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Abstract. We characterize the cases of existence of spherical designs of an odd strength
attaining the Fazekas–Levenshtein bound for covering and prove some of their properties.
We also find all universal minima of the potential of regular spherical configurations in two
new cases: the demihypercube on Sd, d ≥ 4, and the 241 polytope on S7 (which is dual to
the E8 lattice).
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1. Statement of the problem and review of known results

Let Sd := {(x1, . . . , xd+1) ∈ R
d+1 : x2

1 + . . . + x2
d+1 = 1} be the unit sphere

in R
d+1. Throughout the text, ωN will denote a configuration of N pairwise

distinct points on Sd and x1, . . . ,xN will denote the points in ωN . We will
also call ωN a spherical code. We call a function g : [−1, 1] → (−∞,∞] an
admissible potential function if g is continuous on [−1, 1) with g(1) = lim

t→1−
g(t)

and differentiable in (−1, 1). Additional assumption(s) on the derivative(s) of
g will be further specified in each case. Define the g-potential of ωN by

pg(x, ωN ) :=
N∑

i=1

g(x · xi), x ∈ Sd.

We consider the following extremal problem over the sphere.
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Problem 1.1. Find the quantity

P g(ωN , Sd) := min
x∈Sd

pg(x, ωN ) (1.1)

and points x∗ ∈ Sd attaining the minimum in (1.1).

We have an important special case when the potential function g is abso-
lutely monotone on [−1, 1). Then g(t) = f(2 − 2t) for some completely mono-
tone function f on (0, 4]. Recall that a function g is called absolutely monotone
or completely monotone on an interval I if g(k) ≥ 0 or (−1)kg(k) ≥ 0 on I,
respectively, for every k ≥ 0. The function g is strictly absolutely or strictly
completely monotone on I if the corresponding inequality is strict in the inte-
rior of I for all k ≥ 0. The kernel

g(x · y) = f
(
|x − y|2

)
(1.2)

with a strictly absolutely monotone g on [−1, 1) includes the Riesz s-kernel for
s > 0 and the Gaussian kernel. After adding an appropriate positive constant,
it also includes the logarithmic kernel and the Riesz s-kernel for −2 < s < 0.

The problem about absolute extrema on the sphere of potentials of spherical
codes was earlier solved by Stolarsky [23,24] and Nikolov and Rafailov [20,21]
for Riesz s-kernels, s �= 0, and sets of vertices of a regular N -gon on S1 and
of a regular simplex, regular cross-polytope, and cube inscribed in Sd. Hardin
et al. [16] proved that absolute minima of the potential of a regular N -gon on
S1 with respect to a decreasing and convex function of the geodesic distance
are attained at points of the dual regular N -gon.

Recently, results from [20,21,23,24] for s > −2, s �= 0 (except for abso-
lute maxima for the cube), were extended to kernels (1.2) with an absolutely
monotone function g and spherical designs of the highest (in a certain sense)
strength. In particular, for a regular simplex on Sd, absolute maxima are at its
vertices and absolute minima are at the antipods of its vertices, see [7]. Abso-
lute maxima with respect to kernel (1.2) were found in [5] for sharp spherical
codes that are antipodal or are designs of an even strength (called by some
authors “strongly sharp”). Absolute maxima appear to be independent of the
potential function g when g is strictly absolutely monotone on [−1, 1) (they
are at points of the code itself). Such absolute maxima are called universal
maxima.

The set of universal minima (defined in a similar way) of any spherical code
that, for some m ∈ N, is a (2m − 1)-design forming m distinct dot products
with some point z ∈ Sd, is also known (we will call such codes m-stiff). It is
exactly the set of all such points z, see talk [6]1 by the author for the proof or
Lemma 3.5 in [5],2 from which this result follows. We will call the set of such

1Talk [6] was given in January, 2022 at ESI and can be found in the ESI’s YouTube account.
2Paper [5] has been available on ArXiv since March 2022.
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points z the dual configuration. We restate this result here as Theorem 2.5.
Immediate consequences of this result are universal minima of a regular 2m-
gon on S1, of a regular cross-polytope and cube on Sd, and of the 24-cell on
S3, since finding the dual configuration is elementary for these codes. Stiff
spherical codes are exactly the ones attaining the Fazekas–Levenshtein bound
for covering [13, Theorem 2] in the case of an odd strength. One of the goals
of this paper is a further study of such spherical codes.

