wasser-
stein distances to the SWDs. First, we show that, when both the probability
measures are supported over R2, the W 2

2 distance can be represented as follows

W 2
2 (μ, ν) =

1
π

∫ 2π

0

( ∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2

)
dθ,

where {ζ(θ)}θ∈[0,2π] is a suitable family of measures on R
2 (see Theorem 2).

We call this identity Radiant formula and use it to find equivalence bounds
between the classic Wasserstein distances and their sliced counterparts. We
then extend these results to the case p �= 2 and use the Knothe-Rosenblatt
heuristic transportation plan [18,19] to provide an upper bound on the absolute
error between the SWD and W p

p . Finally, we extend our results to any R
d, with

d ≥ 2.

2. Our contribution

For the sake of clarity, we first introduce our results for measures supported
over R

2 and then extend our findings to the higher dimensional setting in a
dedicated subsection. In what follows, we denote with P(Rd) the set of Borel
probability measures over R

d.
The Radiant formula

As a starting point of our discussion, we show that any Wp distance can be
computed by summing the averages two one-dimensional Wasserstein distances
between μ and two suitable probability measures.

Proposition 1. Let μ, ν ∈ P(R2) and p ≥ 1. Then, there exists a couple of
measures (ζ, η),1 such that ζ ∈ Π(ν1, μ2), η ∈ Π(μ1, ν2), and

W p
p (μ, ν) =

∫
R

W p
p (μ|x1 , η|x1)dμ1 +

∫
R

W p
p (μ|x2 , ζ|x2)dμ2, (2)

1These measures do depend on μ, ν, and p in general, however, to lighten up the notation,
we drop these indexes.
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where λi is the marginal of λ on the i-th coordinate and λ|xi
is the conditional

law of λ given xi.

Proof. Let γ ∈ P(R2 × R
2) be an optimal transportation plan between μ and

ν. We then have that

W p
p (μ, ν) =

∫
R2×R2

(
| x1 − y1 |p + | x2 − y2 |p

)
dγ

=
∫
R2×R

| x1 − y1 |p df +
∫
R×R2

| x2 − y2 |p dg,

where f is the marginal of γ on (x1, x2, y1) e and g is the marginal of γ over
(x1, x2, y2). Finally, let η and ζ be the marginals of γ over (x1, y2) and (y1, x2),
respectively. Since γ is optimal, from [20], we have that∫

R2×R

| x1 − y1 |p df =
∫
R

W p
p (μ|x2 , ζ|x2)dμ2. (3)

Similarly, we have that
∫
R2×R

| x2 − y2 |p dg =
∫
R

W p
p (μ|x1 , η|x1)dμ1, which

concludes the proof. �
Let us set Vθ = {vθ, vθ⊥}, where vθ = (cos(θ), sin(θ)) and

vθ⊥ = (− sin(θ), cos(θ)). We notice that, for every θ ∈ [0, 2π], Vθ is the ba-
sis of R2 obtained by applying a θ-counterclockwise rotation of the canonical
base V = {e1, e2}. In what follows, we denote with (x(θ)

1 , x
(θ)
2 ) the coordinates

of R
2 with respect to the base Vθ. Moreover, we denote with μ

(θ)
1 and μ

(θ)
2

the marginals of μ on x
(θ)
1 and x

(θ)
2 , respectively. In this framework, given

p ∈ [1,∞), the Sliced Wasserstein Distance is defined as follows

SW p
p (μ, ν) =

1
2π

∫ 2π

0

W p
p (μ(θ)

1 , ν
(θ)
1 )dθ. (4)

Finally, we denote with Rθ : R2 → R
2 the rotation that satisfies Rθ(e1) = vθ

and Rθ(e2) = vθ⊥ and with μ(θ) := (Rθ)#μ the push-forward of μ through
Rθ.2 Notice that, according to our notation, the marginal of μ(θ) over the first
coordinat coincides with μ

(θ)
1 .

