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On when the union of two algebraic sets is algebraic
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Abstract. In universal algebraic geometry, an algebra is called an equational domain if the
union of two algebraic sets is algebraic. We characterize equational domains, with respect
to polynomial equations, inside congruence permutable varieties, and with respect to term
equations, among all algebras of size two and all algebras of size three with a cyclic automor-
phism. Furthermore, for each size at least three, we prove that, modulo term equivalence,
there is a continuum of equational domains of that size.
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1. Introduction

A basic fact in classical algebraic geometry is that the union of two algebraic
sets is again algebraic. In universal algebraic geometry, which studies the al-
gebraic sets over an arbitrary algebraic structure [11,19,40], this is no longer
true in general. In [18], algebras with the property that the union of two al-
gebraic sets is algebraic have been called equational domains; for example, a
commutative ring with unity is an equational domain if and only it is an inte-
gral domain. In such algebras, the non-empty algebraic sets coincide with the
non-empty closed sets of a topology, which is called Zariski topology [18] as in
classical algebraic geometry.

In this paper, we seek to characterize equational domains. A first observa-
tion is that every equational domain is finitely subdirectly irreducible. For a
more detailed study, we need to specify whether the equations defining alge-
braic sets involve term functions or polynomial functions; the difference lies in
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whether constants from the algebra are allowed. In [18], an algebraic set is de-
fined as the solution set of a system of term equations; we follow this viewpoint
and treat polynomial equations by passing from an algebra to its expansion
with all constant operations. From the fundamental result [18, Theorem 2.5],
we see that if an algebra is an equational domain, then so is its expansion
with all constant operations; in other words, if it is an equational domain with
respect to term functions, then it is an equational domain with respect to poly-
nomial functions. The converse is not true, as witnessed, e.g., by the alternating
group A5 (cf. [18, Proposition 2.19, Claim 2.22(4), Corollary 2.31]). For alge-
bras in congruence permutable varieties, we obtain a structural description of
those algebras that are equational domains with respect to polynomial equa-
tions. Our description uses a generalization of the ideal product in rings to
universal algebra, the binary commutator [23,35,44]. The equational domains
inside congruence permutable varieties, with respect to polynomials, are then
those algebras A with at least two elements that satisfy [α, β] > 0A for all
congruences α, β > 0A (Theorem 4.8); for a finite algebra this is equivalent to
saying that the algebra is subdirectly irreducible with non-Abelian monolith.
In each of these finite algebras, every subset of An is algebraic, hence they all
have the same collection of algebraic sets, in other words, they are algebraically
equivalent (cf. [38]).

One can view being an equational domain as a property of the clone of term
functions of an algebra. Following [38] we say that a clone C on A is equation-
ally additive if (A; C) is an equational domain. When C does not contain all
constant operations, we do not have a complete description of equationally
additive clones, even when they contain a Mal’cev operation. One difficulty in
finding a structural description is explained by the fact that every finite alge-
bra is weakly isomorphic to an algebra that is polynomially equivalent to the
quotient of an equational domain modulo its monolith (Theorem 3.15). How-
ever, we obtain a complete description of two-element equational domains: A
two-element algebra is an equational domain if and only if it generates a con-
gruence distributive variety; in Sect. 6 the order filter of equationally additive
clones on a two-element set is described in detail (cf. Theorem 6.5). Part of
this description carries over to all E-minimal algebras; these are finite alge-
bras in which every idempotent unary polynomial function is either bijective
or constant, which is the case, e.g., for all finite p-groups. Again, an E-minimal
algebra is an equational domain if and only if it generates a congruence dis-
tributive variety (Theorem 6.11). A similar description can be obtained for
all clones on a three-element set that are contained in the maximal clone of
self-dual operations (cf. [46]): such a clone C is equationally additive if and
only if (A; C) generates a congruence distributive variety (Theorem 7.6).

Finally, we investigate the number of equationally additive clones on a finite
set. Modulo algebraic equivalence, this number is finite [38, Theorem 3], but
as we will see, there can be infinitely many equationally additive clones on a
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finite set that all induce the same algebraic sets. We prove that on each finite
set with at least three elements, there is a continuum of equationally additive
clones (Theorem 8.3), and we determine for which finite Abelian groups the
number of equationally additive clones above the clone of polynomial functions
is infinite (Theorem 5.2).

2. Notation and preliminaries

We write N for the set of positive integers and, for n ∈ N, let [n] := {1, . . . , n}.
For a set A, the i-th component of a ∈ An is denoted by ai and a(i), and P(A)
is the power set of A. A relation on A is an element of

⋃
n∈N

P(An), and an
operation on A is an element of

⋃
n∈N

AAn

. For n ∈ N and i ∈ [n], the i-th n-ary
projection is the operation e

[n]
i : An → A that is given by e

[n]
i (x1, . . . , xn) := xi

for all x1, . . . , xn ∈ A; we also abbreviate idA := e
[1]
1 . For a ∈ A the n-ary

constant with value a is the operation c
[n]
a : An → A given for all x1, . . . , xn ∈ A

by c
[n]
a (x1, . . . , xn) := a. We sometimes write c

[1]
a as ca. For a set B and a

function f : B → A we denote the image of f by f [B]. For a partial order ≤
on A, we write a < b if a ≤ b and a �= b. Moreover, we write a ≺ b if a < b and
there is no x ∈ A with a < x < b. For basic notions from universal algebra and
lattice theory we refer to [16,35]. In particular we will use lattices as defined in
[35, Chapter 1, p. 16]. For a lattice L and a, b ∈ L such that a ≤ b, we define
I[a, b] to be the set {l ∈ L | a ≤ l and l ≤ b}. If a ≺ b, we say that I[a, b] is
a prime quotient of L. A clone on a set A is a set of operations on A that is
closed under composition and contains all the projections (cf. [41, 1.1.2, 1.1.3],
[13, Section 6.1], and [35, Definition 4.1]). A clone on A is constantive if it
includes all operations ca where a ∈ A. For the definition of an algebra A on A
we refer to [35, Definition 1.1].

We will fix some notation. For a set of relations R on A, PolR is the clone
of polymorphisms of R, and for a set of functions F on A, InvF is the relational
clone of invariant relations of F (cf. [41, Section E2]). For an algebra A, CloA
is the clone of term operations of A (cf. [35, Definition 4.2]), while PolA is
the clone of polynomial operations of A (cf. [35, Definition 4.4]). An element e
of Pol1 A is called idempotent if it satisfies e ◦ e = e. We write ConA for the
congruence lattice of A, and we denote its bottom element by 0A and its top
element by 1A. For an algebra B of the same signature as A, we denote the set
of all homomorphisms from B to A by Hom(B,A). We say that A is finitely
subdirectly irreducible if for all α, β ∈ ConA\{0A} we have α∩β �= 0A. Clearly,
a finite algebra is subdirectly irreducible (cf. [35, Definition 4.39]) if and only
if it is finitely subdirectly irreducible and has at least two elements. For a
subset X of A2 we denote by 〈X〉ConA the congruence generated by X in A (cf.
[35, Definition 1.19]). For n ∈ N and for a subset X of An we denote by 〈X〉An
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the subalgebra of An generated by X (cf. [35, Definition 1.8]). For a group G
and g ∈ G, 〈g〉 is the subgroup of G generated by {g}. For n ∈ N, a, b ∈ An

and α ∈ ConA, we write a ≡α b if (a(i), b(i)) ∈ α for all i ∈ [n]; for n = 1
and (a, b) ∈ α we will sometimes just write a α b. Given a clone C on A, the
symbol C[n] denotes the set of all n-ary functions in C. For a congruence θ of the
algebra (A; C) and an n-ary function f ∈ C[n], fθ is the function from (A/θ)n

to A/θ defined by fθ(a1/θ, . . . , an/θ) = f(a1, . . . , an)/θ for all a1, . . . , an ∈ A
(cf. [35, Definition 1.15]). We observe that for an algebra A and for θ ∈ ConA
we have

Pol(A/θ) = {fθ | f ∈ PolA}. (2.1)

A clone C on a set A is called a Mal’cev clone if there exists d ∈ C[3]

such that for all a, b ∈ A the equalities d(a, b, b) = d(b, b, a) = a hold. An
algebra A is called a Mal’cev algebra if CloA is a Mal’cev clone. Moreover, we
say that A has a Mal’cev polynomial if PolA is a Mal’cev clone. Note that for
a group G the term function t, defined by t(x1, x2, x3) = x1 − x2 + x3 for all
x1, x2, x3 ∈ G, is a Mal’cev term. We will often use the following basic facts
on Mal’cev algebras.

Lemma 2.1. (cf. [35, Theorem 4.70(iii)]) Let A be an algebra with a Mal’cev
polynomial, let k ∈ N and let a1, . . . , ak, b1, . . . , bk ∈ A. Then

〈{(a1, b1), . . . , (ak, bk)}〉ConA = {(p(a1, . . . , ak), p(b1, . . . , bk)) | p ∈ Polk A}.

Later we shall also use the following observation.

Lemma 2.2. (cf. [25, Lemma 5.22]) Every reflexive subuniverse of the square
of an algebra A with a Mal’cev polynomial is a congruence of A.

We will use the notions of centralizing relation and commutator as de-
fined in [35, Section 4.13]. To aid the reader we give the definitions explicitly.
Following [3], for an algebra A, m,n ∈ N and α, β, η ∈ ConA, we say that
C(m,n, α, β, η) holds if for all p ∈ Polm+n A, for all a, b ∈ Am, u,v ∈ An with
a ≡α b, u ≡β v and p(a,u) η p(a,v) we have p(b,u) η p(b,v). We say that α
centralizes β modulo η, and write C(α, β; η), if C(1, k, α, β, η) is satisfied for
all k ∈ N. Note that this definition of the centralizing relation is proved to be
equivalent to [35, Definition 4.148] in [3, Proposition 2.1]. Following [35, Defi-
nition 4.150], for α, β ∈ ConA we define their commutator, denoted by [α, β],
to be the smallest congruence η of A for which C(α, β; η). The fact that there
is such a smallest congruence is a consequence of [35, Lemma 4.149]. Given an
algebra A and θ ∈ ConA, we say that θ is Abelian [23] if [θ, θ] = 0A, and we
say that A is Abelian if [1A, 1A] = 0A. Groups are Abelian if and only if they
are commutative.

An algebra V that has a group reduct is called an expanded group. If the
group reduct is G = (V ; +,−, 0), we will say that V is an expansion of G. A
subset I of V is an ideal if it is a normal subgroup of G and for all n ∈ N,
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for each n-ary basic operation f of V, for all i ∈ In and for all v ∈ V n we
have f(v + i) − f(v) ∈ I. We denote the lattice of ideals of an expanded
group V by IdV. We remark that the function ψ : IdV → ConV defined by
ψ(I) = {(a1, a2) | a1 − a2 ∈ I} for all I ∈ IdV, induces a lattice isomorphism
between ConV and IdV. On IdV we define a binary operation, the ideal
commutator (cf. [43]), as follows: For A,B ∈ IdV we let [A,B] be the ideal
generated by

{p(a, b) | a ∈ A, b ∈ B, p ∈ Pol2 V and ∀v ∈ V : p(v, 0) = p(0, v) = 0}.

The lattice IdV expanded with the ideal commutator is isomorphic, via the
isomorphism ψ, to ConV expanded with the commutator operation defined for
congruences above. A proof can be found in [6, Section 2] and in [7, Section 4].
Thus, for two ideals M,N of an expanded group V, their ideal commutator
[M,N ] is the ideal ψ−1([ψ(M), ψ(N)]).

In [25], Hobby and McKenzie developed a structure theory for finite alge-
bras called tame congruence theory (TCT). The central notions of this theory
are that of minimal set (cf. [25, Definition 2.5]), and that of minimal algebra
(cf. [25, Definition 2.14]). Each minimal algebra has one of five types (cf. [25,
Definition 4.10, Corollary 4.11]). To denote the five TCT-types we will use
bold numbers: 1,2,3,4,5. Tame congruence theory associates to each prime
quotient of ConA a set of minimal algebras that have the same type. The type
of a prime quotient is then defined as the type of these minimal algebras (cf.
[25, Definition 5.1]). We will denote the type of a prime quotient I[α, β] by
typ(α, β).

3. Algebraic consequences of equational additivity

Let A be a set and let C be a clone on A. Following [37], for n ∈ N and for
X ⊆ An we say that X is algebraic with respect to C, or that X is C-algebraic, if
there exist an index set I and two families (pi)i∈I , (qi)i∈I of operations in C[n]

such that X = {x ∈ An | ∀i ∈ I : pi(x) = qi(x)}. We define Algn C to be the
collection of all the subsets of An that are algebraic with respect to C, and we
define the algebraic geometry of C by Alg C :=

⋃
n∈N

Algn C. For an algebra A
we set AlgA := Alg Clo(A) (cf. [11,39]). We first provide a lemma that will
be useful to assess whether a set X is algebraic with respect to a clone C.

Lemma 3.1. Let A be a set, let C be a clone on A, let n ∈ N and let X ⊆ An.
Then X ∈ Algn C if and only if for all a ∈ An\X there exist fa , ga ∈ C[n] such
that fa(a) �= ga(a) and fa(x) = ga(x) for all x ∈ X.

Proof. Let us assume that X ∈ Algn C. Then there exist an index set I and
{pi | i ∈ I}, {qi | i ∈ I} ⊆ C[n] so that X = {a ∈ An | ∀i ∈ I : pi(a) = qi(a)}.
Let a ∈ An\X. Clearly, there exists some i ∈ I such that pi(a) �= qi(a). Thus,
it suffices to set fa = pi and ga = qi.
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Let us assume that for all a ∈ An\X there exist fa , ga ∈ C[n] such that
fa(a) �= ga(a) and fa(x) = ga(x) for all x ∈ X. Then we can obtain X in the
form X = {x ∈ An | ∀a ∈ An\X : fa(x) = ga(x)}. �

We report the definition of equationally additive clone as given in [38].

Definition 3.2. (Equationally additive) A clone C on a set A is called equation-
ally additive if for all n ∈ N and for all A,B ∈ Algn C we have A∪B ∈ Algn C.
An algebra A is an equational domain [18, Definition 1] if CloA is equationally
additive.

To each set A we associate the following quaternary relation

Δ(4)
A := {(x1, x2, x3, x4) ∈ A4 | x1 = x2 or x3 = x4}.

We observe that Δ(4)
A = π4(A) as defined in [41, Lemma 1.3.1]. Next, we shall

state a theorem by Daniyarova, Myasnikov and Remeslennikov that charac-
terizes equationally additive clones in terms of their quaternary algebraic sets.

Lemma 3.3. (cf. [18, proof of Theorem 2.5]) Let C be a clone on a set A and
n ∈ N. Suppose that Δ(4)

A and B,C ⊆ An are algebraic over C, expressed as

Δ(4)
A = {a ∈ A4 | ∀i ∈ I : pi(a) = qi(a)}
B = {a ∈ An | ∀j ∈ J : fj(a) = gj(a)}
C = {a ∈ An | ∀k ∈ K : hk(a) = tk(a)}

for some index sets I, J,K and operations {pi | i ∈ I}, {qi | i ∈ I} ⊆ C[4]

{fj | j ∈ J}, {gj | j ∈ J}, {hk | k ∈ K}, {tk | k ∈ K} ⊆ C[n]. Then we have

B ∪ C = {a ∈ An | ∀(i, j, k) ∈ I × J × K :

pi(fj(a), gj(a), hk(a), tk(a)) = qi(fj(a), gj(a), hk(a), tk(a))}.

Theorem 3.4. [18, Theorem 2.5] A clone C on a set A is equationally additive
if and only if Δ(4)

A ∈ Alg4 C.

Proof. If Δ(4)
A ∈ Alg4 C, then Lemma 3.3 yields that the union of any two

C-algebraic sets is always a C-algebraic set. If C is equationally additive, then
Δ(4)

A ∈ Alg4 C since it is the union of two algebraic sets, namely

Δ(4)
A = {a ∈ A4 | a1 = a2} ∪ {a ∈ A4 | a3 = a4}.

�

Corollary 3.5. Let C and D be clones on a set A such that C ⊆ D. If C is
equationally additive, then so is D.
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Hence if A is an equational domain, then not only is CloA equationally
additive, but also its extension PolA.