Universal minima of any strongly sharp code are at the antipods of points of
the code. This also follows from [5, Lemma 3.5]. Immediate consequences of this
fact (other than the regular simplex) are universal minima of a regular (2m+1)-
gon on S1, the Schläffi configuration on S5, and the McLaughlin configuration
on S21. Strongly sharp spherical codes attain the Fazekas–Levenshtein bound
for covering [13, Theorem 2] for even strength designs (this case has been
well-studied before).

Boyvalenkov et al. [9, Theorems 3.4 and 3.7] (see also [10, Theorem 1.4])3

proved universal upper and lower bounds for the potential of a general spherical
design. These bounds become sharp in the cases mentioned above: in the case
of a minimum for stiff and strongly sharp configurations and in the case of a
maximum for sharp antipodal and strongly sharp ones. The lower bound is an
analogue of the Fazekas–Levenshtein bound for covering [13, Theorem 2].

Paper [9] also showed that the universal maxima of the 600-cell on S3 are
vertices of the 600-cell itself. The work [10] proved that a number of known
sharp codes are also stiff. Then the result from [6] implies that their universal
minima are at points of the dual configuration. Paper [10] further studies the
dual configuration for each code and antipods of the two strongly sharp codes
on S5 and S21 mentioned above. The author in paper [2]4 found explicitly
the sets of all universal minima for five more stiff configurations (which are
not sharp) on spheres of different dimensions as well as for the 56-point kiss-
ing configuration on S6, which is a known sharp code (paper [10] gives one
universal minimum of this code).

Certain remarkable spherical configurations are not stiff or strongly sharp.
Universal minima of the regular icosahedron and regular dodecahedron on
S2 were characterized in [3]5 as well as universal minima of the E8 lattice
on S7. Furthermore, one universal minimum and the corresponding absolute
minimum value of the potential were found in [10]6 for the Leech lattice on S23.
Papers [3]7 and [10] establish general theorems (different to a certain extent)

3Papers [9] and [10] have been on ArXiv since July and October 2022, respectively.
4On ArXiv since December 2022.
5On ArXiv since October 9, 2022. The proof for icosahedron was briefly discussed in talk
[6] in January 2022.
6On Arxiv since October 31, 2022.
7The general “skip one add two” theorem from [3] was stated in talk [4] in August 2022, see
Theorem 2.6.
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for the so-called “skip one add two” case and use them to establish the above
mentioned results.

Critical points of the total potential of finite configurations of charges were
also analysed (see [1,14] and references therein). This work is related to the
known Maxwell’s conjecture. A more detailed review of known results on ex-
trema of potentials of spherical codes can be found, for example, in [2].

In this paper, we characterize the cases of existence of odd strength spheri-
cal designs attaining the Fazekas–Levenshtein bound for covering [13, Theorem
2] and prove certain properties of such designs and of sets of their universal
minima (see Sect. 6). We also characterize universal minima of regular spheri-
cal configurations in two new cases: the demihypercube on Sd, d ≥ 4 (including
the 16-point sharp code8 on S4) and the 241 polytope on S7 (it is dual to the
E8 lattice). For stiff spherical codes that have no antipodal pairs, we show
that their universal minima are the same as the ones of their symmetrizations
about the origin.

One important application of Problem 1.1 is the polarization problem on
the sphere. Papers [5,7,9,16,20,23] that we mentioned when reviewing results
on extrema of potentials solve some of its cases. A more comprehensive re-
view of known work on polarization can be found, for example, in book [8,
Chapter 14] with most recent results reviewed in, e.g., [5].

The paper is structured as follows. Section 2 contains the necessary pre-
liminaries. In Sect. 3, we characterize universal minima of the d-demicube for
d ≥ 5. In Sect. 4, we find all universal minima of the 241 polytope on S7.
Section 5 extends known results on universal minima for some sharp config-
urations that are non-tight designs to their symmetrizations. In Sect. 6, we
characterize the cases of existence of odd strength spherical designs attain-
ing the Fazekas–Levenshtein bound for covering (Theorem 6.8) and establish
certain properties of such designs and of sets of their universal minima.