Theorem 2. (The Radiant Formula) Let μ, ν ∈ P(R2). Then there exists a
family of measures {ζ(θ)}θ∈[0,2π] such that, for every θ ∈ [0, 2π], it holds ζ(θ) ∈
Π(μ(θ)

2 , ν
(θ)
1 ) and

W 2
2 (μ, ν) =

1
π

∫ 2π

0

( ∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2

)
dθ, (5)

where ζ
(θ)

|x(θ)
2

is the conditional law of ζ(θ) given x
(θ)
2 . Moreover, if both μ and

ν are absolutely continuous, the family {ζ(θ)}θ∈[0,2π] is unique.

2We recall that (Rθ)#μ is defined as (Rθ)#μ(A) = μ(R−1
θ (A)) for every Borel set A ⊂ R

2.



G. Auricchio AEM

Proof. First, we notice that the W 2
2 distance between two measures μ and ν is

preserved if we apply a rotation to R
2. Indeed, if γ is an optimal transportation

plan between μ and ν, the plan (Rθ, Rθ)#γ is optimal between (Rθ)#μ and
(Rθ)#ν. This is due to the fact that l22(x, y) = l22(Rθ(x), Rθ(y)) for every
x, y ∈ R

2 and for every θ ∈ [0, 2π].
Given θ ∈ [0, 2π], Proposition 1 gives us a couple of measures, namely η(θ)

and ζ(θ) such that

W p
p (μ, ν) =

∫
R

W p
p (μ|x(θ)

1
, η

(θ)

|x(θ)
1

)dμ
(θ)
1 +

∫
R

W p
p (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 , (6)

Since a π
2 -counterclockwise rotation swaps the basis vectors in any Vθ base

(i.e. vθ and vθ⊥), we have that ζ(θ+ π
2 ) = η(θ). Thus, we have∫

R

W p
p (μ|x(θ)

1
, η

(θ)

|x(θ)
1

)dμ
(θ)
1 =

∫
R

W 2
2 (μ

|x(θ+ π
2 )

2

, ζ
(θ+ π

2 )

|x(θ+ π
2 )

2

)dμ
(θ+ π

2 )
2 , (7)

for each θ ∈ (0, 2π]. By substituting (7) in (6), we find

W 2
2 (μ, ν) =

∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 +

∫
R

W 2
2 (μ

|x(θ+ π
2 )

2

, ζ
(θ+ π

2 )

|x(θ+ π
2 )

2

)dμ
(θ+ π

2 )
2 .

(8)

Since (8) holds true for every θ ∈ [0, 2π], we can take the integral media and
retrieve the radiant formula

W 2
2 (μ, ν) =

1

2π

∫
[0,2π]

W 2
2 (μ, ν)dθ

=
1

2π

∫
[0,2π]

( ∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 +

∫
R

W 2
2 (μ|x(θ+ π

2 )
2

, ζ
(θ+ π

2 )

|x(θ+ π
2 )

2

)dμ
(θ+ π

2 )

2

)
dθ

=
1

π

∫
[0,2π]

∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 dθ.

Finally, the uniqueness result follows from the uniqueness of the transportation
plan between absolutely continuous probability measures, [21]. �

In Fig. 1, we give a visual example of the family {ζ(θ)}θ∈[0,2π] for two Dirac’s
deltas.