An algebra A is called essentially at most unary if the clone CloA is
generated by its unary part. We shall now prove that non-trivial equational
domains must contain a function with at least two essential arguments.

Theorem 3.6. Let A be an essentially at most unary algebra with at least two
elements. Then PolA is not equationally additive.

Proof. The algebra A being essentially at most unary means that its clone
CloA is generated by its unary part; hence PolA is generated by F defined
as the union of Clo1 A and all unary constants. That is, for every n ∈ N and
g ∈ Poln A there is some i ∈ [n] and f ∈ F such that g(x1, . . . , xn) = f(xi)
for all x1, . . . , xn ∈ A. In order to obtain a contradiction, let us assume that
PolA is equationally additive, which means that Δ(4)

A is the solution set of some
system of equations over Pol4 A (cf. Theorem 3.4). Each of the equations is of
the form f(xi) = g(xj) for some f, g ∈ F and i, j ∈ [4], and it must be satisfied
by all tuples in Δ(4)

A . Let us now consider any particular such equation.
As a first case we assume that in this equation i �= j. For any a, b ∈ A

we can find a tuple x ∈ Δ(4)
A such that xi = a and xj = b. For instance,

if (i, j) = (1, 4) we may choose (a, a, a, b), if (i, j) = (1, 2) we may choose
(a, b, b, b), etc. Since f(xi) = g(xj) is satisfied by the constructed x ∈ Δ(4)

A , we
obtain f(a) = g(b) for all a, b ∈ A. This implies that f and g are constant with
the same value; but then the equation f(xi) = g(xj) is satisfied by all x ∈ A4.

Let us now investigate the case where i = j, that is, the considered equation
is of the form f(xi) = g(xi) with i ∈ [4]. Again, for any a ∈ A we can choose
x = (a, a, a, a) ∈ Δ(4)

A to show that f(a) = g(a) holds for all a ∈ A. Thus
f = g and the equation f(xi) = g(xi) is again satisfied by all tuples in A4.

As a consequence, all the equations that were assumed to define Δ(4)
A are

actually satisfied by any quadruple in A4. This, however, means that their solu-
tion set is A4, which properly contains Δ(4)

A , due to |A| ≥ 2. This contradiction
shows that PolA cannot be equationally additive. �
Lemma 3.7. Let C be a clone on A, let {pi | i ∈ I}, {qi | i ∈ I} ⊆ C[4] such
that Δ(4)

A = {a ∈ A4 | ∀i ∈ I : pi(a) = qi(a)}, and let A = (A; C). Then for
all α ∈ ConA, for all (a1, a2) ∈ α, for all x, y ∈ A and for all i ∈ I, we have
pi(a1, a2, x, y) α qi(a1, a2, x, y) and pi(x, y, a1, a2) α qi(x, y, a1, a2).

Proof. Let α ∈ ConA, let (a1, a2) ∈ α, let x, y ∈ A and let i ∈ I. We have

pi(a1, a2, x, y) α pi(a1, a1, x, y) = qi(a1, a1, x, y) α qi(a1, a2, x, y)

and

pi(x, y, a1, a2) α pi(x, y, a1, a1) = qi(x, y, a1, a1) α qi(x, y, a1, a2).

�
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The next result tells that every equational domain is finitely subdirectly
irreducible.

Proposition 3.8. For any set A and every equationally additive clone C on A
the algebra A = (A; C) is finitely subdirectly irreducible.

Proof. If C is equationally additive, then there exist an index set I and func-
tions pi, qi ∈ C[4] for i ∈ I, such that Δ(4)

A = {x ∈ A4 | ∀i ∈ I : pi(x) = qi(x)}.
Let α, β ∈ ConA\{0A}. We show that (α ∩ β)\0A �= ∅. Since α �= 0A and
β �= 0A, there exist (a1, a2) ∈ α\0A and (b1, b2) ∈ β\0A. Let i ∈ I be
such that pi(a1, a2, b1, b2) �= qi(a1, a2, b1, b2). Since (a1, a2) ∈ α, Lemma 3.7
yields that pi(a1, a2, b1, b2) α qi(a1, a2, b1, b2); likewise (b1, b2) ∈ β implies
pi(a1, a2, b1, b2) β qi(a1, a2, b1, b2). Thus, (pi(a1, a2, b1, b2), qi(a1, a2, b1, b2)) be-
longs to (α ∩ β)\0A. �

We say that an algebra A has a weak difference term if there exists some
d ∈ Clo3 A such that for all θ ∈ ConA and all (a, b) ∈ θ we have the condition
d(a, b, b) [θ, θ] a [θ, θ] d(b, b, a). A weak difference polynomial is defined analo-
gously using PolA. Note that a Mal’cev polynomial is also a weak difference
polynomial.

Proposition 3.9. Let A be an algebra with a weak difference polynomial. If
PolA is equationally additive, then for all congruences α ∈ ConA\{0A} it
follows that [α, α] > 0A.

Proof. If PolA is equationally additive, then there exist an index set I and
functions pi, qi ∈ Pol4 A for i ∈ I, such that

Δ(4)
A = {x ∈ A4 | ∀i ∈ I : pi(x) = qi(x)}.

Let α ∈ ConA\{0A} and let (a, b) ∈ α\0A. As (a, b, a, b) /∈ Δ(4)
A , there ex-

ists i ∈ I such that pi(a, b, a, b) �= qi(a, b, a, b). Let us define the polynomial
operation f for all x1, x2 ∈ A by

f(x1, x2) := d(pi(a, b, a, b), pi(a, x1, x2, b), qi(a, x1, x2, b)).

By using the definition of weak difference polynomial and noting that, due to
Lemma 3.7, we have pi(a, b, a, b) α qi(a, b, a, b), we can verify that

f(a, a) = d(pi(a, b, a, b), pi(a, a, a, b), qi(a, a, a, b)) [α, α] pi(a, b, a, b),

f(a, b) = d(pi(a, b, a, b), pi(a, a, b, b), qi(a, a, b, b)) [α, α] pi(a, b, a, b),

f(b, a) = d(pi(a, b, a, b), pi(a, b, a, b), qi(a, b, a, b)) [α, α] qi(a, b, a, b),

f(b, b) = d(pi(a, b, a, b), pi(a, b, b, b), qi(a, b, b, b)) [α, α] pi(a, b, a, b).

Therefore, we have that f(a, a) [α, α] f(a, b). Thus, applying the definition of
commutator to f yields that

qi(a, b, a, b) [α, α] f(b, a) [α, α] f(b, b) [α, α] pi(a, b, a, b).

Since qi(a, b, a, b) �= pi(a, b, a, b) we deduce that [α, α] > 0A. �
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We will use the notion of Taylor operation on a set A as defined, e.g., in [13,
Definition 6.6.1]. We say that A has a Taylor term (cf. [13, Definition 6.6.2])
if CloA contains a Taylor operation, and that A has a Taylor polynomial if
PolA contains a Taylor operation.

Corollary 3.10. Let A be a finite, at least two-element algebra with an idempo-
tent Taylor polynomial. If PolA is equationally additive, then A is subdirectly
irreducible and its monolith is non-Abelian.

Proof. Let A′ = (A; PolA). Since A is finite and has at least two elements and
since ConA = ConA′, Proposition 3.8 yields that A and A′ are subdirectly
irreducible. Let μ be the monolithic congruence of A and A′. Since A′ has
an idempotent Taylor operation, it generates a variety satisfying a non-trivial
idempotent Mal’cev condition. Hence that variety satisfies condition (2) of
[25, Theorem 9.6], and thus, by the latter theorem, the variety omits type 1.
Therefore, by [25, Theorem 7.12], A′ has a weak difference term. Consequently,
A has a weak difference polynomial; and therefore Proposition 3.9 yields that μ
is non-Abelian. �

Hence, using Corollary 3.5, it follows that all finite non-trivial equational
domains having a Taylor polynomial are subdirectly irreducible with a non-
Abelian monolith.

Since a Mal’cev operation is a Taylor operation, we obtain the following.

Corollary 3.11. Let A be a finite algebra with at least two elements and a
Mal’cev polynomial. If PolA is equationally additive, then A is subdirectly
irreducible and its monolith is non-Abelian.

We now focus on those clones on a finite set A with the property that Δ(4)
A

is the solution set of a single equation of the form f ≈ a with a ∈ A. An
example is given by the clone of polynomial functions of a ring with no zero
divisors, where f(x1, x2, x3, x4) = (x1 − x2)(x3 − x4) and a = 0.

Lemma 3.12. Let A be a finite set with |A| ≥ 2, let 0 ∈ A, let f : A4 → A be
such that Δ(4)

A = {x ∈ A4 | f(x) = 0}, and let A = (A; f). Then there exists
p ∈ Pol1 A and there exists i ∈ f [A4]\{0} such that p(0) = 0 and p(x) = i for
all x ∈ A\{0}.
Proof. We proceed by induction on |A| ≥ 2.
Base step. |A| = 2, A = {0, i} with i �= 0: The unary polynomial p, defined
by x �→ f(0, x, 0, x) for all x ∈ A, satisfies all the desired properties. In fact
(0, 0, 0, 0) ∈ Δ(4)

A , hence p(0) = f(0, 0, 0, 0) = 0, and (0, i, 0, i) /∈ Δ(4)
A , hence

p(i) = i.
Induction step. For each element a ∈ A, let us define a unary polynomial
pa ∈ Pol1 A by pa(x) = f(0, x, 0, a) for all x ∈ A. Note that, if a ∈ A\{0}, then
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pa preserves A\{0} as a subuniverse since (0, x, 0, a) /∈ Δ(4)
A for all x ∈ A\{0}.

Moreover, we have pa(0) = 0. We split the induction step into two cases.
Case 1. For all a ∈ A\{0} the function pa induces a permutation on A. Set
m := |A|! and consider any a ∈ A\{0}. The order of pa in the full symmetric
group on A divides m, hence pm

a (x) = x for all x ∈ A. Since (0, x, 0, 0) ∈ Δ(4)
A

the m-th iterated power of p0 is still the constant zero function of arity one.
Therefore, for all x ∈ A, given a �= 0, we have pm

a (x) = x, while pm
a (x) = 0

if a = 0. We now pick an arbitrary element i ∈ f [A4]\{0} (this is possible
since there is some a ∈ A\{0}, for which pa is a permutation) and define
p(x) := pm

x (i) for all x ∈ A. Clearly, if x �= 0, then p(x) = pm
x (i) = i, and

p(0) = pm
0 (i) = 0. Moreover, p ∈ Pol1 A because it is constructed as an

iterated substitution of f within itself wherein some positions have been filled
by constant values.
Case 2. There is a ∈ A\{0} where the function pa is not a permutation of A.
Let m ∈ N be such that e := pm

a ∈ Pol1 A is idempotent, i.e., e ◦ e = e. Let
B := e[A] be its image, which contains 0 since pa(0) = 0. Since pa preserves {0}
and A\{0}, so does e, and hence we have

∀x ∈ A : e(x) = 0 ⇐⇒ x = 0. (3.1)

Moreover, we have B = e[A] ⊆ pa[A] � A since pa is not surjective; hence the
algebra B = (B; (e ◦ f)|B) is defined on a set with smaller cardinality than A.
Given n ∈ N, a straightforward induction on the polynomial terms describing
Poln A shows that

∀n ∈ N ∀g ∈ Poln B∃ĝ ∈ Poln A∀b ∈ Bn : g(b) = ĝ(b). (3.2)

Because of (3.1), for all x ∈ A4 we have

(e ◦ f)(x) = 0 ⇐⇒ f(x) = 0 ⇐⇒ x ∈ Δ(4)
A ,

which implies that

Δ(4)
B = B4 ∩ Δ(4)

A =
{
b ∈ B4

∣
∣
∣ b ∈ Δ(4)

A

}
=

{
b ∈ B4

∣
∣ (e ◦ f)|B(b) = 0

}
.

This means that the induction hypothesis can be applied to B, as |B| < |A|.
Thus, there are q ∈ Pol1 B and i ∈ B\{0} ⊆ pa[A]\{0} ⊆ f [A4]\{0} such that
q(0) = 0 and q(b) = i for all b ∈ B\{0}. Moreover, (3.2) yields that there exists
q̂ ∈ Pol1 A such that q(b) = q̂(b) for all b ∈ B. Let us define p := q̂◦e ∈ Pol1 A.
Then (3.1) yields p(0) = q(e(0)) = q(0) = 0. Moreover, for all a ∈ A\{0} we
have by (3.1) that e(a) ∈ B\{0}, and therefore p(a) = q̂(e(a)) = q(e(a)) = i.
This concludes the proof. �

Proposition 3.13. Let A be a finite set with at least two elements, let C be a
clone on A, let f ∈ C[4], let 0 ∈ A be such that Δ(4)

A = {a ∈ A4 | f(a) = 0},
and let A = (A; C). Then A is subdirectly irreducible, there is i ∈ f [A4]\{0}
such that μ = 〈{(0, i)}〉ConA is the monolith of A, and typ(0A, μ) = 3.
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Proof. Lemma 3.12 yields that there exists i ∈ f [A4]\{0} and there exists
p ∈ Pol1 A such that p(0) = 0 and p(a) = i for all a ∈ A\{0}. Take any
θ ∈ ConA\{0A} and (a, b) ∈ θ\{0A}. We show that (0, i) ∈ θ. Let h : A4 → A
be defined by h(x) = p(f(x)) for all x ∈ A4. Clearly, h ∈ PolA. Moreover,
(0, i, a, b) ≡θ (0, i, a, a). Thus, we have 0 = h(0, i, a, a) θ h(0, i, a, b) = i, and
therefore (0, i) ∈ θ. Hence A is subdirectly irreducible and the monolith is
μ = 〈{(0, i)}〉ConA. Since p is idempotent and has image {0, i}, the set {0, i}
is (0A, μ)-minimal in the sense of tame congruence theory (cf. [25, Defini-
tion 2.5]).

Next, we define c : A → A by letting c(x) = p(f(x, i, x, i)) for all x ∈ A,
and we introduce m : A2 → A by m(x1, x2) = p(f(p(f(x1, i, x1, i)), i, x2, 0))
for all x1, x2 ∈ A. Clearly, c ∈ Pol1 A and m ∈ Pol2 A. Moreover, we have

(0, i, 0, i), (0, i, i, 0) /∈ Δ(4)
A ,

(i, i, i, i), (i, i, i, 0), (0, i, 0, 0), (i, i, 0, 0) ∈ Δ(4)
A .

Therefore, we know that

f(i, i, i, i) = f(i, i, i, 0) = f(0, i, 0, 0) = f(i, i, 0, 0) = 0,

f(0, i, 0, i) �= 0,

f(0, i, i, 0) �= 0.

Thus, we obtain

p(f(i, i, i, i)) = p(f(i, i, i, 0)) = p(f(0, i, 0, 0)) = p(f(i, i, 0, 0)) = 0,

p(f(0, i, 0, i)) = p(f(0, i, i, 0)) = i.

Hence c(0) = p(f(0, i, 0, i)) = i and c(i) = p(f(i, i, i, i)) = 0. Consequently,
c ∈ Pol(A|{0,i}), and c acts as a complement on {0, i}. Moreover, m satisfies

m(0, 0) = p(f(p(f(0, i, 0, i)), i, 0, 0)) = p(f(i, i, 0, 0)) = 0,

m(i, 0) = p(f(p(f(i, i, i, i)), i, 0, 0)) = p(f(0, i, 0, 0)) = 0,

m(0, i) = p(f(p(f(0, i, 0, i)), i, i, 0)) = p(f(i, i, i, 0)) = 0,

m(i, i) = p(f(p(f(i, i, i, i)), i, i, 0)) = p(f(0, i, i, 0)) = i.

Consequently, m ∈ Pol(A|{0,i}) and it acts as a meet on {0, i}. Hence A|{0,i}
is polynomially equivalent to a two-element Boolean algebra, and therefore
typ(0A, μ) = 3. �

For the subsequent three results, the following notation to extend an algebra
A = (A;F) by a single operation f : Ak → A, k ∈ N, comes handy. We define
A + f as an abbreviation of the algebra (A;F ∪ {f}).