2. Preliminaries

In this section, we state definitions and known facts used further in the paper.
Define

wd(t) := γd(1 − t2)d/2−1,

where the constant γd is such that wd is a probability density on [−1, 1].
The Gegenbauer orthogonal polynomials corresponding to the sphere Sd in
R

d+1 are terms of the sequence {P
(d)
n }∞

n=0 of univariate polynomials such that
deg P

(d)
n = n, n ≥ 0, and

8In [10], the universal minima of the 16-point sharp code on S4 were found without a
characterization.
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∫ 1

−1

P
(d)
i (t)P (d)

j (t)wd(t) dt = 0, i �= j,

normalized so that P
(d)
n (1) = 1, n ≥ 0 (see [25, Chapter 4] or, e.g., [8, Chap-

ter 5]).
For a configuration ωN = {x1, . . . ,xN} ⊂ Sd, let I(ωN ) be the set of all

n ∈ N such that
N∑

i=1

N∑

j=1

P (d)
n (xi · xj) = 0. (2.1)

We call I(ωN ) the index set of ωN . Let σd be the d-dimensional area measure
on the sphere Sd normalized to be a probability measure. A configuration ωN

is called a spherical n-design if, for every polynomial p on R
d+1 of degree at

most n,
1
N

N∑

i=1

p(xi) =
∫

Sd

p(x) dσd(x), (2.2)

see the paper by Delsarte et al. [12]. The maximal number n in this definition
is called the strength of the spherical design ωN .

We recall the following equivalent definitions of a spherical design. Let Pn

denote the space of all univariate polynomials of degree at most n.

Theorem 2.1. (see [12,13] or, e.g., [8, Lemma 5.2.2 and Theorem 5.4.2]) Let
d, n ≥ 1 and ωN = {x1, . . . ,xN} be a point configuration on Sd. The following
are equivalent:

(i) ωN is a spherical n-design;
(ii) {1, . . . , n} ⊂ I(ωN );
(iii) for every polynomial q ∈ Pn, we have pq(y, ωN ) =

∑N
i=1 q(y · xi) = C,

y ∈ Sd, where C is a constant.

If item (iii) holds in the above theorem, then C = a0(q)N , where

a0(q) :=
∫ 1

−1

q(t)wd(t) dt (2.3)

is the 0-th Gegenbauer coefficient of polynomial q. For a given m ∈ N and a
given configuration ωN ⊂ Sd, denote by Dm(ωN ) the set of all points z ∈ Sd

for which the set of dot products

D(z, ωN ) := {z · xi : i = 1, . . . , N}
has at most m distinct elements.

Definition 2.2. We call a point configuration ωN ⊂ Sd m-stiff, d,m ≥ 1, if
ωN is a spherical (2m − 1)-design and the set Dm(ωN ) is non-empty. The set
Dm(ωN ) of a given m-stiff configuration ωN is called the dual configuration
for ωN .
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For a given m ∈ N, a spherical (2m − 1)-design on Sd attains the Fazekas–
Levenshtein bound [13, Theorem 2] if and only if it is m-stiff. Following [11], we
call a configuration ωN ⊂ Sd sharp if, for some m ∈ N, it is a (2m − 1)-design
and there are exactly m distinct values of the dot product between distinct
points in ωN . If, in addition, ωN is a 2m-design, we call it strongly sharp.

The next statement is part of the classification of quadratures in [12] corre-
sponding to spherical designs of the highest strength; i.e., stiff, strongly sharp,
or sharp antipodal codes. It is an immediate consequence of [13, Theorem 2].
For the reader’s convenience, we mention that a proof of Proposition 2.3 can
also be found, for example, in [2, Proposition 7.2] or [9, Corollary 3.9]. Let
{ϕ1, . . . , ϕm} be the fundamental polynomials for the set −1 < κm

1 < . . . <

κm
m < 1 of zeros of the Gegenbauer polynomial P

(d)
m ; that is, ϕi ∈ Pm−1,

ϕi(κm
i ) = 1, and ϕi(κm

j ) = 0, j �= i, i = 1, . . . , m.

Proposition 2.3. If ωN is an m-stiff configuration on Sd, then for every z ∈
Dm(ωN ), the set D(z, ωN ) contains exactly m distinct elements located in
(−1, 1), which are κm

1 , . . . , κm
m. Furthermore, the number of indices i such that

z · xi = κm
j does not depend on z and equals a0(ϕj)N , j = 1, . . . , m.

In particular, if m = 2, then for every z ∈ D2(ωN ), we have D(z, ωN ) ={
− 1√

d+1
, 1√

d+1

}
.