To prove Theorem 2, we made use of the rotation invariance property of
W 2

2 . This property, however, does not hold for W p
p , which prevents us from ex-

pressing W p
p using a radiant formula. However, we bypass this issue by defining

a rotation-averaged version of the Wp distance as follows

RW p
p (μ, ν) :=

1
2π

∫ 2π

0

W p
p (μ(θ), ν(θ))dθ. (9)

We notice that RW2(μ, ν) = W2(μ, ν) for every μ, ν ∈ P(R2).
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Figure 1. An example of the family {ζ(θ)}θ∈[0,2π] for two
Dirac’s deltas (we represent μ with the red dot and ν with
the blue dot). The white dots represent a different ζ(θ) for
different values of θ. The arrows represent the different flows
f (θ) and g(θ). Arrows with the same colour are used to connect
μ to ζ(θ) and ζ(θ+ π

2 ) (color figure online)

Proposition 3. The function RWp defined in (9) is a distance over P(R2), and
it is invariant under rotation of the coordinates. Furthermore, it holds

RW p
p (μ, ν) ≤ Kp

2π
W p

1,p(μ, ν) ≤ n( p
2 −1)+

Kp

2π
W p

p (μ, ν), (10)

where (◦)+ is the positive part function, Kp := 2
∫ 2π

0
| cos(x) |p dx and

W p
1,p(μ, ν) := min

π∈Π(μ,ν)

∫
Rd×Rd

lp1(x, y)dπ.

Thus, up to a constant, RW p
p (μ, ν) is dominated by W p

p and W1,p. Moreover,
the first upper bound is tight.

Proof. We divide the proof the proposition into three pieces.
RWp is invariant under rotations It follows from the fact that RWp is

defined as the average of the costs with respect to all the possible choices of
coordinates. Indeed, given φ ∈ [0, 2π], let μ(φ) = (Rφ)#μ and ν(φ) = (Rφ)#ν.
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Then, it holds (μ(φ))(θ) = μ(θ+φ); thus

RW p
p (μ(φ), ν(φ)) =

1
2π

∫ 2π

0

W p
p (μ(φ+θ), ν(φ+θ))dθ

=
1
2π

∫ 2π

0

W p
p (μ(θ′), ν(θ′))dθ′ = RW p

p (μ, ν),

where we used the change of variable θ′ = θ + φ.
RWp is a distance First, notice that RWp is symmetric since Wp is sym-

metric. Similarly, if μ = ν, we have that W p
p (μ(θ), ν(θ)) = 0 for every θ, thus

RW p
p (μ, ν) = 0. Conversely, since W p

p (μ, ν) ≥ 0, we have that RW p
p (μ, ν) = 0

if and only if W p
p (μ(θ), ν(θ)) = 0 for almost every θ ∈ [0, 2π], hence μ = ν. To

conclude, we prove the triangular inequality. Let μ, ν, and ζ be elements of
P(R2). From the Minkowsky’s inequality [21], we have that

RWp(μ, ν) =

(
1
2π

∫ 2π

0

W p
p (μ(θ), ν(θ))dθ

) 1
p

≤
(

1
2π

∫ 2π

0

(Wp(μ(θ), ζ(θ)) + Wp(ζ(θ), ν(θ)))pdθ

) 1
p

≤
(

1
2π

∫ 2π

0

W p
p (μ(θ), ζ(θ))dθ

) 1
p

+

(
1
2π

∫ 2π

0

W p
p (ζ(θ), ν(θ))

) 1
p

= RWp(μ, ζ) + RWp(ζ, ν),

which concludes the second part of the proof.
RWp is dominated by Wp and W1,p Let us consider x, y ∈ R

2. Let ρ and φ
be the polar coordinates of x − y, so that x − y = ρ(cos(φ), sin(φ)). We then
have

x1 − y1 = ρ cos(φ) and x2 − y2 = ρ sin(φ).

We thus infer

| x1 − y1 |p + | x2 − y2 |p= ρp(| cos(φ) |p + | sin(φ) |p).