Lemma 3.14. Let A be a finite algebra, let a, b ∈ A such that a �= b, and let
α = 〈{(a, b)}〉ConA. Then there exists f : A4 → A such that (A + f) + ca is a
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subdirectly irreducible equational domain with monolith α, typ(0A, α) = 3 in
(A + f) + ca, and ((A + f) + ca)/α = (A/α + c

[4]
a/α) + ca/α.

Proof. Let f : A4 → A be defined for all x ∈ A4 by f(x) = a if x ∈ Δ(4)
A

and f(x) = b otherwise. Proposition 3.13 yields that Clo((A + f) + ca) is
equationally additive, (A + f) + ca is subdirectly irreducible with monolith
ν := 〈{(a, b)}〉Con (A+f)+ca , and typ(0A, ν) = 3. Since the image of f is a
subset of a/α, the equivalence relation α is preserved by f and ca; thus we
have α ∈ Con((A+f)+ca). As ν ∈ Con((A+f)+ca) ⊆ ConA and (a, b) ∈ ν,
we have α ⊆ ν, and since ν is the monolithic congruence of (A + f) + ca, we
infer that ν = α. The final equality of the lemma follows from fα = c

[4]
a/α. �

We say that an algebra A is weakly isomorphic to an algebra C if there
exists an algebra B with the same universe as A such that CloA = CloB and
B ∼= C.

Theorem 3.15. Let A be a finite algebra with at least two elements. Then there
exists a subdirectly irreducible finite equational domain B with monolith μB

and an algebra C such that typ(0B , μB) = 3, A is weakly isomorphic to C,
and C is polynomially equivalent to B/μB.

Proof. Let D be an algebra on the same universe as A with at least one
at least binary functional symbol in its type such that CloA = CloD. For
example, we may take D = A + e

[2]
1 , adding the binary projection onto the

first argument to A. By [32, Theorem 3.1] there exists a finite subdirectly
irreducible algebra E with monolith μE such that D ∼= E/μE =: C, i.e., A is
weakly isomorphic to C.

Let a, b ∈ E such that μE = 〈{(a, b)}〉ConE. Then Lemma 3.14 states that
there exists f : E4 → E such that B := (E + f) + ca is a finite subdirectly
irreducible equational domain with monolith μB = μE, typ(0E , μB) = 3 in B,
and B/μB = ((E + f) + ca)/μE = (E/μE + c

[4]
a/μE

) + ca/μE
.

Then A is weakly isomorphic to C, and C is polynomially equivalent to
the quotient B/μB. �

Theorem 3.15 can be improved if we assume that A generates a congruence
modular variety. For the basic properties of modular lattices and congruence
modular varieties we refer the reader to [35, Section 2.3].

Theorem 3.16. Let A be a finite at least two-element algebra in a congruence
modular variety and let a ∈ A. Then there exist an algebra B with universe B
in the variety generated by A, b ∈ B, and f : B4 → B such that (B + f) + cb

is a subdirectly irreducible equational domain with monolith α, typ(0B , α) = 3
in (B + f) + cb, and ((B + f) + cb)/α ∼= (A + c

[4]
a ) + ca.
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Proof. Let B := A × S where S is a simple quotient of A with at least two
elements. Then B belongs to the variety generated by A, and thus ConB
is a modular lattice. Since S is a simple quotient of A and |S| ≥ 2, there
are s1, s2 ∈ S such that s1 �= s2; we define a1 = (a, s1) and a2 = (a, s2),
and we set α = 〈{(a1,a2)}〉ConB. Let Π1 be the canonical homomorphism
from B onto A, and let Π2 be the canonical homomorphism of B onto S. Since
(a1,a2) ∈ ker Π1, we have ker Π1 ⊇ α. Moreover, since B/ ker Π2

∼= S and S
is simple with more than one element, ker Π2 is a co-atom in ConB. Since
I[0B , ker Π1] and I[ker Π2, 1B ] are transposes, and thus projective, and ConB
is modular, we infer that these intervals are isomorphic [35, Corollary 2.28].
Therefore, ker Π1 is an atom of ConB, whence we conclude that α = ker Π1;
accordingly, we have A ∼= B/ ker Π1 = B/α.

Next, Lemma 3.14 yields that there exists f : (A × S)4 → A × S such that
(B+ f) + ca1 is a subdirectly irreducible equational domain with monolith α,
typ(0B , α) = 3 in (B + f) + ca1 , and

((B + f) + ca1)/α = (B/α + c
[4]
a1/α) + ca1/α

∼= (A + c[4]
a ) + ca.

�

4. Characterization of equationally additive constantive Mal’cev
clones

In this section we provide a characterization of equationally additive constan-
tive Mal’cev clones in terms of properties of the term condition commutator
(cf. Theorem 4.8). We start by stating a few well-known properties of the
commutator for algebras with a Mal’cev polynomial.

Lemma 4.1. (cf. [3, Propositions 2.3 and 2.4]) Let A be an algebra with a
Mal’cev polynomial and let α, β, α′, β′ ∈ ConA satisfy α ≤ α′ and β ≤ β′.
Then we have
(a) C(1, 1, α, β, η) ⇐⇒ C(α, β; η) ⇐⇒ [α, β] ≤ η, in particular, the

commutator is completely determined by the binary polynomials of A;
(b) [α, β] ≤ α ∧ β;
(c) [α, β] ≤ [α′, β] ≤ [α′, β′].

Proof. The first equivalence of statement (a) is shown in [3, Proposition 2.3],
the second one in [3, Proposition 2.4]. Statements (b) and (c) are obvious
consequences of the definition of [α, β] that hold for every algebra A. �

Lemma 4.2. (cf. [3, Proposition 2.6]) Let k ∈ N, let A be an algebra with a
Mal’cev polynomial d, let α, β ∈ ConA, and let p ∈ Polk A. For all k-tuples
u,v,w ∈ Ak such that u ≡α v ≡β w, we have

d(p(u), p(v), p(w)) ≡[α,β] p(d(u1, v1, w1), d(u2, v2, w2), . . . , d(uk, vk, wk)).
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Following [8], for p ∈ Pol2 A and u1, u2 ∈ A, we say that p is absorbing at
(u1, u2) if for all x1, x2 ∈ A we have p(x1, u2) = p(u1, x2) = p(u1, u2).

The following lemma is a direct consequence of [8, Lemma 6.13], which was
shown using the theory of higher commutators. We here present a different
proof, which offers the advantage that it is solely based on the more elementary
binary commutator.

Lemma 4.3. (cf. [8, Lemma 6.13]) Let A be an algebra with a Mal’cev polyno-
mial d, let α = 〈{(u1, v1)}〉ConA and let β = 〈{(u2, v2)}〉ConA. Then

[α, β] = {(z(v1, v2), z(u1, u2)) | z ∈ Pol2 A is absorbing at (u1, u2)}. (4.1)

Proof. Let η denote the right-hand side of (4.1); we first prove that this set is
a congruence. Since constant functions are absorbing at (u1, u2), the relation η
is reflexive. Let n ∈ N and let f be an n-ary basic operation of A. If z1, . . . , zn

are binary polynomials absorbing at (u1, u2), then f(z1, . . . , zn) is a binary
polynomial absorbing at (u1, u2). Thus η is a subalgebra of A × A. Hence
Lemma 2.2 yields that η is a congruence of A.

Next, we prove that C(α, β; η). For this, according to Lemma 4.1(a), let
us take an arbitrary q ∈ Pol2 A and any a, b, u, v ∈ A with a α b and u β v.
We assume that q(a, u) η q(a, v) and want to show q(b, u) η q(b, v). Since α
and β are generated by a single pair, Lemma 2.1 yields that there are unary
polynomials p1, p2 ∈ Pol1 A such that a = p1(u1), b = p1(v1), u = p2(u2),
v = p2(v2). Setting p(x, y) := q(p1(x), p2(y)) for x, y ∈ A, we are able to infer
p(u1, u2) η p(u1, v2). Let us define f : A2 → A by

f(x1, x2) :=

d(d(p(x1, x2), p(x1, u2), p(v1, u2)), d(p(u1, x2), p(u1, u2), p(v1, u2)), p(v1, u2))

for all x1, x2 ∈ A. Clearly, f ∈ Pol2 A, for p ∈ Pol2 A. For arbitrary a1, a2 ∈ A
we have

f(u1, a2)

= d(d(p(u1, a2), p(u1, u2), p(v1, u2)), d(p(u1, a2), p(u1, u2), p(v1, u2)), p(v1, u2))

= p(v1, u2)

and

f(a1, u2)

= d(d(p(a1, u2), p(a1, u2), p(v1, u2)), d(p(u1, u2), p(u1, u2), p(v1, u2)), p(v1, u2))

= d(p(v1, u2), p(v1, u2), p(v1, u2)) = p(v1, u2).

Hence f is absorbing at (u1, u2) with value p(v1, u2). Therefore, we have

f(v1, v2) η f(u1, u2) = p(v1, u2). (4.2)

Moreover, since p(u1, u2) η p(u1, v2), we may derive that

f(v1, v2) = d(p(v1, v2), d(p(u1, v2), p(u1, u2), p(v1, u2)), p(v1, u2))
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η d(p(v1, v2), d(p(u1, v2), p(u1, v2), p(v1, u2)), p(v1, u2)) (4.3)

= d(p(v1, v2), p(v1, u2), p(v1, u2)) = p(v1, v2).

Combining (4.2) and (4.3), we obtain

q(b, u) = p(v1, u2) = f(u1, u2) η f(v1, v2) η p(v1, v2) = q(b, v).

Thus, we have that C(α, β; η) and hence [α, β] ⊆ η.
For the converse inclusion let γ := [α, β] and (a, b) ∈ η. Thus, there is

some c ∈ Pol2 A that is absorbing at (u1, u2) such that a = c(v1, v2) and
b = c(u1, u2). We have u1 α v1 and u2 β v2; moreover, c(u1, u2) = c(u1, v2)
by the absorption property at (u1, u2), hence c(u1, u2) γ c(u1, v2). Since, by
the definition of the commutator, α centralizes β modulo γ and c absorbs at
(u1, u2), it follows that b = c(u1, u2) = c(v1, u2) γ c(v1, v2) = a, i.e., (b, a) ∈ γ
and hence (a, b) ∈ γ. This concludes the proof that η ⊆ γ = [α, β]. �

Proposition 4.4. Let A be a subdirectly irreducible algebra with a non-Abelian
monolith μ ∈ ConA, let d be a Mal’cev polynomial, let o ∈ A, let U = o/μ, let
k ∈ N, let D ⊆ Ak and let l : D → U . Then, for all T ⊆ D finite, there exists
a polynomial pT ∈ Polk A such that pT (t) = l(t) for all t ∈ T , and pT (x) ∈ U
for all x ∈ Ak.

Proof. Let T ⊆ D be finite. We prove that there exists pT ∈ Polk A such that
pT (t) = l(t) for all t ∈ T , and pT (x) ∈ U for all x ∈ Ak. We proceed by
induction on the cardinality of T = {t1, . . . , tn}.

Case |T | ≤ 1. If |T | = 1, the constant polynomial pT with value l(t1)
interpolates l at t1. If |T | = 0, any constant polynomial pT with value in U ,
e.g., o ∈ U , will satisfy the required conditions.

Case |T | = 2. If l(t1) = l(t2), a constant polynomial with value l(t1)
interpolates l on T . Let us now assume that l(t1) �= l(t2); this implies that
|U | ≥ 2. Let l(t1) = f and l(t2) = g. Since μ is not Abelian, Lemma 4.1(a)
implies that there exist a, b, u, v ∈ A and t ∈ Pol2 A such that aμ b, uμ v,
t(a, u) = t(a, v) and t(b, u) �= t(b, v). Moreover, since t1 �= t2, there is j ∈ [k]
such that t1(j) �= t2(j), whence

(u, v) ∈ μ ⊆ 〈{(t1(1), t2(1)), . . . , (t1(k), t2(k))}〉ConA,

for μ is the monolith of A. Thus, by Lemma 2.1, there is h ∈ Polk A such that
h(t1) = u and h(t2) = v. Since (f, g) ∈ U2 ⊆ μ ⊆ 〈{(t(b, u), t(b, v))}〉ConA,
Lemma 2.1 yields a p ∈ Pol1 A such that p(t(b, u)) = f and p(t(b, v)) = g. Let
us define the k-ary polynomial pT : Ak → A by

pT (z) := p(d(t(b, h(z)), t(a, h(z)), t(a, u)))

for all z ∈ Ak. Then for any x ∈ Ak such that h(x) = u, we have

pT (x) = p(d(t(b, u), t(a, u), t(a, u))) = p(t(b, u)) = f = l(t1). (4.4)
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In particular, this holds for x = t1. Moreover, since t(a, u) = t(a, v), we have

pT (t2) = p(d(t(b, v), t(a, v), t(a, u))) = p(t(b, v)) = g = l(t2).

Furthermore, we obtain from a μ b that for all x ∈ Ak the relations

pT (x) = p(d(t(b, h(x)), t(a, h(x)), t(a, u)))

≡μ p(d(t(b, h(x)), t(b, h(x)), t(b, u))) = p(t(b, u)) = f ∈ U

hold. Since U = o/μ, we conclude that pT (x) ∈ U for every x ∈ Ak.
Induction step. Let |T | = n ≥ 3 and let us assume that l can be interpolated
at any n − 1 points of T by a polynomial whose image is a subset of U . We
prove that l can be interpolated on T by a polynomial with image inside U .
To this end, let us consider the following three sets

β = 〈{(t1(1), t2(1)), . . . , (t1(k), t2(k))}〉ConA;

η =

{

(p(t1), q(t1))

∣
∣
∣
∣
∣
p, q ∈ Polk A,

∀x ∈ Ak : p(x) μ q(x),

∀i ∈ {2, . . . , n} : p(ti) = q(ti)

}

;

α =

{

(p(t1), q(t1))

∣
∣
∣
∣
∣
p, q ∈ Polk A,

∀x ∈ Ak : p(x) μ q(x),

∀i ∈ {3, . . . , n} : p(ti) = q(ti)

}

.

It is easy to see that η and α are reflexive and symmetric subuniverses of A×A
that are contained in μ. Now, by Lemma 2.2, we have α, β, η ∈ ConA, and
α, η ∈ {0A, μ} since α, η ≤ μ.

Our next goal is to prove that α = η. The definition of α and η yields
η ≤ α. If α = 0A ≤ η, we have the desired equality; hence we assume that
0A < α ≤ μ, i.e., α = μ.

We shall first prove that C(1, 1, α, β, η). To this end let (u, v) ∈ β, (a, b) ∈ α
and consider p ∈ Pol2 A such that p(a, u) η p(a, v). We have to show that
p(b, u) η p(b, v). Since (a, b) ∈ α, there exist pa, pb ∈ Polk A such that
(1) ∀x ∈ Ak : pa(x) μ pb(x);
(2) ∀j ∈ {3, . . . n} : pa(tj) = pb(tj);
(3) pa(t1) = a and pb(t1) = b.

Since (u, v) ∈ β, Lemma 2.1 yields that there exist q, q′ ∈ Polk A such that
q(t1) = u, q(t2) = v, q′(t1) = v and q′(t2) = u. We define pu, pv : Ak → A by
letting

pu(x) = d(q(x), q′(x), v) and pv(x) = d(q(x), u, v)

for all x ∈ Ak. We observe that pu, pv ∈ Polk A, and moreover we can see
that pu(t1) = u, w := pu(t2) = d(v, u, v) = pv(t2) and pv(t1) = v. We further
define h, � ∈ Polk A on each x ∈ Ak by

�(x) = p(pb(x), pu(x)),

h(x) = d(�(x), d(p(pa(x), pv(x)), p(pa(x), pu(x)), �(x)), p(pb(x), pv(x))).
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For each j ∈ {3, . . . , n} we have p(pa(tj), pu(tj)) = �(tj), and hence

h(tj) = d
(
�(tj), d

(
p(pa(tj), pv(tj)), p(pa(tj), pu(tj)), �(tj)

)
, p(pb(tj), pv(tj))

)

= d
(
�(tj), d

(
p(pa(tj), pv(tj)), �(tj), �(tj)

)
, p(pb(tj), pv(tj))

)

= d
(
�(tj), p(pa(tj), pv(tj)), p(pb(tj), pv(tj))

)

= d
(
�(tj), p(pb(tj), pv(tj)), p(pb(tj), pv(tj))

)
= �(tj).