Remark 2.4. In view of Proposition 2.3, an m-stiff configuration may exist
on Sd for given m, d ≥ 1, only if all the numbers a0(ϕi), i = 1, . . . , m, are
positive rationals. These numbers are the weights of the Gauss–Gegenbauer
quadrature for integral (2.3) (the nodes are κm

1 , . . . , κm
m). This is, in fact, an

equivalent condition for the existence, see Theorem 6.8.

We next restate the result proved in talk [6]. Its complete proof can also
be found in [2, Theorem 4.3].

Theorem 2.5. Let m ≥ 1, d ≥ 1, and g be an admissible potential function
with a convex derivative g(2m−2) on (−1, 1). If ωN = {x1, . . . ,xN} is an m-
stiff configuration on the sphere Sd, then the potential

pg(x, ωN ) =
N∑

i=1

g(x · xi), x ∈ Sd,

attains its absolute minimum over Sd at every point of the set Dm(ωN ).
If, in addition, g(2m−2) is strictly convex on (−1, 1), then Dm(ωN ) contains

all points of absolute minimum of the potential pg(·, ωN ) on Sd.

In fact, Theorem 2.5 is a special case of [5, Lemma 3.5] if one uses −g as
the potential function in Lemma 3.5 in [5] and lets q there be the Hermite
interpolating polynomial for −g at the m values of the dot product that a
point z from Dm(ωN ) forms with points of ωN . Then q has degree at most
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2m − 1, which is the strength of the spherical design ωN . Since −g(2m−2) is
concave on (−1, 1), a standard argument counting sign changes for consecutive
derivatives of the difference −g(t) − q(t) shows that q(t) ≥ −g(t), t ∈ [−1, 1],
with the inequality being strict at any non-interpolation point when g(2m−2)

is strictly convex on (−1, 1). Now, the assumptions of Lemma 3.5 in [5] are
satisfied and we obtain the assertion of Theorem 2.5.

We will also need the “skip one add two” result from [3, Theorem 3.1].

Theorem 2.6. Let d,m ∈ N, m ≥ 2, and ωN = {x1, . . . ,xN} be a point config-
uration on Sd whose index set I(ωN ) contains numbers 1, 2, . . . , 2m−3, 2m−
1, 2m. Assume that numbers −1 < t1 < t2 < . . . < tm < 1 are such that

m∑

i=1

ti < tm/2 and
m∑

i=1

t2i − 2

(
m∑

i=1

ti

)2

<
m(2m − 1)
4m + d − 3

, (2.4)

and that the set D of points x∗ ∈ Sd with D(x∗, ωN ) ⊂ {t1, . . . , tm} is non-
empty. Let g be an admissible potential function with non-negative derivatives
g(2 m−2), g(2 m−1), and g(2 m) on (−1, 1). Then, for every point x∗ ∈ D,

min
x∈Sd

N∑

i=1

g(x · xi) =
N∑

i=1

g(x∗ · xi). (2.5)

If, in addition, g(2m) > 0 on (−1, 1), then the absolute minimum in (2.5) is
achieved only at points of the set D.

We remark that proofs of Theorems 2.5 and 2.6 utilize the Delsarte-Yudin
method (also known as the Delsarte or linear programming or polynomial
method), see the work by Delsarte, Goethals, and Seidel [12] or by Yudin [26].
A detailed description of this approach and references to works using it can
also be found, in particular, in [9–11,17–19] and in [8, Chapter 5].

We next find universal minima of the potential of new cases of regular
spherical configurations that we were able to handle using available tools. The
proofs of these results are given in Sects. 3–5.

3. The 16-point sharp code on S4 and the demihypercube

Denote by ω∗
2d := {±e1, . . . ,±ed}, d ≥ 2, where e1, . . . , ed are vectors of

the standard basis in R
d, the set of vertices of the regular cross-polytope

inscribed in Sd−1 and let Ud be the set
{(

± 1√
d
, . . . ,± 1√

d

)}
⊂ R

d of vertices

of the cube inscribed in Sd−1. It is not difficult to see that D2(ω∗
2d) = Ud and

D2(Ud) = ω∗
2d.

Let ωd, d ≥ 2, be the set of N = 2d−1 points
(
± 1√

d
, . . . ,± 1√

d

)
∈ Ud with

an even number of minus signs. This configuration forms the set of vertices of
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a d-demicube (also called the demihypercube). The set ω̃d of vectors from Ud

with an odd number of minus signs is a reflection of ωd with respect to any
of the coordinate hyperplanes; i.e., ω̃d is an isometric copy of ωd. Therefore,
it is sufficient to consider just ωd. We have ωd ∪ ω̃d = Ud and the two sets are
disjoint. For d odd, we have ω̃d = −ωd with neither set containing antipodal
pairs. For d even, each of the sets ωd and ω̃d is itself antipodal.