Let γ ∈ Π(μ, ν) be an optimal transportation plan between μ and ν with
respect to the p-th power of the Euclidean metric, that is d(x, y) =|| x − y ||p2,
so that

W p
1,p(μ, ν) :=

∫
R2×R2

|| x − y ||p2 dγ.
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Finally, we have

RW p
p (μ, ν) =

1
2π

∫ 2π

0

(
min

π∈Π(μ(θ),ν(θ))
lpp(x, y)dπ

)
dθ

=
1
2π

∫ 2π

0

(
min

π∈Π(μ,ν)
lpp(Rθ(x), Rθ(y))dπ

)
dθ

≤ 1
2π

∫ 2π

0

∫
R2×R2

ρp(| cos(φ + θ) |p + | sin(φ + θ) |p)dγdθ

=
1
2π

∫
R2×R2

ρp

∫ 2π

0

(| cos(φ + θ) |p + | sin(φ + θ) |p)dθdγ

=
Kp

2π

∫
R2×R2

ρpdγ =
Kp

2π
WP

1,p(μ, ν),

where

Kp = 2
∫ 2π

0

| cos(θ) |p dθ.

To conclude the proof, we recall the classic inequality

|| x − y ||p2≤ n( p
2 −1)+ || x − y ||pp .

The tightness of the first inequality in (10) follows by considering two
Dirac’s delta. �

Since RW p
p is a rotation invariant distance, we are able to express it through

a radiant formula.

Theorem 4. Let p ≥ 1. Let μ and ν be two measures supported over R
2.

Then, there exists a family of measures {ζ(θ)}θ∈[0,π] such that

RW p
p (μ, ν) =

1
π

∫ 2π

0

∫
R

W p
p (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 dθ. (11)

Proof. Given any θ ∈ [0, 2π], from Proposition 1, we have that there exists a
couple of measures ζ(θ) and η(θ) such that

W p
p (μ(θ), ν(θ)) =

∫
R

W p
p (μ(θ)

|x(θ)
2

, ζ
(θ)

|x(θ)
2

)dμ
(θ)
2 +

∫
R

W p
p (μ(θ)

|x(θ)
1

, η
(θ)

|x(θ)
1

)dμ
(θ)
1 .

By taking the average over θ, we conclude the thesis. �

Relation with the sliced Wasserstein distance
We now highlight how the Radiant Formula allows us to retrieve bounds on

the Sliced Wasserstein distance in terms of the classic Wasserstein distance.

Theorem 5. Given two probability measures μ, ν ∈ P(R2), we have

SW 2
2 (μ, ν) ≤ 1

2
W 2

2 (μ, ν).
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Moreover, the bound is tight. Similarly, it holds

SW p
p (μ, ν) ≤ n( p

2 −1)+
Kp

π
W p

p (μ, ν).

Proof. It follows from the convexity of the W 2
2 distance [21, Theorem 4.8].

Indeed, from the Radiant Formula (5) we know that

W 2
2 (μ, ν) =

1
π

∫ 2π

0

∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 dθ

then, following the notation in [21], if we set λ = μ
(θ)
2 , μ = μ|x(θ)

2
and ν = ζ

(θ)

|x(θ)
2

,

we conclude

W 2
2 (μ, ν) =

1
π

∫ 2π

0

∫
R

W 2
2 (μ|x(θ)

2
, ζ

(θ)

|x(θ)
2

)dμ
(θ)
2 dθ

≥ 1
π

∫ 2π

0

W 2
2 (μ(θ)

1 , ν
(θ)
1 )dθ = 2SW 2

2 (μ, ν) (12)

where the equality (12) comes from the fact that each ζ(θ) ∈ Π(ν(θ)
1 , μ

(θ)
2 ). To

prove the tightness, it suffice to consider the measures μ = δ(0,0) and ν = δ(1,1).
By the same argument, we infer the bound on SW p

p . �

Finally, we use the Knothe-Rosenblatt transportation plan [19,22] to bound
the absolute error we commit by using the Sliced Wasserstein Distance over
the Wasserstein Distance.