Moreover, using w = pu(t2) = pv(t2), we have

h(t2) = d
(
�(t2), d

(
p(pa(t2), pv(t2)), p(pa(t2), pu(t2)), �(t2)

)
, p(pb(t2),pv(t2))

)

= d
(
�(t2), d

(
p(pa(t2), w), p(pa(t2), w), �(t2)

)
, p(pb(t2), w)

)

= d
(
�(t2), �(t2), p(pb(t2), w)

)

= p(pb(t2), w) = p(pb(t2), pu(t2)) = �(t2).

For every x ∈ Ak we have pa(x) μ pb(x), and hence we get

p(pa(x), pu(x)) μ p(pb(x), pu(x)) = �(x),

p(pa(x), pv(x)) μ p(pb(x), pv(x)).

Consequently,

d
(
p
(
pa(x), pv(x)

)
, p

(
pa(x), pu(x)

)
, �(x)

)
μ d

(
p
(
pb(x), pv(x)

)
, �(x), �(x)

)

= p(pb(x), pv(x)),

and therefore

h(x) = d
(
�(x), d

(
p(pa(x), pv(x)), p(pa(x), pu(x)), �(x)

)
, p(pb(x), pv(x))

)

μ d
(
�(x), p(pb(x), pv(x)), p(pb(x), pv(x))

)
= �(x).

From this we deduce that h(t1) η �(t1), and thus, by applying the unary poly-
nomial z �→ d(p(b, u), d(p(a, v), z, p(b, u)), p(b, v)) to the pair (p(a, v), p(a, u))
from η, we have

p(b, v) = d
(
p(b, u), p(b, u), p(b, v)

)

= d
(
p(b, u), d(p(a, v), p(a, v), p(b, u)), p(b, v)

)

η d
(
p(b, u), d(p(a, v), p(a, u), p(b, u)), p(b, v)

)

= h1(t1) η h2(t1) = p(b, u).

Hence p(b, u) η p(b, v). This proves that C(1, 1, α, β, η). Now, Lemma 4.1(a)
implies [α, β] ≤ η. Since t1 �= t2 we have 0A < β, thus μ ≤ β. As α = μ is
non-Abelian, Lemma 4.1(c) yields α = μ = [μ, μ] ≤ [μ, β] = [α, β] ≤ η ≤ α.
This concludes the proof of α = η.

Now we construct the interpolating function. By the induction hypothesis
there are p, q ∈ Polk A with image inside U , such that p interpolates l at
{t2, . . . , tn} and q interpolates l at {t1, t3, . . . , tn}. Since U2 ⊆ μ, we have that
p(x) μ q(x) for all x ∈ Ak, and moreover that p(ti) = l(ti) = q(ti) for every
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i ∈ {3, . . . , n}. Hence (p(t1), q(t1)) ∈ α. Since α = η and q(t1) = l(t1), we have
that (p(t1), l(t1)) ∈ η. Therefore, there exist p2, p3 ∈ Polk A such that
(1) ∀i ∈ {2, . . . , n} : p2(ti) = p3(ti);
(2) ∀x ∈ Ak : p2(x) μ p3(x);
(3) p2(t1) = p(t1) and p3(t1) = l(t1).

Let pT : Ak → A be defined by pT (x) = d(p(x), p2(x), p3(x)) for all x ∈ Ak.
Clearly, pT ∈ Polk A. Moreover, we have that for all i ∈ {2, . . . n}

pT (ti) = d(p(ti), p2(ti), p3(ti)) = p(ti) = l(ti).

Furthermore,

pT (t1) = d(p(t1), p2(t1), p3(t1)) = d(p(t1), p(t1), l(t1)) = l(t1).

Moreover, we have that for all x ∈ Ak

pT (x) = d(p(x), p2(x), p3(x))μd(o, p2(x), p2(x)) = o.

Thus, pT (x) ∈ o/μ = U and we can conclude that pT has codomain U and
interpolates l on T . �

The following proposition is a partial converse of Proposition 3.13. In partic-
ular, it states that every finite subdirectly irreducible algebra with a monolith
of type 3 (which is non-Abelian by [25, Theorem 5.7]) and a Mal’cev polyno-
mial is an equational domain with respect to its clone of polynomial operations.

Proposition 4.5. Let A be a finite subdirectly irreducible algebra with a Mal’cev
polynomial, let μ be the monolith and let us assume that μ is non-Abelian. Then
there exist f ∈ Pol4 A and a ∈ A such that Δ(4)

A = {x ∈ A4 | f(x) = a}, and
fμ is constant.

Proof. Let U be an equivalence class of μ with at least two distinct elements
a, b and let f : A4 → U be defined by

f(x1, x2, x3, x4) =

{
a if x1 = x2 or x3 = x4;
b otherwise.

Proposition 4.4 implies that f ∈ Pol4 A. From the definition of f we see that
Δ(4)

A = {x ∈ A4 | f(x) = a}, and fμ has a/μ = U = b/μ as its single
value. �

Next, we determine what can be said about a Mal’cev algebra whose uni-
versal algebraic geometry contains all finite relations.

Proposition 4.6. Let A be an algebra with a Mal’cev polynomial and assume
that every three-element quaternary relation on A is an algebraic set with re-
spect to PolA. Then for all α, β ∈ ConA\{0A} we have [α, β] > 0A.
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Proof. Let d be the Mal’cev polynomial and let α, β ∈ ConA\{0A}. We prove
that ¬C(α, β; 0A). To this end, take (a, b) ∈ α\0A and (u, v) ∈ β\0A to form
B = {(a, a, u, u), (a, a, u, v), (a, b, u, u)}, which does not contain (a, b, u, v). By
our assumption, the quaternary relation B is algebraic with respect to PolA.
Hence Lemma 3.1 yields that there are quaternary polynomials p, q ∈ Pol4 A
such that p(a, b, u, v) �= q(a, b, u, v) and p|B = q|B . We use these to define the
binary polynomial operation f for all x1, x2 ∈ A by

f(x1, x2) := d(p(a, b, u, v), p(a, x1, u, x2), q(a, x1, u, x2)).

For d is a Mal’cev operation, we readily verify

f(a, u) = d(p(a, b, u, v), p(a, a, u, u), q(a, a, u, u)) = p(a, b, u, v),

f(a, v) = d(p(a, b, u, v), p(a, a, u, v), q(a, a, u, v)) = p(a, b, u, v),

f(b, u) = d(p(a, b, u, v), p(a, b, u, u), q(a, b, u, u)) = p(a, b, u, v),

f(b, v) = d(p(a, b, u, v), p(a, b, u, v), q(a, b, u, v)) = q(a, b, u, v).

Since p(a, b, u, v) �= q(a, b, u, v), we have that ¬C(α, β; 0A); thus the definition
of the commutator yields [α, β] �= 0A, cf. also Lemma 4.1(a). �

The following proposition provides a condition on the commutator which
is sufficient for equational additivity in Mal’cev algebras.

Proposition 4.7. Let A be an algebra on a set A with a Mal’cev polynomial
d ∈ Pol3 A. If for all α, β ∈ ConA\{0A} we have [α, β] > 0A, then PolA is
equationally additive.

Proof. Let n ∈ N, let C,B ∈ Algn PolA and let w ∈ An\(C ∪ B). We prove
that there exist a constant τw ∈ A and a polynomial pw ∈ Poln A such
that pw (w) �= τw and pw (x) = τw for all x ∈ C ∪ B. Since C and B are
algebraic and w /∈ C∪B, Lemma 3.1 applied to B and C, respectively, gives us
fC , fB , gC , gB ∈ Poln A such that fC |C = gC |C , fB |B = gB |B , fC(w) �= gC(w)
and fB(w) �= gB(w). Hence the congruences generated by these respective
pairs are non-trivial:

α := 〈{(fC(w), gC(w))}〉ConA �= 0A, β := 〈{(fB(w), gB(w))}〉ConA �= 0A.

Therefore, the assumption yields that

[〈{(fC(w), gC(w))}〉ConA, 〈{(fB(w), gB(w))}〉ConA] = [α, β] > 0A.

Thus, Lemma 4.3 implies that there exists a polynomial q ∈ Pol2 A such that

q(gC(w), gB(w)) �= q(fC(w), fB(w))

and q(a1, fB(w)) = q(fC(w), a2) = q(fC(w), fB(w)) holds for all a1, a2 ∈ A.
Let us now define the polynomial pw ∈ Poln A for all x ∈ An by

pw (x) = q(d(gC(x), fC(x), fC(w)), d(gB(x), fB(x), fB(w))).
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For every c ∈ C we have

pw (c) = q(d(gC(c), fC(c), fC(w)), d(gB(c), fB(c), fB(w)))

= q(fC(w), d(gB(c), fB(c), fB(w)))

= q(fC(w), fB(w)),

while for every b ∈ B we have

pw (b) = q(d(gC(b), fC(b), fC(w)), d(gB(b), fB(b), fB(w)))

= q(d(gC(b), fC(b), fC(w)), fB(w))

= q(fC(w), fB(w)).

On the other hand, we have

pw (w) = q(d(gC(w), fC(w), fC(w)), d(gB(w), fB(w), fB(w)))

= q(gC(w), gB(w)) �= q(fC(w), fB(w)).

Therefore, setting τw = q(fC(w), fB(w)) we have that pw (w) �= τw , whereas
for all x ∈ C ∪B the equality pw (x) = τw holds. Hence Lemma 3.1 yields that
C ∪ B ∈ Algn(PolA). �

Theorem 4.8. Let A be an algebra with at least two elements and a Mal’cev
polynomial. Then the following statements are equivalent:
(a) PolA is equationally additive.
(b) For all n ∈ N, any finite subset of An belongs to Alg(Pol(A)).
(c) Every three-element subset of A4 belongs to Alg(Pol(A)).
(d) For all α, β ∈ ConA\{0A} we have [α, β] > 0A.

If A is finite, (a)–(d) are furthermore equivalent to the following:
(e) A is subdirectly irreducible and the monolith μ is non-Abelian.
(f) There exist f ∈ Pol4 A and a ∈ A such that Δ(4)

A = {x ∈ A4 | f(x) = a}
and fγ is constant for all γ ∈ ConA\{0A}.

Proof. Since PolA contains all constant operations, for every n ∈ N, every
singleton {(a1, . . . , an)} can be written as

{x ∈ An | c[n]
a1

(x) = e
[n]
1 (x) ∧ · · · ∧ c[n]

an
(x) = e[n]

n (x)}
and ∅ = {x ∈ A | ca(x) = cb(x)} where a, b ∈ A are distinct elements.
Therefore, (a) implies (b), and (c) is just a special case of (b). Proposition 4.6
proves that (c) implies (d), while Proposition 4.7 shows that (d) implies (a). If
we assume that A is finite, then by Corollary 3.11 we have that (a) implies (e);
moreover, Proposition 4.5 shows that (e) implies (f). From Theorem 3.4 we
see that (f) implies (a). �

We now specify our results to Artinian rings. We remark that the commu-
tator of two ideals as defined in Sect. 2 in the case of rings coincides with the
classical ideal product (cf. [35, Exercise 4.156(12)]).
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Corollary 4.9. Let R be an Artinian ring with unity. Then PolR is equation-
ally additive if and only if R is isomorphic to the ring of linear endomorphisms
of a finite dimensional vector space over a division ring.

Proof. If R consists of a single element, then PolR is equationally additive
and R is isomorphic to the endomorphism ring of a zero-dimensional vector
space. From now on let us assume that zero and unity in R are distinct. If R
is the ring of linear transformations of a finite dimensional vector space over
a division ring, then it is simple and non-Abelian. Hence it satisfies (d) of
Theorem 4.8. Let us now assume that PolR is equationally additive. Then R
satisfies (d) of Theorem 4.8, and therefore it is subdirectly irreducible and
the monolithic ideal I satisfies I · I = I. Since the Jacobson radical radR
is nilpotent (cf. [29, Theorem 4.3]), we infer that radR = {0}. Thus, R is
primitive (cf. [29, Propositions 4.1 and 4.4]). Hence the Wedderburn–Artin
Theorem yields that R is isomorphic to the ring of linear transformations of
a finite dimensional vector space over a division ring. �

Corollary 4.9 entails that the equational domains among all Artinian rings
with unity are simple. This is a consequence of the fact that for Artinian rings
with unity condition (d) of Theorem 4.8 implies simplicity. In the case of near-
rings (cf. [36, Definition 1.1]) this is not any more true. We provide an example
of a finite near-ring that is an equational domain but not simple.

Corollary 4.10. For a prime number p > 2 the near-ring N = (C0(Zp2);+, ◦)
of zero-preserving congruence-preserving functions on Zp2 is an equational do-
main but not simple.

Proof. One readily verifies that N satisfies the assumptions of [5, Corollary 5.2],
and therefore N is subdirectly irreducible, and its monolithic ideal is equal to
M = (0 : pZp2)∩ (pZp2 : Zp2), that is, the ideal consisting of all the maps that
send pZp2 to 0 and Zp2 to pZp2 . Next, we show that [M,M ] �= 0. To this end,
we define a, b, x : Zp2 → Zp2 as follows. For every n ∈ Zp2 we set

a(n) :=

{
0 if n ∈ {1, . . . , p − 1} ∪ pZp2 ,

kp if n ∈ {kp + 1, . . . , (k + 1)p − 1}, with k ∈ {1, . . . , p − 1};

b(n) := pn;

x(n) :=

{
n if n ∈ pZp2 ,

n mod p if n ∈ Zp2\pZp2 .

We observe that a, b ∈ M , and x ∈ C0(Zp2). Hence a ◦ (b+x)−a ◦x ∈ [M,M ]
(cf. [7, Definition 2.1] and [30, Theorem 3.1]). Thus, we need only show that
a◦ (b+x)−a◦x is not constantly zero. One readily verifies that (a◦x) (1) = 0
and (a ◦ (b + x)) (1) = p. Hence [M,M ] �= {0}, and Theorem 4.8 yields that N
is an equational domain. Since {0} � M � C0(Zp2), we obtain that N is not
simple. �
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5. The number of equationally additive constantive expansions of
finite Abelian groups

In the present section we study the number of equationally additive constantive
expansions of Abelian groups on finite sets. We begin with a lemma.

Lemma 5.1. Let l,m, p, q ∈ N, with p and q prime, and m square-free. For each
n ∈ N we write Zn := (Zn; +,−, 0) for the cyclic group of integers {0, . . . , n−1}
modulo n. Let H be a finite group the centre of which contains a subgroup of
order q2. Then the following statements hold:

(a) There are only finitely many equationally additive clones that contain the
clone Clo(Zm).

(b) The number of equationally additive clones containing Pol(Zp × Zp) or
Pol(Zp2), respectively, is finite.

(c) If l ≥ 3, then there are exactly ℵ0 equationally additive clones that contain
Pol(Zpl).

(d) There are exactly ℵ0 equationally additive clones above Pol(H × Zpl).

Proof. In [22, Corollary 1.3] it is shown that for square-free m, there are only
finitely many clones containing Clo(Zm); hence (a) follows (the assumption of
equational additivity is not used for this).

We now prove (b). Let V be an expansion of Zp2 or of Zp × Zp such that
PolV is equationally additive. Then Corollary 3.11 implies that V is subdi-
rectly irreducible and that the monolith U is non-Abelian. Then, either V is
simple and non-Abelian, or IdV is a three-element chain with a non-Abelian
monolith. Thus, V satisfies the property (SC1) as defined in [7, p. 310], which
for finite expanded groups is equivalent to the property (SC1) given in [27,
p. 48], as was argued in [7, p. 310]. Hence, by [27, Lemma 21], IdV satisfies
(APMI) as defined in [7, p. 310 and Definition 8.1, p. 324]. Thus, [7, Corol-
lary 11.3] yields that V is weakly polynomially rich, that is, according to
[7, Definition 3.7], the clone of polynomial functions of V coincides with the
clone of extended type preserving functions as defined in [7, Definition 3.4].
Moreover, under (APMI), [7, Corollary 11.7] yields that the clone of functions
preserving the extended types of V is generated by the binary functions it
contains. Therefore, we can infer that PolV is generated by Pol2 V, a subset
of the p2p4

-element set of binary operations on the carrier of V that contains
addition, the two projections and all p2 constants. Thus, PolV is one of at
most 2p2p4−p2−3 clones.