Observe that for d = 2, both configurations consist of one antipodal pair;
i.e., they are 1-stiff. For d = 3, each one is a regular simplex inscribed in
S2 (strongly sharp and, hence, not stiff). For d = 4, the set ωd consists of
eight points

(± 1
2 ,± 1

2 ,± 1
2 ,± 1

2

)
with an even number of minus signs. Each set

ω4 and ω̃4 is an isometric copy of a regular cross-polytope in R
4; i.e., it is

2-stiff. For d = 5, configuration ωd consists of 16 points on S4 of the form(
± 1√

5
,± 1√

5
,± 1√

5
,± 1√

5
,± 1√

5

)
with an even number of minus signs. This is

the well-known sharp (5, 16, 1/5)-code. It was described by Gossett [15]. The
set ω̃5 is the antipode of this code. The 2-stiffness property of ω5 was observed
in [10]. We show that the d-demicube is 2-stiff for any d ≥ 6. We start with
the following auxiliary statement.

Lemma 3.1. Let ωN be a non-empty subset of Ud =
{

− 1√
d
, 1√

d

}d

, d ≥ 3. Then
ωN is a 3-design if, and only if, N is even and for every set I of one, two, or
three pairwise distinct indices, exactly half of the vectors in ωN have an even
number of negative coordinates with indices in I and exactly half have an odd
number of negative coordinates with indices in I.

Proof. Let ωN ⊂ Ud be arbitrary. Using the notation y = (y1, . . . , yd) for a
point y ∈ ωN , define

Si :=
∑

y∈ωN

yi, Si,j :=
∑

y∈ωN

yiyj , and Si,j,k :=
∑

y∈ωN

yiyjyk.

Observe that Si,j and Si,j,k do not depend on permutations of indices and that
Si,i = N

d . When some two indices coincide, say i = j, we have

Si,j,k =
∑

y∈ωN

yk

d
=

1
d
Sk. (3.1)

Formula (3.1) holds even if i = j = k. Let x = (x1, . . . , xd) ∈ Sd−1 be any
vector. Then

∑

y∈ωN

x · y =
∑

y∈ωN

d∑

i=1

xiyi =
d∑

i=1

∑

y∈ωN

xiyi =
d∑

i=1

xi

∑

y∈ωN

yi =
d∑

i=1

Sixi,

∑

y∈ωN

(x · y)2 =
∑

y∈ωN

⎛

⎝
d∑

j=1

xjyj

⎞

⎠
2

=
∑

y∈ωN

d∑

i=1

d∑

j=1

xixjyiyj
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=
d∑

i=1

d∑

j=1

∑

y∈ωN

xixjyiyj =
d∑

i=1

x2
i

∑

y∈ωN

y2
i +

d∑

i,j=1
i�=j

xixj

∑

y∈ωN

yiyj

=
N

d
+

d∑

i,j=1
i�=j

Si,jxixj ,

and

∑

y∈ωN

(x · y)3 =
∑

y∈ωN

⎛

⎝
d∑

j=1

xjyj

⎞

⎠
3

=
∑

y∈ωN

d∑

i,j,k=1

xixjxkyiyjyk

=
d∑

i,j,k=1

xixjxk

∑

y∈ωN

yiyjyk =
d∑

i,j,k=1

Si,j,kxixjxk.

The configuration ωN will be a 3-design if, and only if, the three sums above
are constant, see Theorem 2.1. If

Si = 0 for all i, Si,j = 0, for i �= j, and Si,j,k = 0, for i, j, k distinct (3.2)

then three sums above will be constant (one should also use (3.1)). Conversely,
if all three sums above are constant, then the first one has the same value for
every vector ±ei, which is ±Si, i = 1, . . . , d. Then Si = 0 for all i. For every
vector x ∈ Sd−1 with the �-th coordinate being 1/

√
2, the n-th coordinate

being ± 1√
2
, and the remaining coordinates being zero, � �= n, the value of the

second sum is N/d ± S�,n = const. This forces S�,n = 0, � �= n. For vector
±x, where the �-th, n-th, and m-th coordinates of x equal 1/