Theorem 6. Given μ, ν ∈ P(R2), it holds

| W 2
2 (μ, ν) − SW 2

2 (μ, ν) |≤ 1
2π

∫ 2π

0

∫
R

W 2
2 ((ζ(θ)

KR)|y(θ)
1

, ν|y(θ)
1

)dν
(θ)
1 dθ, (13)

where ζ
(θ)
KR is the marginal of Knothe-Rosenblatt transportation plan on the

coordinates (x(θ)
2 , y

(θ)
1 ). Furthermore, the upper bound in (13) is tight.

Proof. Let V (θ) be a base of the space and let γ
(θ)
KR and ζ

(θ)
KR be the Knothe-

Rosenblatt transportation plan and its projection over (x(θ)
2 , y

(θ)
1 ), respec-

tively.3 Then, by definition of the Knothe-Rosenblatt transportation plan, we
have

W 2
2 (μ, ν) ≤ W 2

KR(μ
(θ), ν(θ)) = W 2

2 (μ
(θ)
1 , ν

(θ)
1 ) +

∫
R

W 2
2 ((ζ

(θ)
KR)|y(θ)

1
, ν|y(θ)

1
)dν

(θ)
1 ,

(14)

3Notice that the Knothe-Rosenblatt plan does depend on the choice of V (θ).
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where W 2
KR(μ(θ), ν(θ)) is the cost of the Knothe-Rosenblatt transportation

plan according to the squared Euclidean distance. Since for every θ ∈ [0, 2π]
it holds W 2

2 (μ(θ)
1 , ν

(θ)
1 ) ≤ W 2

2 (μ, ν), we infer

0 ≤ W 2
2 (μ, ν) − W 2

2 (μ(θ)
1 , ν

(θ)
1 ) ≤

∫
R

W 2
2 ((ζ(θ)

KR)|y(θ)
1

, ν|y(θ)
1

)dν
(θ)
1 (15)

for any θ ∈ [0, 2π). Finally, by taking the average over [0, 2π), we find

1

2π

∫ 2π

0

(
W 2

2 (μ, ν) − W 2
2 (μ

(θ)
1 , ν

(θ)
1 )

)
dθ =

1

2π

∫ 2π

0

∫
R

W 2
2 ((ζ

(θ)
KR)|y(θ)

1
, ν|y(θ)

1
)dν

(θ)
1 ,

and, hence

| W 2
2 (μ, ν) − SW 2

2 (μ, ν) | ≤ 1
2π

∫ 2π

0

∫
R

W 2
2 ((ζ(θ)

KR)|y(θ)
1

, ν|y(θ)
1

)dν
(θ)
1 ,

which concludes the first part of the proof.
To prove the tightness, it suffice to consider the measures μ = δ(0,0) and

any measure ν. In this case, the Knothe-Rosenblatt transportation plan be-
tween μ and ν is optimal, thus the inequality in (15) is an equality for every
θ ∈ [0, 2π]. �

The extension to higher dimensional spaces
To conclude, we extend our results to the case in which the measures are

supported over a higher dimensional space. We denote with d the dimension
of the space, so that μ, ν ∈ P(Rd). Moreover, let Rd the set of all the rotations
from R

d to R
d. Given R ∈ Rd, let use define e

(R)
i = R(ei), where ei is the i-th

vector in the canonical base of Rd. It is easy to see that {e
(R)
i }i=1,...,d is an

orthonormal base of Rd, we use x
(θ)
1 , x

(θ)
2 , . . . , x

(θ)
d to denote the coordinates

of R
d with respect to the base {e

(R)
i }. Finally, we set ρ to be the uniform

probability distribution over Rd, since the set of rotation is identifiable as a
compact set of the orthogonal matrices, this measure is well-defined.