Next, we prove (c). To this end let N :=
〈
pl−1

〉
. Clearly, N is normal,

N ∼= Zp, and Zpl/N ∼= Zpl−1 . We define f : Z
4
pl → Zpl for x1, x2, x3, x4 ∈ Zpl

by f(x1, x2, x3, x4) := 0 if x1 = x2 or x3 = x4, and f(x1, x2, x3, x4) := pl−1

otherwise. Furthermore, for each i ∈ N\{1}, we set Vi = (Zpl ; +,−, 0, f, hi),
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where the map hi : Z
i
pl → Zpl is given for all x1, . . . , xi ∈ Zpl by the prod-

uct hi(x1, . . . , xi) := pl−2
∏i

j=1 xj . One readily checks that N is an ideal
of Vi and that any ideal I of Vi with at least one element a �= 0 must con-
tain f(a, 0, 0, 0) − f(0, 0, 0, 0) = pl−1. Hence N is the monolith of IdVi. Since
Δ(4)

Z
pl

= {x ∈ (Zpl)4 | f(x) = 0}, Theorem 3.4 yields that CloVi is equation-
ally additive, and, by Corollary 3.5, PolVi is equationally additive, as well.
The map φ : Zpl−1 → Zpl/N sending each x ∈ Zpl−1 to φ(x) = x + N provides
an isomorphism between the algebra Bi := (Zpl−1 ; +,−, 0, c

[4]
0 , pi) and Vi/N ,

where c
[4]
0 is the quaternary constant zero function and pi is given by the same

term as hi, namely, pi(x1, . . . , xi) = pl−2x1 · · · xi for x1, . . . , xi ∈ Zpl−1 . For
each i ∈ N\{1}, let Ai = (Zpl−1 ; +,−, 0, pi), cf. [10, proof of Theorem 1.3].
Then, for all i ∈ N\{1} we have that PolBi = PolAi. Moreover, in [10, proof
of Theorem 1.3] it is argued that

∀i, j ∈ N\{1} : PolAi = PolAj ⇐⇒ i = j. (5.1)

It is our goal to show this for PolVi and PolVj , as well. To this end, let
i, j ∈ N\{1} be such that PolVi = PolVj . We show that i = j. Let ψ(N)
be the congruence associated to N as defined in Sect. 2, that is, the kernel
of φ. If PolVi = PolVj , then (PolVi)/ψ(N) = (PolVj)/ψ(N), since ψ(N)
does not depend on the choice of i and j. Therefore, equation (2.1) yields that
Pol(Vi/N) = Pol(Vj/N). Then, since φ does not depend on the choice of i
and j, PolBi = PolBj , and hence PolAi = PolAj . Finally, condition (5.1)
yields that i = j. Thus, the map i �→ PolVi from N\{1} to the set of clones
on Zpl is injective. This proves that there are at least ℵ0 distinct equationally
additive clones that contain PolZpl for l ≥ 3. Since there are at most ℵ0

constantive Mal’cev clones on a finite set [4, Theorem 5.3], ℵ0 is the exact
number.

It remains to prove (d). For a finite Abelian group G′, for a n ∈ N

and for an operation h : Hn →H, we define ιG′(h) : (H×G′)n →H×G′ by
ιG′(h)((x1, y1), . . . , (xn, yn)) := (h(x1, . . . , xn), 0) for all x ∈ Hn and y ∈ (G′)n.
Let us set VG′,f ′,H = (H × G′; +,−, (0, 0), f ′, (ιG′(h))h∈H), where H is any
set of operations on H and f ′ is a quaternary operation on H × G′. For
n ∈ N, and for any p ∈ Poln VG′,f ′,H, let π(p) : Hn → H be the function
that maps every x ∈ Hn to the projection of p

(
x
0

)
to its first component.

We set π
(
PolVG′,f ′,H

)
:=

⋃
n∈N

{π(p) | p ∈ Poln VG′,f ′,H}; moreover let c
[4]
0

denote the constant zero function on H × G′ of arity four.
Next, we demonstrate that for each constantive clone H on H that contains

the group operation of H, and for each finite Abelian group G′, we have

H = π
(
PolV

G′,c[4]0 ,H
)
. (5.2)
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For each h ∈ H we see that π(ιG′(h)) = h, and, since ιG′(h) is a fundamental
operation of V

G′,c[4]0 ,H, we thus have H ⊆ π
(
PolV

G′,c[4]0 ,H
)
. For the opposite

inclusion, we note that, since the second parameter of V
G′,c[4]0 ,H is constant,

we can write this algebra as Ĥ × Ĝ where Ĥ = (H; +,−, 0, c
[4]
0 , (h)h∈H), and

Ĝ = (G′; +,−, 0, c
[4]
0 ,

(
c
[ar(h)]
0

)
h∈H) and ar(h) denotes the arity of h ∈ H. We

now extend the signature of these algebras by all constant values of H ×G′ as
follows. We define

Ĥ+ := (H; +,−, 0, c
[4]
0 , (h)h∈H, (a)(a,b)∈H×G′),

Ĝ+ := (G′; +,−, 0, c
[4]
0 ,

(
c
[ar(h)]
0

)
h∈H, (b)(a,b)∈H×G′),

such that the term operations of Ĥ+ × Ĝ+ become the polynomial operations
of Ĥ×Ĝ = V

G′,c[4]0 ,H. We now use the homomorphism property of the projec-

tion πH onto Ĥ+. For every n-ary term t in the language of Ĥ+ and x ∈ Hn

we have

π
(
tĤ+×Ĝ+

)
(x) = πH

(
tĤ+×Ĝ+

(
x
0

))
= πH

(
tĤ+ (x)

tĜ+ (0)

)

= tĤ+(x),

hence the operation π
(
tĤ+×Ĝ+

)
coincides with the operation tĤ+ ∈ Clo Ĥ+.

Moreover, as H is a constantive clone on H including the addition of H, we
observe that H ⊆ Pol Ĥ ⊆ Clo Ĥ+ ⊆ H. Thus, π maps every polynomial
operation of V

G′,c[4]0 ,H = Ĥ × Ĝ into H, proving equation (5.2).

Let G := H×Zpl and consider the subgroup N :=
〈
(0, pl−1)

〉
of G. Again,

N is normal, N ∼= Zp, and by mapping x ∈ H×Zpl−1 to φ(x) = x+N , we see
that G/N ∼= H×Zpl−1 . For x1,x2,x3,x4 ∈ G set f(x1,x2,x3,x4) := (0, 0) if
x1 = x2 or x3 = x4, and f(x1,x2,x3,x4) := (0, pl−1) otherwise; this defines
f : G4 → G. In the proof of Theorem 6 from [26], Idziak constructs a strictly
increasing infinite sequence C′

3 � C′
4 � C′

5 � . . . of clones on H, containing the
group operation and all constants from H. For any constantive clone H on H,
any f ′ : G4 → G and j ∈ N, we abbreviate Vj,f ′,H := VZpj ,f ′,H. A routine
check establishes that N is an ideal of the expanded groups Vl,f,H, for any
choice of H. As argued in the proof of (c), any ideal I of Vl,f,H with 0 �= a ∈ I
must contain the element f(a,0,0,0) − f(0,0,0,0) = (0, pl−1). Therefore, N
is the monolith of Vl,f,H, and the map φ from above provides an isomorphism
from V

l−1,c
[4]
0 ,H to Vl,f,H/N , where c

[4]
0 is the quaternary constant zero func-

tion. By Theorem 3.4 and Corollary 3.5, PolVj,f,H is equationally additive for
every j ∈ N, since f and the constant with value 0 = (0, 0) allow us to define
the algebraic set Δ(4)

H×Zpj
.

Let H1,H2 be two constantive clones on H that contain the group operation
of H and let us assume that PolVl,f,H1 = PolVl,f,H2 . We prove that H1 = H2.
Since N does not depend on the choice of H1 and H2, setting ψ(N) to be the
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congruence associated to N (cf. Section 2 and the proof of (c)), we have that
(PolVl,f,H1)/ψ(N) = (PolVl,f,H2)/ψ(N). Thus, (2.1) yields that

Pol(Vl,f,H1/N) = Pol(Vl,f,H2/N).

Since for every constantive clone H on H that contains the group opera-
tion of H, φ provides an isomorphism between V

l−1,c
[4]
0 ,H and Vl,f,H/N that

does not depend on the choice of H, we infer that the polynomial clones
PolV

l−1,c
[4]
0 ,H1

= PolV
l−1,c

[4]
0 ,H2

coincide, and therefore (5.2) yields

H1 = π
(
PolV

l−1,c
[4]
0 ,H1

)
= π

(
PolV

l−1,c
[4]
0 ,H2

)
= H2.

This means that the map H �→ PolVl,f,H, defined for constantive expansions H
of CloH, is injective. Thus, for any of the ℵ0 examples given by Idziak, we
have a distinct equationally additive clone PolVl,f,C′

j
⊇ Pol(H × Zpl). As

argued in the proof of (c), [4, Theorem 5.3] shows that the number of constan-
tive equationally additive expansions of Clo(H × Zpl) cannot be larger than
ℵ0. �

Theorem 5.2. Let G be a finite Abelian group with m elements. If m is square-
free or the square of a prime, the set of equationally additive clones containing
PolG is finite. Otherwise, it is countably infinite.

Proof. Consider the representation of G as a direct product of cyclic groups
of prime power order.

First, we suppose that every factor of this product is of prime order. That
is, G ∼= ∏n

i=1

(
Zpi

)ki with n ≥ 0, distinct primes p1, . . . , pn and integers
k1, . . . , kn ∈ N. If G is trivial, i.e., n = 0, or n ≥ 1 and ki = 1 for all i ∈ [n],
then m =

∏n
i=1 pi is square-free and the result follows from Lemma 5.1(a).

Otherwise, there is i ∈ [n] such that ki ≥ 2, and no generality is lost in
assuming i = 1.

As a subcase we consider the possibility that n = 1, i.e., G ∼= Zk1
p1

with
k1 ≥ 2. If k1 = 2, then m = k2

1, and hence, by Lemma 5.1(b), there are
only finitely many equationally additive clones containing PolG. If, otherwise,
k1 ≥ 3, then G ∼= Zk1−1

p1
×Zp1 , m = pk1

1 and Zp1 ×Zp1 ×{0}k1−3 is an Abelian
subgroup of Zk1−1

p1
of order p2

1. Then the result follows from Lemma 5.1(d).
This finishes the subcase where n = 1.

The opposite possibility is that n ≥ 2; in this subcase we represent G as
G ∼= Zk1

p1
× Zk2−1

p2
× (∏n

i=3 Z
ki
pi

) × Zp2 , and Zp1 × Zp1 × {0}k1+···+kn−3 is an
Abelian subgroup of Zk1

p1
×Zk2−1

p2
× ∏n

i=3 Z
ki
pi

of order p2
1. Clearly, the order m

of G is neither square-free (k1 ≥ 2) nor the square of a prime (n ≥ 2) in this
case. Again Lemma 5.1(d) shows that the result claimed by the theorem is
true.

Second, we suppose that there is a prime p in the representation of G with
a cyclic factor Zpl where l ≥ 2; hence m is not square-free. If that factor is
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the only one in the representation, then G ∼= Zpl . The case where l = 2 and
m = p2 is solved by Lemma 5.1(b), and the case where l ≥ 3, m = pl, is
handled by Lemma 5.1(c). Now let us assume that more factors appear in
the decomposition, being either cyclic groups the order of which is a power of
the same prime p or of another prime. This means there are a prime q, not
necessarily distinct from p, an exponent k ≥ 1 and an Abelian group G′ such
that G ∼= Zpl × G′ × Zqk . Then the order m is neither square-free, nor the
square of a single prime. Moreover,

〈{pl−2}〉×{0G′} is an Abelian subgroup of
order p2 of Zpl ×G′, and Lemma 5.1(d) shows that the number of equationally
additive clones containing PolG is ℵ0. �

6. Characterization of equationally additive Boolean clones

In this section we shall describe which clones from Post’s lattice are equa-
tionally additive (see also Fig. 1). This hence answers which algebras on the
set {0, 1} are equational domains. From Theorem 3.4 we know that equational
additivity is equivalent to Δ(4)

A being algebraic. For the two-element set we
shall see that we can get along with a ternary relation instead of Δ(4)

{0,1}.

Lemma 6.1. For any set A the relations Δ(4)
A and

Δ(3)
A :=

{
(x1, x2, x3) ∈ A3

∣
∣ x1 = x2 ∨ x2 = x3

}

are primitive positively definable from each other, namely for all elements
x1, . . . , x4 ∈ A we have

(x1, x2, x3) ∈ Δ(3)
A ⇔ (x1, x2, x2, x3) ∈ Δ(4)

A ,

(x1, x2, x3, x4) ∈ Δ(4)
A ⇔ ∃y1, y2 ∈ A :

(x1, x2, y1) ∈ Δ(3)
A ∧ (y1, x3, x4) ∈ Δ(3)

A ∧
(x2, x1, y2) ∈ Δ(3)

A ∧ (y2, x3, x4) ∈ Δ(3)
A .

Proof. It is obvious that Δ(3)
A can be obtained by identifying arguments in Δ(4)

A .
For the second equivalence, we take any tuple (x1, x2, x3, x4) ∈ Δ(4)

A . If x1 = x2,
then we let y1 = y2 = x3, and the right-hand side is satisfied. If x1 �= x2, then
x3 = x4 because (x1, x2, x3, x4) ∈ Δ(4)

A , and in this case we let y1 = x2 and
y2 = x1 to satisfy the right-hand side. Now conversely, suppose that there are
elements y1, y2 ∈ A such that

(x1, x2, y1), (y1, x3, x4), (x2, x1, y2), (y2, x3, x4) ∈ Δ(3)
A .

In order to get a contradiction, we assume that (x1, x2, x3, x4) /∈ Δ(4)
A , that

is, x1 �= x2 and x3 �= x4. From the definition of Δ(3)
A it follows that x2 = y1
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and x1 = y2, and y1 = x3 and y2 = x3, wherefore x1 = y2 = x3 = y1 = x2,
contradicting the choice of x1 and x2. �

The following is a folklore fact from clone theory.

Corollary 6.2. (cf. [13, Lemma 6.1.17] and [41, Lemma 1.3.1]) For any set A
we have

Pol{Δ(3)
A } = Pol{Δ(4)

A } = Clo
(
A;AA

)
,

i.e., the polymorphism clone of Δ(3)
A coincides with that of Δ(4)

A , which is the
clone of all essentially at most unary operations.

Proof. The first equality follows directly from Lemma 6.1, the second one is
proved in [41, Lemma 1.3.1a)]. �

Let us note that in the context of A = {0, 1} the ternary Boolean rela-
tion Δ(3)

A has become known in theoretical computer science under the pseudo-
nym dup3 = {0, 1}3\{(0, 1, 0), (1, 0, 1)} [15, Table 1, p. 61], the polymorphism
clone of which is the clone N generated by all unary operations.

The Mal’cev condition considered in the following lemma will appear again
in the characterization of the equationally additive Boolean clones in Theo-
rem 6.5.

Lemma 6.3. Any variety V admitting the Mal’cev condition

f(x, x, y) ≈ x ≈ f(x, y, x),

f(y, x, x) ≈ f(x, y, f(y, x, x))

is congruence distributive.

Proof. By assumption there is a ternary term f in the language of V such that
the above identities are universally satisfied in V. Based on f we can define
the following five ternary terms over the language of V by substitution:

f0(x, y, z) := x,

f1(x, y, z) := f(x, y, f(z, x, x)),

f2(x, y, z) := f(z, x, x),

f3(x, y, z) := f(z, x, y), and

f4(x, y, z) := z.