Given a couple of measures μ and ν, the SWD is defined as follows

SW p
p (μ, ν) =

1
| S(d−1) |

∫
S(d−1)

W p
p (μv, νv)dv, (16)

where S
(d−1) is the set of all directions in R

d and μv is the marginal of μ over
the span of v ∈ S

(d−1). In what follows, we consider the equivalent formulation

SW p
p (μ, ν) =

∫
Rd

W p
p (μ(R(e1))

1 , ν
(R(e1))
1 )dρ. (17)

Indeed, given v, v′ ∈ S
(d−1), let us define Tv = {R ∈ Rd s.t. R(e1) = v} and,

similarly, Tv′ = {R ∈ Rd s.t. R(e1) = v′}. Then, it holds

ρ(Tv) = ρ(Tv′).
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Infact, let S ∈ Rd be such that S(v) = v′, we then define S : Tv → Tv′ as
follows

S(R) = S ◦ R.

It is easy to see that S is a bijection. Moreover, since it is induced by a rotation,
its determinant is equal to 1, this combined with the fact that ρ is a uniform
distribution, allows us to retrieve (17). Thus, in the following, when we refer
to the SWD, we will refer to the one defined in (17).

First, it is easy to see that Proposition 1 and its proof can be easily adapted
to the R

d case. In particular, we have the following.

Corollary 1. For every p ≥ 1 and for every μ, ν ∈ P(Rd) there exists a family
of d measures {ζi}i=1,...,d ∈ P(Rd) such that

W p
p (μ, ν) =

d∑
i=1

∫
Rd−1

W p
p (μ|x−i

, (ζi)|x−i
)dμ−i (18)

and μ−i = (ζi)−i for every i = 1, . . . , d, where x−i ∈ R
d−1 is the vector x

without the i-th coordinate and μ−i is the marginal of the measure μ on all the
coordinates but the i-th one, i.e. on (x1, . . . , xi−1, xi+1, . . . , xd).

Proof. It follows from the same argument used in the proof of Proposition 1.
Indeed, let γ be the optimal transportation plan between μ and ν.
We then define ζi as the projection of γ on the coordinates (x1, . . . , xi−1, yi,

xi+1, . . . , xd) for every i ∈ {1, 2, . . . , d}.
Then, using again the characterization showed in [20], we infer (18) and

thus the thesis. �

Using the characterization of Corollary 1, we are able to extend the Ra-
diant Formula to the higher dimensional case. The same goes for the bounds
presented in Theorems 5 and 6.

Theorem 7. Given any couple of measures μ, ν ∈ P(Rd), it holds

W 2
2 (μ, ν) = d

∫
Rd

∫
Rd−1

W 2
2 (μ|x(R)

−1
, (ζ(R)

−1 )|x(R)
1

)dμ
(R)
−1 dρ. (19)

Furthermore, for every couple of measures μ, ν ∈ P(Rd), it holds 1
dW 2

2 (μ, ν)
≥ SW2(μ, ν) and

| W 2
2 (μ, ν) − SW 2

2 (μ, ν) |≤
∫

Rd

∫
R

W 2
2 ((ζ(R)

KR)|y(R)
1

, ν|y(R)
1 )

)dν
(x

(R)
2 ,...,x

(R)
d )

dρ,

(20)

where ζ
(R)
KR is the marginal of the Knothe-Rosenblatt transportation plan over

the coordinates (y(R)
1 , x

(R)
2 . . . , x

(R)
d ) and ν

(x
(R)
2 ,...,x

(R)
d )

is the marginal of ν over

(x(R)
2 , . . . , x

(R)
d ).
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Both bounds (19) and (20) are tight.
Moreover the same bounds can be inferred for RW p

p .

Proof. For the sake of simplicity, we just show how to extend the proof of
Theorem 2 to prove identity (19). Indeed, the proof of (20) follows by applying
the same argument to the proof of Theorem 6. The same goes for the bounds
on RW p

p .
For every R ∈ Rd, Corollary 1 allows us find a set of d measures

{ζ
(R)
i }i=1,...,d such that

W 2
2 (μ, ν) =

d∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i .

By taking the average with respect to ρ of both sides of the equation we get

W 2
2 (μ, ν) =

∫
Rd

W 2
2 (μ, ν)dρ =

∫
Rd

d∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i dρ.