These form a sequence of Jónsson terms for V: The equations fi(x, y, x) ≈ x
for 0 ≤ i ≤ 4 follow from the identity f(x, x, y) ≈ x ≈ f(x, y, x), as does
the condition f0(x, x, y) ≈ x ≈ f(x, x, f(y, x, x)) ≈ f1(x, x, y). The subsequent
condition f1(x, y, y) ≈ f(x, y, f(y, x, x)) ≈ f(y, x, x) ≈ f2(x, y, y) follows
from the second part of the Mal’cev condition, while the next two identi-
ties f2(x, x, y) ≈ f(y, x, x) ≈ f3(x, x, y) are trivially fulfilled. The final part,
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that is, f3(x, y, y) ≈ f(y, x, y) ≈ y ≈ f4(x, y, y), follows from the first line of
the assumed Mal’cev condition. Since the Jónsson identities for f0, . . . , f4 hold
in V, the variety is congruence distributive, see [16, Theorem 12.6]. �

In [45], Tóth and Waldhauser explore necessary conditions for a relation
to be the solution set of finitely many equations from a given clone C. Since
the complement of a finitary relation on a finite set is finite, every algebraic
set that can be given as the solution set of an infinite system of C-equations,
can also be described by a finite subset of these equations: we use one equa-
tion to exclude each point of the complement (cf. Lemma 3.1). Hence, on a
finite set A, the solution sets from [45] are exactly the algebraic sets in our
sense. Tóth and Waldhauser investigate whether a relation is algebraic for C
in terms of the centralizer clone C∗ =

⋃
n∈N

Hom((A; C)n, (A; C)), consisting of
all functions that commute with all the operations in C. With respect to the
Boolean domain, Tóth and Waldhauser prove a characterization that can be
rephrased in our terminology as follows:

Theorem 6.4. [45, Theorem 4.1] For every clone F on the set {0, 1} we have
Alg F = Inv(F∗), where F∗ is the centralizer clone of F .

Theorem 6.4 implies that Alg F∗∗ = Inv(F∗∗∗) = Inv(F∗) = Alg F for ev-
ery Boolean clone F , since the tricentralizer and the centralizer of a set of
operations coincide. Thus, to determine whether a Boolean clone is equation-
ally additive, it suffices to consider its bicentral closure F∗∗; in other words,
considering all Boolean centralizer clones provides the complete picture. There
are precisely 25 centralizer clones on {0, 1}. They were originally presented by
Kuznecov [34, p. 27], but the arguments given there remain rather sketchy. A
complete description can be found in [24].

The following theorem characterizes which Boolean clones are equationally
additive. The result is illustrated in Fig. 1, where also the identifiers for Boolean
clones used in the theorem are clarified. With the exception of the top clone O2,
we will denote Boolean clones by the standard symbols given in [17, Figure 2,
p. 8], where explicit generating systems are listed, too.

Theorem 6.5. Let F be a clone on {0, 1} and g, h, p, t, t∂ : {0, 1}3 → {0, 1} be
the ternary Boolean operations given for x, y, z ∈ {0, 1} by the following rules:

h(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z),

g(x, y, z) := (x + y + z) mod 2,

p(x, y, z) := (x ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) where x = (1 + x) mod 2,

t(x, y, z) := x ∨ (y ∧ z),

t∂(x, y, z) := x ∧ (y ∨ z),

that is, h is the Boolean majority operation, g the Boolean minority (Mal’cev)
operation and p the Pixley operation. Then the following facts are equivalent.
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Figure 1. Lattice of Boolean clones labelled according to
[17]; equationally additive clones forming the order filter
shown by the completely filled nodes

(a) F is equationally additive.
(b) Δ(4)

{0,1} ∈ Alg4 F .

(c) Δ(3)
{0,1} ∈ Alg3 F .

(d) F∗ ⊆ N, that is, the centralizer of F is essentially at most unary.
(e) D1 ⊆ F∗∗, that is, the bicentralizer of F contains all self-dual conservative

operations.
(f) g, h ∈ F∗∗.
(g) p ∈ F∗∗.
(h) D2 ⊆ F or S00 ⊆ F or S10 ⊆ F .
(i) h ∈ F or t ∈ F or t∂ ∈ F .
(j) Neither F ⊆ E nor F ⊆ V, nor F ⊆ L.
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(k) There is a ternary operation f ∈ F [3] realizing the Mal’cev condition
f(x, x, y) ≈ x ≈ f(x, y, x) and f(y, x, x) ≈ f(x, y, f(y, x, x)).

(l) The algebra ({0, 1};F) is of TCT-type 3 (Boolean algebra) or 4 (Boolean
lattice).

(m) The algebra ({0, 1};F) is not of TCT-types 1 (group action), 2 (vector
space) or 5 (semilattice).

(n) The algebra ({0, 1};F) generates a congruence distributive variety.

Proof. Points (a) and (b) are equivalent by Theorem 3.4. Let ρ be one among
Δ(4)

{0,1} or Δ(3)
{0,1}. By Theorem 6.4 we have ρ ∈ Alg F = InvF∗ if and only if

F∗ ⊆ Pol{ρ} = N, where the last equality follows from Corollary 6.2. Hence,
each of (b) and (c) is equivalent to (d). The latter is certainly equivalent to
F∗∗ ⊇ N∗ = D1 because the centralizer of N is the centralizer of the negation
and the two Boolean constants, that is, the intersection of the clone of self-
dual operations with the clones of zero- and one-preserving functions, in other
words, the clone D1 of self-dual conservative operations. Thus, (d) and (e)
are equivalent. Since D1 is generated by {g, h} (it is the join of the minimal
clones L2 and D2 generated by g and h, respectively) or {p} (cf. [17, Figure 2,
p. 8]), statement (e) is equivalent to each of (f) and (g). Now for G = D2

the least centralizer clone above G is G∗∗ = D1, for G ∈ {S00,S10}, it is the
clone G∗∗ = Pol{{0}, {1}} ⊇ D1 of conservative operations, cf. [24, Figure 5,
p. 3158]. Therefore, from G ⊆ F , i.e. (h), we obtain D1 ⊆ G∗∗ ⊆ F∗∗, i.e. (e).
If F does not satisfy (h), then, according to Post’s lattice, there is G ∈ {E,V, L}
such that F ⊆ G. From [24, Figure 5] we see that G is a centralizer clone,
wherefore F∗∗ ⊆ G∗∗ = G. This means that (e) fails, as D1 �⊆ G, and hence,
(e) and (h) are equivalent. Moreover, (h) and (j) are equivalent as E, V and L
are the maximal elements in the complement of the order-filter of equation-
ally additive clones in Post’s lattice described by its minimal elements in (h).
Furthermore, we infer from [17, Figure 2, p. 8] that the clones D2, S00 and S10

are generated by the Boolean majority operation h, t and t∂ , respectively.
Therefore, condition (h) is equivalent to (i).

We have now established that statements (a)–(j) are all equivalent. As our
next step we shall show that (i) and (k) are equivalent. For this let us first
assume the truth of (i) and let f be h, t or t∂ , respectively. If f = h, then
f(x, x, y) ≈ x ≈ f(x, y, x) and f(y, x, x) ≈ x ≈ f(x, y, x) ≈ f(x, y, f(y, x, x))
are trivial. Otherwise, the conditions stated in (k) follow from the idempo-
tence, commutativity and absorption laws for lattices; for example, for f = t
we have f(y, x, x) ≈ y ∨ x ≈ x ∨ y ≈ x ∨ (y ∧ (y ∨ x)) ≈ f(x, y, f(y, x, x)),
and dually for f = t∂ . Conversely, if we have a ternary operation f on {0, 1}
subject to (k), then the equation f(x, x, y) ≈ x ≈ f(x, y, x) uniquely deter-
mines the values of f on 6 out of the 8 argument triples. Thus there are in total
28−6 = 4 possible ternary Boolean operations f satisfying this condition. These
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are h, t, t∂ and e
[3]
1 , however, by the second part of (k), f cannot be the first

projection, wherefore (i) follows.
Subsequently we will prove that (h) implies (l) and (by its contrapositive)

that (m) implies (j). Since, clearly, (l) and (m) are equivalent, this will show
that all the statements (a)–(m) are equivalent. Finally, we will show that (k)
implies (n) and, by contradiction, that (n) implies (j), and the proof will be
finished. Let us also note that the equivalence of statements (h) and (n), which
appears as a part of our theorem is already known from the literature; to our
knowledge it was first proved in [1, Proposition 2.1].

To prove that (h) implies (l), let G ∈ {D2,S00,S10} and suppose G ⊆ F .
Then the polynomial expansion of G obtained by joining the Boolean clone I of
all constant operations is the maximal Boolean clone of monotone operations
M = G ∨ I ⊆ F ∨ I. Therefore, F ∨ I ∈ {M,O2}, and the TCT-type of F is 4 if
F ∨ I = M, or 3 if F ∨ I = O2. This shows that (h) implies (l). Conversely, let
us assume the negation of (j), that is, that F ⊆ G for some G ∈ {V,E, L}. Then
G ⊇ I, wherefore F ∨ I ⊆ G ∨ I = G. Hence, F is polynomially equivalent to a
semilattice, a vector space over GF(2), or—if it is essentially at most unary—a
group action, which is the negation of (m).

Lastly, to show that (k) implies (n) let f ∈ F [3] be an operation as claimed
in (k) and let V be the variety generated by ({0, 1};F). Due to (k) the V-
term f(x, y, z) shows that V admits the Mal’cev condition from Lemma 6.3,
hence V is congruence distributive, i.e., (n) holds. For the converse, we as-
sume now (n) together with the negation of (j), which would imply that F and
hence one of E, V or L would have a sequence of Jónsson operations. There-
fore, ({0, 1};∧, c0, c1), ({0, 1};∨, c0, c1) or ({0, 1}; +, c0, c1) would generate a
congruence distributive variety, which is false, as in each case the congruence
lattice of the square of the respective algebra already fails to be distributive.
This contradiction shows that (n) entails (j). �

The equivalence of statements (a) and (l) of Theorem 6.5 will be widely
used in the subsequent sections.

Corollary 6.6. Let A be an algebra on a two-element set. Then CloA is equa-
tionally additive if and only if typ(A) ∈ {3,4}.

Knowing that the Boolean clones D2, S00, S10 and all clones above them
are equationally additive, Theorem 3.4 tells that Δ(4)

{0,1} is an algebraic set,
hence definable as a solution set of some system of equations. In the following
remark, we exhibit an explicit system of equations defining Δ(4)

{0,1}.

Remark 6.7. The clone D2 is generated by the Boolean majority operation h,
and every clone in the principal filter generated by this clone is equationally
additive, since for all x1, x2, x3, x4 ∈ {0, 1} we have (cf. [12])

(x1, x2, x3, x4) ∈ Δ(4)
{0,1} ⇐⇒ h(x3, x4, x1) = h(x3, x4, x2).
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With respect to the clones S00 and S10, we infer from [17, Figure 2, p. 8]
that they are generated by the ternary functions t and t∂ (cf. Theorem 6.5),
respectively, which are given for arbitrary elements x, y, z ∈ {0, 1} by the rules
t(x, y, z) = x ∨ (y ∧ z) and t∂(x, y, z) = x ∧ (y ∨ z). The clones S00 and S10 are
dual to each other, and for both of them, i.e., for τ ∈ {t, t∂}, we have for all
x1, x2, x3, x4 ∈ {0, 1} that (cf. [12])

(x1, x2, x3, x4) ∈ Δ(4)
{0,1} ⇐⇒ τ(x3, x4, x1) = τ(x3, x4, x2), and

τ(x4, x3, x1) = τ(x4, x3, x2).

Computing the four-generated free algebra in the variety generated by the
algebra A = ({0, 1}; τ), we find that there are exactly 53 quaternary term
operations of A, cf. [12]. One can check that for every pair of quaternary
term operations f, g ∈ (S00)[4] that agree on the 12 quadruples in Δ(4)

{0,1},

they also agree on at least one of the four elements of {0, 1}4\Δ(4)
{0,1}, see also

[12]. It is hence impossible to define Δ(4)
{0,1} by a single equation of the form

f(x1, x2, x3, x4) = g(x1, x2, x3, x4) over S00.

In the following, we prove that the characterization of equational domains
given in Corollary 6.6 carries over to finite E-minimal algebras as defined in
[25, Definition 2.14]. We recall that a finite algebra is E-minimal if it has at
least two elements and every unary idempotent polynomial is constant or the
identity operation. Finite non-trivial p-groups provide prominent examples of
such algebras. In [25, Theorem 4.32] it is proved that the prime quotients of
every E-minimal algebra all have the same type. Hence one can associate to
each E-minimal algebra one of the five types of minimal algebras introduced
in Sect. 2.

We fix some notation that will only be used in the proof of the following
lemma. For a set A, n ∈ N, i ∈ {1, . . . , n}, f : An → A and a ∈ An−1 we define
the unary polynomial fa

i : A → A by fa
i (x) = f(a1, . . . , ai−1, x, ai, . . . , an−1)

for all x ∈ A.

Lemma 6.8. Let A be a subdirectly irreducible (finite) E-minimal algebra of
type 1. Then CloA is not equationally additive.

Proof. Since A is E-minimal, we have k := |A| ≥ 2. Without loss of generality,
let us assume that A = {1, . . . , k} and the monolith μ of A has the form
μ = 〈{(1, 2)}〉ConA. Since A has type 1, [33, Theorem 4.4] implies that for all
n ∈ N and for all f ∈ Clon A (exactly) one of the following two statements
holds:

(1) for each i ∈ {1, . . . , n} and every a ∈ An−1 we have fa
i (1) = fa

i (2), or
(2) there is j ∈ {1, . . . , n} such that for each a ∈ An−1 the function fa

j

induces a permutation on A and fa
i (1) = fa

i (2) for all i ∈ {1, . . . , n}\{j}.
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Let f, g ∈ Clo4 A be such that f |
Δ

(4)
A

= g|
Δ

(4)
A

. We prove that

f(2, 1, 2, 1) = g(2, 1, 2, 1).

First we observe that for all i ∈ {1, . . . , 4} if f
(1,1,1)
i (1) �= f

(1,1,1)
i (2), then

g
(1,1,1)
i (1) �= g

(1,1,1)
i (2) and vice versa: in fact, we have

g
(1,1,1)
i (1) = g(1, 1, 1, 1) = f(1, 1, 1, 1) = f

(1,1,1)
i (1) �=

f
(1,1,1)
i (2) = f(1, . . . , 2

i
, . . . , 1) = g(1, . . . , 2

i
, . . . , 1) = g

(1,1,1)
i (2).

Thus, either both f and g satisfy (1) or they both satisfy (2) with the same
j ∈ {1, . . . , n}. If both f and g satisfy (1) or both satisfy (2) with j �= 1, then
we have

f(2, 1, 2, 1) = f
(1,2,1)
1 (2) = f

(1,2,1)
1 (1) = f(1, 1, 2, 1) = g(1, 1, 2, 1)

= g
(1,2,1)
1 (1) = g

(1,2,1)
1 (2) = g(2, 1, 2, 1).

If both f and g satisfy (2) with j = 1, then we have

f(2, 1, 2, 1) = f
(2,1,1)
3 (2) = f

(2,1,1)
3 (1) = f(2, 1, 1, 1) = g(2, 1, 1, 1)

= g
(2,1,1)
3 (1) = g

(2,1,1)
3 (2) = g(2, 1, 2, 1).

This concludes the proof of the fact that Δ(4)
A is not an algebraic set. Therefore,

Theorem 3.4 yields that CloA is not equationally additive. �

Lemma 6.9. Let A be a (finite) E-minimal algebra. Then A generates a con-
gruence distributive variety if and only if A has TCT-type 3 or 4.

Proof. If A is of type 3 or 4, then [25, Lemma 4.29] yields that |A| = 2 and
the result follows from the equivalence of (l) and (n) in Theorem 6.5. If A is
of type 1, 2, or 5, then [25, Theorem 8.6] yields that A does not generate a
congruence distributive variety. �

Lemma 6.10. Let A be a (finite) E-minimal algebra. Then CloA is equation-
ally additive if and only if A has type 3 or 4.

Proof. A being E-minimal implies |A| ≥ 2. If A has type 3, 4 or 5, then [25,
Lemma 4.29] yields that |A| = 2 and the equivalence follows from Corollary 6.6.

The opposite case is that A is a finite E-minimal algebra of type 1 or 2. This
contradicts A having type 3 or 4, hence, to fulfil the stated equivalence, we
have to prove that CloA fails to be equationally additive. Since 2 ≤ |A| < ℵ0,
Proposition 3.8 implies that A is subdirectly irreducible. If A has type 1, then
Lemma 6.8 directly states that CloA is not equationally additive. Therefore,
the case that is still to be discussed is that of a (finite non-trivial) subdirectly
irreducible E-minimal algebra A of type 2. Let μ be its monolith. Now [25,
Theorem 13.9] implies that A is Mal’cev, and by [25, Theorem 4.32(2)] all its
prime quotients have type 2. In particular, we have typ(0A, μ) = 2, and hence
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[25, Theorem 5.7(3)] yields [μ, μ] = 0A, i.e., that μ is Abelian. Thus, by Corol-
lary 3.11, PolA cannot be equationally additive; therefore, by Corollary 3.5,
CloA cannot be either. �

Theorem 6.11. For a (finite) E-minimal algebra A the following statements
are equivalent:
(a) CloA is equationally additive;
(b) A is of type 3 or 4;
(c) A generates a congruence distributive variety.

Proof. The equivalence of (a) and (b) follows from Lemma 6.9. The equivalence
of (b) and (c) follows from Lemma 6.10. �

7. Characterization of the equationally additive clones of self-dual
operations

Let A = {0, 1, 2} and let the permutation ζ3 = (0 1 2) be the cyclic shift of
the three elements of A. An operation f : An → A with n ∈ N is called self-
dual if f ∈ {ζ3}∗, that is, if it commutes with ζ3, in other words, if ζ3 is an
automorphism of the algebra (A; f). The ideal of the lattice of clones on the
three-element set A generated by the centralizer clone {ζ3}∗ is fully described
in [46, Figure 2, p. 260]. In the present section we will stay with the notation
introduced in [46, Section 1], and we will describe all equationally additive
clones of self-dual operations on A.

Let f∞
π : A3 → A be defined as follows: For each x = (x1, x2, x3) ∈ A3 let

f∞
π (x) =

{
x2 if x ∈ {(0, 1, 1), (1, 2, 2), (2, 0, 0)},

x1 otherwise.

With a quick glance at its operation table (cf. also [12]), one verifies that this
operation coincides with the function introduced under the same name in [46,
p. 265]. According to [46, Theorem 8, p. 266], the operation f∞

π generates the
clone a∞π∞, defined on page 261 of [46]. The dual A∞π∞ of this clone with
respect to the transposition σ : A → A switching 0 and 1 (cf. [46, pp. 255, 259,
261]) is given by applying this switch to every tuple of every relation defining
a∞π∞ as a polymorphism clone. It follows from this that A∞π∞ arises as an
isomorphic copy of a∞π∞ by conjugating every operation in a∞π∞ using the
transposition σ. As a consequence A∞π∞ is generated by (f∞

π )∗ : A3 → A,
given for all x = (x1, x2, x3) ∈ A3 by

(f∞
π )∗(x) = σ(f∞

π (σ−1(x1), σ−1(x2), σ−1(x3)))

=

{
x2 if x ∈ {(1, 0, 0), (0, 2, 2), (2, 1, 1)},

x1 otherwise.
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For use in the proof of Theorem 7.6, we observe that both f∞
π and (f∞

π )∗

are idempotent, that is, they equal the identity operation idA when all three
arguments are identified.

Lemma 7.1. All clones on A = {0, 1, 2} containing a∞π∞ or A∞π∞ from [46,
p. 261] are equationally additive.

Proof. Let f ∈ {f∞
π , (f∞

π )∗}. Moreover, let S ⊆ A4 be the solution set of the
following system of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x1, x2, x3) ≈ f(x1, x2, x4)
f(x2, x1, x3) ≈ f(x2, x1, x4)
f(x3, x4, x1) ≈ f(x3, x4, x2)
f(x4, x3, x1) ≈ f(x4, x3, x2).

Using a computer (cf. [12]), one readily verifies that S = Δ(4)
A , whence Δ(4)

A

is algebraic over any clone containing f . Thus, Theorem 3.4 yields that every
clone containing f is equationally additive. As, by [46, Theorem 8] (proved as
[46, Theorem 30, p. 304]), f∞

π generates a∞π∞, and hence (f∞
π )∗ generates

A∞π∞, the statement of the lemma follows. �
Corollary 7.2. On a set A with |A| = 3 there are exactly 2ℵ0 distinct equation-
ally additive clones of self-dual operations.

Proof. Combining the definition of a∞π∞ on p. 261 of [46] with [46, The-
orem 16, p. 269] (proved as Theorem 38, p. 313), we infer that there are
exactly 2ℵ0 distinct clones of self-dual operations on {0, 1, 2} that contain the
clone a∞π∞. Therefore, the result follows from Lemma 7.1 and the fact that
there are only countably many finitary operations on a finite set, thus no more
than 2ℵ0 subsets (clones) on A. �

Following [38], we say that clones C and D on the same set A are alge-
braically equivalent, denoted by C ∼alg D, if Alg C = Alg D. It was shown in
[28] that on the three-element set there are 18 maximal clones (cf. [41, Ta-
ble 4, p. 111]). Following [41, Definition 4.3.12], we define L as the clone of
polymorphisms of {(a, b, c, d) ∈ {0, 1, 2}4 | a + b = c + d mod 3}.

Corollary 7.3. Let A = {0, 1, 2}, and let C be a maximal clone on A that is not
the clone Pol{�} of monotone operations with respect to some bounded (linear)
order � on A. Then the number of algebraically inequivalent subclones of C is
(a) finite, if C = L, the clone of (affine) linear operations;
(b) at most countable, if C = {ζ3}∗;
(c) continuum, otherwise.

Proof. In [20, Theorem 15] it is proved that below the clone of linear operations
on any set of prime cardinality there are only finitely many clones at all (see
also [20, Figure 3, p. 121] for the case |A| = 3), hence (a) follows.
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In [38] (see also [9]) it is shown that on a finite set there are only finitely
many equationally additive clones up to algebraic equivalence. Lemma 7.1
proves that all clones of self-dual operations on {0, 1, 2} above a∞π∞ or its
dual A∞π∞ are equationally additive, hence split into finitely many algebraic
equivalence classes. In [46] it is proved that there are exactly ℵ0 clones of self-
dual operations that are neither above a∞π∞ nor A∞π∞, see [46, Figure 2,
p. 260] and the description on page 261 of [46]. Therefore, there are at most
countably many algebraically inequivalent clones of self-dual operations on
{0, 1, 2}, as claimed in (b).

In [10, Proposition 5.4] it is proved that the 2ℵ0 clones from [41, 3.1.4 Haupt-
satz(ii), p. 79] are algebraically inequivalent. In [21, § 1, proof of Theorem 1]
the authors show how to find a conjugate of the clones from [31] below each
of the remaining maximal clones. Except for the case of monotone operations
with respect to some bounded order, their argument also works for the family
of clones defined in [41, 3.1.4 Hauptsatz(ii), p. 79]. Hence (c) follows. �

We now work towards the description of the equationally additive clones of
self-dual operations on A = {0, 1, 2}. We first prove that equational additivity
is hereditary with respect to restriction of the base set.

Lemma 7.4. A clone C on a set X is equationally additive if and only if for
every B ⊆ X that is invariant under C the restriction C|B := {f |B | f ∈ C} is
equationally additive.

Proof. Clearly, if restrictions to invariant subsets are equationally additive,
then C = C|X itself is equationally additive. For the converse let B ⊆ X
belong to Inv C and let C be equationally additive. By Theorem 3.4 there is
an index set I and there are two families (pi)i∈I and (qi)i∈I of operations
from C[4] such that Δ(4)

X = {x ∈ X4 | ∀i ∈ I : pi(x) = qi(x)}. The equality
Δ(4)

B = Δ(4)
X ∩ B4 implies that Δ(4)

B = {b ∈ B4 | ∀i ∈ I : pi|B(b) = qi|B(b)},
and thus Theorem 3.4 shows that C|B is equationally additive. �

The following lemma will help to show that certain clones of self-dual oper-
ations on A = {0, 1, 2} fail to be equationally additive. It can easily be verified
based on the generators of the clones provided in [46, Theorems 6 and 7, p. 265
et seq.]. For the aid of the reader, we define these and a few auxiliary opera-
tions. By mnrB and majB we denote the unique ternary minority and majority
operation on an at most two-element set B, respectively (on B = {0, 1} we
have mnrB = g and majB = h as defined in Theorem 6.5). For all x, y, z ∈ A
we set:

a(x, y) := 2x + 2y + 1 mod 3

plus0(x, y, z) :=

{
mnr{x,y,z}(x, y, z) if |{x, y, z}| ≤ 2
x + 1 mod 3 if |{x, y, z}| = 3
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m(x, y, z) :=

{
maj{x,y,z}(x, y, z) if |{x, y, z}| ≤ 2
x if |{x, y, z}| = 3

ps(x, y, z) :=

{
x if |{x, y, z}| ≤ 2
y if |{x, y, z}| = 3

right(x, y) := 2(x2 + x + xy + y + y2) mod 3

left(x, y) := x2 + 2x + xy + 2y + y2 mod 3

right(x, y) 0 1 2
0 0 1 0
1 1 1 2
2 0 2 2

left(x, y) 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

According to [46, Theorem 6, p. 265], a generates SL, m generates TN, and
plus0 generates L2; moreover, by [46, Theorem 7, p. 266], {right,ps} gener-
ates aP. The clone AP is the dual of aP under the transposition σ : A → A
swapping 0 and 1 (cf. [46, pp. 255, 259]). It is thus generated by the operations
ps∗ = ps and (right)∗ = σ ◦ right ◦(σ−1 × σ−1 × σ−1) = left.

It is evident from the given definition of the generators that all of these
clones except for SL preserve every subset of {0, 1, 2}, i.e., that they are con-
servative.

Lemma 7.5. Let aP,AP be defined as in [46, p. 259], and let L2,SL be defined
as in [46, p. 256]. Then the following facts about these clones on A = {0, 1, 2}
hold:
(a) The clones aP, AP and L2 have B = {0, 1} as an invariant subset and

aP|B = V2, AP|B = E2, L2|B = L2 (cf. Fig. 1 for the notation).
(b) The clone generated by SL and all constant operations on A is the clone

of polynomial operations of the GF(3)-vector space Z3.

Proof. (a) This follows by a brief inspection of the generating functions
provided above: we have right|B = ∨, left|B = ∧, ps|B = e

[3]
1 and

plus0|B = mnrB = g, where g is the Boolean minority operation as given
in Theorem 6.5.

(b) We have a(a(x, 1), a(0, y)) = a(2x + 3, 2y + 1) = x + y mod 3 for all
x, y ∈ A; hence SL and the clone generated by addition modulo 3 have the
same constantive expansion (the same polynomial operations). Therefore,
(A;SL) is polynomially equivalent to the GF(3)-vector space Z3.

�

We are now ready to prove that the characterization of equational additivity
found to be true in Theorem 6.5(n) for Boolean clones persists in the interval
of clones of self-dual operations on {0, 1, 2}.
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Theorem 7.6. For a clone C ⊆ {ζ3}∗ on A = {0, 1, 2} the following statements
are equivalent.
(a) C is equationally additive;
(b) C contains one of the clones a∞π∞, A∞π∞ or TN (cf. [46, Figure 2,

p. 260]);
(c) (A; C) generates a congruence distributive variety.

Proof. Let C ⊆ {ζ3}∗. If a∞π∞ ⊆ C, or A∞π∞ ⊆ C, then Lemma 7.1 yields
that C is equationally additive. Next, we prove that TN is equationally addi-
tive. To this end, let m : A3 → A be defined as in [46, p. 264], cf. above; it is
evident from its definition that m is a majority operation. According to [46,
Theorem 6], we have that m generates TN. Moreover, it is easy to show via a
computer (cf. [12]) that the solution set of the following system of equations
is Δ(4)

A :
{

m(x1, x2, x3) ≈ m(x1, x2, x4)
m(x2, x1, x3) ≈ m(x2, x1, x4).

Therefore, if TN ⊆ C ⊆ {ζ3}∗, then C is equationally additive by Theorem 3.4
and Corollary 3.5. Hence (b) implies (a).

Next, we prove that (a) implies (b). According to [46, Figure 2], aP, AP,
L2 and SL are those clones of self-dual operations that are maximal with
respect to not containing either of the clones a∞π∞, A∞π∞ or TN. Hence, as
a consequence of Corollary 3.5, it suffices to prove that aP, AP, L2 and SL are
not equationally additive. If SL were equationally additive, then so would be
its constantive expansion, which, by Lemma 7.5(b), coincides with the clone of
polynomial functions of the GF(3)-vector space Z3. Since the vector space Z3 is
simple and has a Mal’cev (term) operation, Corollary 3.11 says that equational
additivity of its polynomial clone requires the vector space to be a non-Abelian
algebra, which it is not (cf. [25, Exercise 3.2(2)]). Therefore, SL cannot be
equationally additive. By Lemma 7.5(a), the clones aP, AP and L2 have
B := {0, 1} as an invariant subset and aP|B = V2, AP|B = E2 and L2|B = L2;
each of these Boolean clones fails to be equationally additive by Theorem 6.5(j).
Hence, by Lemma 7.4, none of aP, AP or L2 can be equationally additive.
This establishes the equivalence of (a) and (b).

The fact that (b) implies (c) follows from the fact that the clones a∞π∞,
A∞π∞ and TN have Jónsson operations, as argued in [14]: Namely, in the
proof of [14, Proposition 5.3] it is shown how one can derive a sequence of five
quasi-Jónsson operations from f∞

π ∈ a∞π∞; since f∞
π is idempotent, these

are actually Jónsson operations. The exact same can be done using (f∞
π )∗ ∈

A∞π∞. As observed above, the generator m of TN is a majority operation
(and thus gives rise to a sequence of three Jónsson operations).

Finally, we show that (c) implies (b). To this end it suffices to prove that for
all clones D below one of the clones aP,AP,L2, or SL, the algebra (A;D) does
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not generate a congruence distributive variety. Now let C ∈ {aP,AP,L2,SL}
and assume that (A;D) would generate a congruence distributive variety for
some clone D ⊆ C. Then there would be a sequence of Jónsson operations
in D and hence in C. If C ∈ {aP,AP,L2}, then B := {0, 1} is invariant for C
by Lemma 7.5(a), and by restricting the Jónsson operations to B we would
obtain Jónsson operations in C|B . Hence (B; C|B) would generate a congruence
distributive variety, thus Theorem 6.5 excludes that C|B ⊆ V,E or L. However,
Lemma 7.5(a) shows that exactly the latter is the case since C|B ∈ {V2,E2, L2}.
Therefore, the only possible remaining case is D ⊆ C = SL and hence (A;SL)
would generate a congruence distributive variety. But (A;SL) is polynomially
equivalent to the vector space Z3 by Lemma 7.5(b), and thus (A;SL)2 is
polynomially equivalent to Z

2
3. Hence we obtain Con

(
(A;SL)2

)
= Con(Z2

3),
which fails to be distributive. This contradiction shows that our assumption
is impossible and thus (b) follows. �

8. The number of equationally additive clones on finite sets

In this section we investigate the cardinality of the order filter of equationally
additive clones on a finite set. Our first basic observation is that the number
of equationally additive clones on a set always is a lower bound for the number
of equationally additive clones on any superset.

Lemma 8.1. For sets A ⊆ B there are at least as many equationally additive
clones on B as on A.

Proof. On any set the clone of all finitary operations is equationally additive,
therefore the case A = ∅ is settled. If A = B the statement is also evident.
Therefore, from now on let us assume that ∅ �= A � B. Let us choose elements
a ∈ A and b ∈ B\A and let us denote the set of all clones on A and B by LA

and LB , respectively. If, for n ∈ N, f : An → A and u : Bn\An → B are
functions, then we denote by f ⊕u : Bn → B the operation defined from these
two functions by the obvious case distinction. Clearly, any function constructed
in this way preserves A, and conversely, any function g : Bn → B preserving A
can be split up in this form. We employ the well-known injection Φ: LA → LB

between the clone lattices (cf. [41, 3.3.3 Einbettungssatz]), which is defined for
every F ∈ LA as

Φ(F) =
⋃

n∈N

{f : Bn → B | f [An] ⊆ A, f |An ∈ F}.