Let Si ∈ Rd be a rotation such that Si(e1) = ei holds. Then we have e
(R)
i =

R(Si(e1)) and, therefore,

W 2
2 (μ, ν) =

∫
Rd

d∑
i=1

∫
Rd−1

W 2
2 (μ|x(R◦Si)

−1
, (ζ(R◦Si)

−1 )|x(R◦Si)
−1

)dμ
(R◦Si)
−1 dρ

= d

∫
Rd

∫
Rd−1

W 2
2 (μ|x(R)

−1
, (ζ(R)

−1 )|x(R)
−1

)dμ
(R)
−1 dρ,

where the last equality comes from the fact that every Si induces a bijective
map from Rd to Rd whose determinant is equal to 1 and ρ is a uniform
distribution.

Using convexity, we retrieve the bound 1
dW 2

2 (μ, ν) ≥ SW 2
2 (μ, ν). �

Finally, we study a more general class of Sliced Wasserstein distances. Let
Hk be the set of all the k-dimensional hyper-plans in R

d. Given μ, ν ∈ P(Rd),
we define the k-Sliced Wasserstein Distance as(

SW
(k)
2 (μ, ν)

)2

=
∫

Hk

W 2
2 (μH , νH)dH, (21)

where μH (νH) is the marginal of μ (ν, respectively) over the hyper-plan
H ∈ Hk and H is the uniform probability distribution over the space of k-
dimensional hyper-plans. Roughly speaking, the k-Sliced Wasserstein Distance
is a variant of SW that projects the two measures over all the k dimensional
sub-spaces of Rd rather than on all the 1 dimensional sub-spaces. This class
of metrics is a natural extension of the Sk metrics introduced in [23].

Theorem 8. Let μ and ν be two probability measures over R
d and let k be an

integer such that k < d.
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Then, it holds

SW
(k)
2 (μ, ν) ≤

√
k

d
W2(μ, ν). (22)

Moreover, the bound is tight.

Proof. Let us consider H, a k-dimensional hyper-plan.
Moreover, let T : Rd → Hk be defined as

T (R) = R(H0)

where H0 ∈ Hk is the k-dimensional hyper-space generated by {e1, . . . , ek},
i.e.

H0 = {x ∈ R
d, s.t. xd = xd−1 = · · · = xd+1−k = 0}.

Given H,H ′ ∈ Hd, let S ∈ Rd be a rotation such that S(H) = H ′. hen,
we have that for every R′ ∈ T −1(H), the rotation R′′ := S ◦ R′ ∈ T −1(H ′),
indeed R′′(H0) = H ′ = S(H) = S(R′(H0)).In particular, S induces a bijective
map between T −1(H) and T −1(H ′).

Again, since the maps is induced by a rotation and H is a uniform distri-
bution, we have that ρ(T −1(H)) = ρ(T −1(H ′)). n particular, given a function
f : Rd → R, it holds ∫

Rd

f(R)dρ =
∫

Hk

f(T (H))dH. (23)

Given R ∈ Rd, there exists a set of d measures in R
d, namely ζ

(R)
i such

that

W 2
2 (μ, ν) =

d∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i .

For every i ∈ {1, 2, . . . , d}, let Si ∈ Rd be such that Si(e1) = ei.By defini-
tion, given e

(R)
i , it holds true that e

(R)
i = Si(e1)(R) = R(Si(e1)) = e

(R◦Si)
1 .

Thus, we get

W 2
2 (μ, ν) =

∫
Rd

d∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i dρ

= d

∫
Rd

∫
Rd−1

W 2
2 (μ|x(R)

−1
, (ζ(R)

1 )|x(R)
−1

)dμ
(R)
−1 dρ,

where the last equality follows from the fact that, for every i ∈ {1, 2, . . . , d},
the function Si : R → R ◦ Si is bijective and its Jacobian’s determinant is
equal to 1.