Letting c
[n]
b : Bn\An → B be the constant n-ary function with value b, we

observe for any f : An → A that f ∈ F if and only if f ⊕ c
[n]
b ∈ Φ(F). Hence

we see that Φ is injective, since for any n-ary function f separating clones
F ,G ∈ LA we also have f ⊕ c

[n]
b separating Φ(F) and Φ(G).
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The proof will be done once we have shown that Φ preserves equational
additivity. To this end assume that F ∈ LA is equationally additive, and that,
according to Theorem 3.4, there is some index set I and there are functions
fi, gi ∈ F [4] for i ∈ I such that Δ(4)

A = {x ∈ A4 | ∀i ∈ I : fi(x) = gi(x)}.
Define u : B4\A4 → B by u(b) = b if b ∈ Δ(4)

B and by u(b) = a otherwise.
Let e

[4]
1 denote the quaternary projection on A to the first coordinate. Then it

is not hard to verify that

Δ(4)
B

=
{
x ∈ B4

∣
∣
∣ e

[4]
1 ⊕ u(x)=e

[4]
1 ⊕ c

[4]
b (x)∧∀i ∈ I : fi ⊕ c

[4]
b (x)=gi ⊕ c

[4]
b (x)

}
.

Thus, Δ(4)
B is algebraic over the clone Φ(F), and hence Φ(F) is equationally

additive by Theorem 3.4. �

The theory presented in Sect. 6, in particular Theorem 6.5 and Fig. 1, shows
that the number of equationally additive clones on any two-element set is
countably infinite. The next step to take is investigating equationally additive
clones on (at least) three-element carrier sets. In combination with Lemma 8.1,
Corollary 7.2 shows that there are precisely continuum many equationally
additive clones on any finite set with at least three elements. In the following
we focus on the number of clones on finite sets that are equationally additive
and contain all constant (unary) operations. In the subsequent proposition we
start again by first considering three-element carrier sets. After that we shall
exploit a construction by Ágoston, Demetrovics and Hannák from [2] to cover
the general case.

Proposition 8.2. On the set A = {0, 1, 2} there are exactly 2ℵ0 distinct equa-
tionally additive constantive clones.

Proof. Let f : A3 → A be defined as follows. For all x = (x1, x2, x3) ∈ A3 we
set

f(x) =

{
2 if x ∈ {(0, 2, 0), (0, 1, 1), (1, 2, 2)},

x1 otherwise.

Furthermore, let S ⊆ A4 be the solution set of the following system of equa-
tions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x1, x2, x3) ≈ f(x1, x2, x4)
f(x2, x1, x3) ≈ f(x2, x1, x4)
f(x3, x4, x1) ≈ f(x3, x4, x2)
f(x4, x3, x1) ≈ f(x4, x3, x2).

Using a computer one quickly verifies that Δ(4)
A = S, cf. [12]. Thus, Theo-

rem 3.4 yields that every clone that contains f is equationally additive.
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We now prove that there are 2ℵ0 constantive clones that contain f . For
each a ∈ A, let ca : A → A be the unary constant function with constant
value a. For k ∈ N and i ∈ [k], we set ek

i to be the element of {0, 1}k with 1 in
the i-th component and 0 elsewhere. Moreover, we define the ‘forbidden’ set
Bk := {r ∈ {0, 1}k | 3 ≤ wt(r) ≤ k − 1}, where wt(r) denotes the number of
occurrences of 1 in r, and we set ρk := Ak\({ek

1} ∪ Bk). For n ∈ N, n ≥ 2 we
define fn : An → A as follows. For all x ∈ An we let

fn(x) =

⎧
⎪⎨

⎪⎩

1 if wt(x) = n, i.e., x = 1 := (1, . . . , 1),
0 if x ∈ {en

1 , . . . ,en
n},

2 otherwise.

As a first step, we prove that

∀k ≥ 2: {f} ∪ {ca | a ∈ A} ⊆ Pol({ρk}). (8.1)

Since ρk is reflexive, clearly {ca | a ∈ A} ⊆ Pol({ρk}). Let z1,z2,z3 ∈ ρk.
Then, the component-wise action of f on (z1,z2,z3) yields a tuple z satisfying
for all i ∈ [k] the condition z(i) = z1(i) or z(i) = 2. If there is i ∈ [k] with
z(i) = 2, then z /∈ {ek

1} ∪ Bk, and therefore, z ∈ ρk. Otherwise, z = z1 ∈ ρk.
Next, we show that

∀n ≥ 2: fn /∈ Pol({ρn+1}). (8.2)

For i ∈ [n], let zi be the element of {0, 1}n+1 with 1 in its first and (i + 1)-st
component, and 0 elsewhere. For each i ∈ {1, . . . , n} we have wt(zi) = 2, thus
zi ∈ ρn+1. Moreover, fn acting component-wise on these tuples z1, . . . ,zn

yields fn(z1, . . . ,zn) = en+1
1 /∈ ρn+1. This proves that fn does not pre-

serve ρn+1.
Third, we verify that

∀n ≥ 2∀k ∈ N\{n + 1} : fn ∈ Pol({ρk}). (8.3)

For this we show that each of the tuples in Bk ∪ {ek
1} can only be obtained by

the component-wise action of fn on a sequence z1, . . . ,zn of tuples in Ak that
contains at least one member outside ρk, that is, in Bk ∪ {ek

1}. We assume
n ≥ 2 and split the proof into two cases according to the value of k.
Case 1 ≤ k ≤ n. Let z1, . . . ,zn ∈ Ak be such that fn(z1, . . . ,zn) = ek

1 , and
let Z be the (k × n)-matrix whose columns are the tuples z1, . . . ,zn. As 1 has
a unique preimage under fn, the first row of Z is 1. Moreover, for all 2 ≤ i ≤ k
there exists li ∈ [n] such that the i-th row of Z is the tuple en

li
. Since k−1 < n,

the matrix Z ′ obtained from Z by removing the first row, contains a column
whose entries are all 0. Thus, ek

1 ∈ {z1, . . . ,zn}, and so {z1, . . . ,zn} � ρk.
If k ≥ 4, then we also have to consider any r ∈ Bk with wt(r) = w, where
3 ≤ w ≤ k−1, and we let v1, . . .vn ∈ Ak be such that f(v1, . . .vn) = r. Let V
be the (k × n)-matrix whose columns are v1, . . . ,vn. Then V has exactly w
rows whose entries are all 1. Let V ′ be the ((k − w) × n)-matrix obtained by
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removing those rows from V . For all i ∈ [k − w] there exists li ∈ [n] such that
the i-th row of V ′ is the tuple en

li
. Since k−w ≤ k−3 < n, there is a column v′

in V ′ whose entries are all zero, and therefore, there exists j ∈ [n] such that
the column vj ∈ {0, 1}k of V satisfies wt(vj) = w. Since 3 ≤ w ≤ k − 1, we
have vj ∈ Bk, and thus {v1, . . . ,vn} � ρk.
Case k ≥ n + 2. Let z1, . . . ,zn ∈ Ak be such that fn(z1, . . . ,zn) = ek

1 , and
let Z be the (k×n)-matrix whose columns are the tuples z1, . . . ,zn. As above,
the first row of Z equals 1. Moreover, for all 2 ≤ i ≤ k there exists li ∈ [n] such
that the i-th row of Z is the tuple en

li
. Since n ≤ k − 2 < k − 1, the matrix Z ′

obtained from Z by removing the first row, contains a column z′ ∈ {0, 1}k−1

with wt(z′) ≥ 2. If wt(z′) ≤ k − 2, then Z contains a column z ∈ Bk, i.e.,
z /∈ ρk. If wt(z′) = k − 1, then all the rows of Z ′ are of the form en

l for the
same l ∈ [n], and since n ≥ 2, Z ′ has a column whose entries are all zeros.
Thus, Z has a column equal to ek

1 /∈ ρk. Since k ≥ n + 2 ≥ 4, we additionally
have to consider any r ∈ Bk with wt(r) = w, where 3 ≤ w ≤ k − 1, and we
let v1, . . .vn ∈ An be such that f(v1, . . .vn) = r. Let V be the (k ×n)-matrix
whose columns are v1, . . . ,vn. Then V has w rows whose entries are all 1.
Setting V ′ to be the ((k − w) × n)-matrix obtained by removing these rows
from V , we have that for all i ∈ [k − w] there exists li ∈ [n] such that the i-th
row of V ′ is en

li
. Thus, v1, . . . ,vn ∈ {0, 1}k. Since k − w ≥ 1 and n ≥ 2, there

is j ∈ [n]\{l1}, for which the entry of vj in the first row of V that is distinct
from 1 equals 0. Hence, 3 ≤ w ≤ wt(vj) ≤ k −1, and so vj ∈ Bk, i.e., vj /∈ ρk.

We are now ready to prove the statement of the theorem. We abbreviate
N := N\{1, 2}, and denote by Lf the lattice of all constantive clones on A
that contain f . Then we define Φ: P(N) → Lf as follows. For all I ∈ P(N) we
let Φ(I) = Pol({ρi | i ∈ I}). Equation (8.1) ensures that this function is well
defined. We argue that Φ induces an order embedding of the lattice (P(N),⊇)
into (Lf ,⊆). Clearly, Φ is compatible with the inclusion orders. To show that it
also reflects them, take I, J ⊆ N with Φ(J) ⊆ Φ(I) and consider any ι ∈ I. We
thus have Φ({ι}) ⊇ Φ(I) ⊇ Φ(J). If ι /∈ J , equivalently, J ⊆ N\{ι}, then we
would have Φ(J) ⊇ Φ(N\{ι}), therefore fι−1 ∈ Φ(N\{ι}) ⊆ Φ({ι}) by (8.3),
but this would contradict (8.2). Hence ι ∈ J , that is, we have demonstrated
I ⊆ J . As every order embedding is injective, this proves that |Lf | = 2ℵ0 , and
the statement follows. �

Theorem 8.3. On a finite set A with at least three elements there are ex-
actly 2ℵ0 distinct equationally additive constantive clones.

Proof. Let A = {0, . . . , n} with n ≥ 2. The case n = 2 is a consequence of
Proposition 8.2. Thus we only consider the case n ≥ 3. We define f : A4 → A
by

f(x) =

{
0 if x ∈ Δ(4)

A ,

n otherwise.
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For each i ∈ N\{1, 2} we define hi : Ai → A by

hi(x) =

⎧
⎪⎨

⎪⎩

1 if |{j ∈ [i] : xj = 1}| = 1 and |{j ∈ [i] : xj = 2}| = i − 1,

or |{j ∈ [i] : xj = 2}| = 1 and |{j ∈ [i] : xj = 1}| = i − 1;
0 otherwise.

For each I ⊆ N\{1, 2} we define AI as the algebra (A; {f} ∪ {hi | i ∈ I}). Let
Z := A\{n}. Following [2], for each i ∈ N\{1, 2} we define gi : Zi → Z by

gi(x) =

⎧
⎪⎨

⎪⎩

1 if |{j ∈ [i] : xj = 1}| = 1 and |{j ∈ [i] : xj = 2}| = i − 1,

or |{j ∈ [i] : xj = 2}| = 1 and |{j ∈ [i] : xj = 1}| = i − 1;
0 otherwise.

For each I ⊆ N\{1, 2} we define ZI as the algebra (Z; {gi | i ∈ I}). In [2] it
was proved that

∀I, J ∈ P(N\{1, 2}) : PolZI = PolZJ ⇐⇒ I = J. (8.4)

For each I ⊆ N\{1, 2} we define Z0
I as the algebra (Z; {c

[4]
0 } ∪ {gi | i ∈ I}),

where c
[4]
0 is the constant 0-function of arity 4. Clearly, c

[4]
0 ∈ Pol4 ZI for all

I ⊆ N\{1, 2}. Thus, we have that for all I ⊆ N\{1, 2} the algebras ZI and Z0
I

are polynomially equivalent. Therefore, (8.4) yields that

∀I, J ∈ P(N\{1, 2}) : PolZ0
I = PolZ0

J ⇐⇒ I = J. (8.5)

Let I ∈ P(N\{1, 2}). Since Δ(4)
A = {x ∈ A4 | f(x) = 0}, Theorem 3.4 yields

that the clone PolAI is equationally additive. Moreover, Proposition 3.13
yields that AI is subdirectly irreducible and that μ = 〈{(0, n)}〉ConAI

is the
monolithic congruence of AI . Next, we show that μ = 0A ∪ {(0, n), (n, 0)}.
Clearly, S := 0A ∪ {(0, n), (n, 0)} is an equivalence relation on A that contains
the generators of μ and that is minimal with this property. Thus, it suffices
to show that S is a subalgebra of AI × AI . To this end let a, b ∈ A4 with
a ≡S b. Since f(a) ∈ {0, n} and f(b) ∈ {0, n} and {0, n} × {0, n} ⊆ S, we
have (f(a), f(b)) ∈ S. This proves that S is closed under the component-wise
action of f . Let i ∈ I and let c,d ∈ Ai with c �= d and c ≡S d. We show that
(hi(c), hi(d)) ∈ S. Since for all z ∈ Z\{0} the equivalence class of z modulo S
is a singleton, we have that c �= d and c ≡S d together yield that there exists
� ∈ [i] such that c(�),d(�) ∈ {0, n} and c(�) �= d(�). Then the definition of hi

yields hi(c) = 0 = hi(d), and therefore (hi(c), hi(d)) = (0, 0) ∈ S. Thus, S
is closed under the component-wise action of f and of hi for all i ∈ I, and
therefore is a subalgebra of AI × AI . Hence μ = 0A ∪ {(0, n), (n, 0)}.

Next, we prove that AI/μ ∼= Z0
I . Define φ : A → Z by φ(x) = x for all

x ∈ Z and φ(n) = 0. We show that φ is a surjective homomorphism from AI

to Z0
I . To this end, let b ∈ A4, let i ∈ I, and let a ∈ Ai. As f(b) ∈ {0, n}, we

have φ(f(b)) = 0 = c
[4]
0 (φ(b1), φ(b2), φ(b3), φ(b4)). Next, we demonstrate that

φ(hi(a)) = gi(φ(a1), . . . ,φ(ai)). We split the proof into two cases. Assuming
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a ∈ Zi, we have, as the image of hi is a subset of Z, that φ is the identity, and
thus φ(hi(a)) = hi(a) = gi(a) = gi(φ(a1), . . . , φ(ai)). If, otherwise, a /∈ Zi,
then there is j ∈ [i] such that aj = n and hence φ(aj) = φ(n) = 0. Thus, we
have hi(a) = 0 = gi(φ(a1), . . . , φ(ai)), and φ is a homomorphism. Since the
kernel of φ is clearly equal to μ and φ is surjective, the first homomorphism
theorem (cf. [16, Theorem 6.12]) yields AI/μ ∼= Z0

I .
Finally, we prove that

∀I, J ∈ P(N\{1, 2}) : PolAI = PolAJ ⇐⇒ I = J. (8.6)

To this end, let I, J ∈ P(N\{1, 2}). Clearly, if I = J , then PolAI = PolAJ .
For the opposite implication, let us assume that PolAI = PolAJ . Then (2.1)
yields that Pol(AI/μ) = (PolAI)/μ = (PolAJ)/μ = Pol(AJ/μ). Hence, since
for all L ∈ P(N\{1, 2}), φ induces an isomorphism between Z0

L and AL/μ
that is independent of L, we have Pol(Z0

I) = Pol(Z0
J). Thus, we have I = J

by (8.5).
By (8.6), {PolAI | I ∈ P(N\{1, 2})} is a set of distinct equationally addi-

tive constantive clones on A of cardinality |P(N\{1, 2})| = 2ℵ0 . �

We remark that the clones constructed in Theorem 8.3 all have the same
universal algebraic geometry, namely

⋃
n∈N

P(An). We summarize our knowl-
edge of the number of equationally additive clones on finite sets in Table 1.
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