Given R ∈ Rd and {e
(R)
1 , . . . , e

(R)
d } its related base of Rd, we have that

l22(x, y) = c
(R)
1:k (x, y) + c

(R)
k:d (x, y),
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where c
(R)
1:k (x, y) :=

∑k
i=1(x

(R)
i −y

(R)
i )2 and c

(R)
k:d (x, y) :=

∑d
i=k+1(x

(R)
i −y

(R)
i )2.

Again, by Corollary 1, we can then find a couple of measures Ψ ∈ Π(μ(R)
>k ,

ν
(R)
≤k ) and Θ ∈ Π(μ(R)

≤k , ν
(R)
>k ) such that

W 2
2 (μ, ν) =

∫
Rd−k

W 2

c
(R)
1:k

(μ|x(R)
k+1,...,x

(R)
d

,Ψ|x(R)
k+1,...,x

(R)
d

)dμ
(R)
>k

+
∫
Rk

W 2

c
(R)
k:d

(μ|x(R)
1 ,...,x

(R)
k

,Θ|x(R)
1 ,...,x

(R)
k

)dμ
(R)
≤k ,

where μ
(R)
≤k and μ

(R)
>k are the marginals of μ over the first k coordinates and

the last (d − k) coordinates, respectively.
Since, for every R ∈ Rd and for every (x(R)

k+1, . . . , x
(R)
d ), we have that c1:k is

also separable, we can further split the Wasserstein distance
W 2

c
(R)
1:k

(μ|x(R)
k+1,...,x

(R)
d

,Ψ|x(R)
k+1,...,x

(R)
d

) and obtain

∫
Rd−k

W 2

c
(R)
1:k

(μ|x(R)
k+1,...,x

(R)
d

,Ψ|x(R)
k+1,...,x

(R)
d

)dμ
(R)
>k

=
k∑

i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i .

Thus, by convexity, we infer that

k∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i =

∫
Rd−k

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
≥i

)dμ
(R)
≥i

≥ W 2
2 (μH , νH),

where H = R(H0). If we take the average over all the possible rotations, we
get

∫
Rd

k∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i dρ ≥

∫
Rd

W 2
2 (μT (R), νT (R))dρ.

Using identity (23), we get

∫
Rd

k∑
i=1

∫
Rd−1

W 2
2 (μ|x(R)

−i
, (ζ(R)

i )|x(R)
−i

)dμ
(R)
−i dρ ≥

∫
Hk

W 2
2 (μH , νH)dH.

By the same argument used before, we can simplify the sum

k

∫
Rd

∫
Rd−1

W 2
2 (μ|x(R)

−1
, (ζ(R)

1 )|x(R)
−1

)dμ
(R)
−1 dρ ≥

∫
Hk

W 2
2 (μH , νH)dH

= (SW
(k)
2 (μ, ν))2.
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Finally, we have that

W 2
2 (μ, ν) = d

∫
Rd

∫
Rd−1

W 2
2 (μ|x(R)

−1
, (ζ(R)

1 )|x(R)
−1

)dμ
(R)
−1 dρ ≥ d

k
(SW

(k)
2 (μ, ν))2,

which allows to conclude(22).
Lastly, the tightness property follows by considering two Dirac’s

deltas. �

3. Conclusion

In this note, we proposed an alternative representation of the Wasserstein dis-
tance and showcased how this formula has significant connections with a classic
Sliced Wasserstein Distance and used them to prove bounds on Sliced Wasser-
stein Distances in term of the classic Wasserstein Distances. Furthermore, we
used the Knothe-Rosenblatt heuristic to prove a bound over the absolute error.

The field of Sliced Wasserstein Distance keeps flourishing and producing
different alternative versions [23–25]. We believe the Radiant Formula is a
useful item to study the relationships between old Sliced-like distances and
new ones.
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