√
3, �, n,m are

pairwise distinct, and the remaining coordinates are zero, the third sum equals
(use (3.1) and the fact that Si = 0 for all i)

± 1
3
√

3

∑

i,j,k∈{�,n,m}
Si,j,k = ± 6

3
√

3
S�,n,m = const.

Then S�,n,m = 0. Thus, ωN is a 3-design if, and only if, relations (3.2) hold.
In each sum Si, Si,j , and Si,j,k in (3.2), all terms have the same absolute

values. Then the value of each sum in (3.2) equals that common absolute
value times the difference between the number of positive and negative terms.
Therefore, relations (3.2) hold if, and only if, each sum in (3.2) has an equal
number of positive and negative terms. This, in turn, will hold if, and only if,
for any set of indices I = {i} or {i, j}, where i �= j, or {i, j, k}, where i, j, k
are pairwise distinct, the number of vectors in ωN with an even number of
negative components with indices in I equals the number of vectors in ωN

with an odd number of negative components with indices in I. This also forces
N to be even. �

Lemma 3.2. The d-demicube ωd, d ≥ 4, is 2-stiff.
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Proof. Since ωd is a subset of the set of vertices of a cube, it is contained in
two parallel hyperplanes. Thus, it remains to show that ωd is a 3-design. Let
I be any set of k pairwise distinct indices, where k = 1, 2, 3. A combination
of signs of coordinates corresponding to I with an even number of negative
ones can be chosen in 2k−1 different ways. For each of these combinations, the
remaining d − k positions can have 2d−k different combinations of signs with
2d−k−1 of them having an even number of minus signs. Then the total number
of vectors in ωd with an even number of negative coordinates corresponding to
I will be 2k−1 · 2d−k−1 = 2d−2. By a similar argument, the number of vectors
in ωd with an odd number of negative coordinates corresponding to I will also
be 2d−2. Lemma 3.1 now implies that ωd is a 3-design and, hence, is 2-stiff.
�

We next find the dual configuration of the d-demicube. For d = 2, the
d-demicube is a pair of antipodal vectors, which is 1-stiff. Its dual is the per-
pendicular pair of antipodal vectors. For d = 3, the d-demicube is a regular
simplex, which is not stiff, since it is strongly sharp. For d = 4, the configu-
ration ωd is a regular cross-polytope, and its dual is the corresponding cube
inscribed in S3. For d ≥ 5, we have the following result.

Lemma 3.3. For every d ≥ 5, we have D2(ωd) = ω∗
2d.

Since D2(ω∗
2d) = Ud, d ≥ 2, Lemma 3.3 shows that the inclusion ωN ⊂

Dm(Dm(ωN )) can be strict for an m-stiff configuration ωN with m ≥ 2 even
if ωN is antipodal. Furthermore, for d ≥ 5 odd, it provides another example
of a non-antipodal m-stiff configuration with m ≥ 2 (non-antipodal 1-stiff
configurations are easy to construct).

Proof of Lemma 3.3. Every vector ±ei ∈ ω∗
2d forms only dot products 1√

d

and − 1√
d

with points from ωd; i.e., it belongs to D2(ωd). Choose any x =
(x1, . . . , xd) ∈ D2(ωd). Assume to the contrary that x has at least three non-
zero coordinates. Let k be the number of strictly negative components in x.
If k is even, we choose a vector z = (z1, . . . , zd) ∈ ωd with − 1√

d
in all posi-

tions corresponding to strictly negative components in x and 1√
d

in all other
positions. If k is odd, we choose z ∈ ωd with − 1√

d
in all but one positions

corresponding to strictly negative components of x and 1√
d

in all the other po-
sitions. Then the dot product x ·z = x1z1 + . . .+xdzd has at most one strictly
negative term and at least two other strictly positive terms, which we denote
by xizi and xjzj . Since d ≥ 5, we can choose two disjoint pairs of positions in
z one containing zi and the other one containing zj with both pairs avoiding
the position corresponding to the possible negative term in x ·z. Changing the
sign of the coordinates of z in the first pair of positions, we keep z in ωd and
strictly decrease the dot product x · z. Changing the sign of the coordinates of
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the new vector z in the second pair of positions, we keep the resulting vector
in ωd and further decrease the dot product x · z. This shows that x forms at
least three distinct dor products with points of ωd contradicting its choice.

Therefore, x has at most two non-zero components. Assume to the contrary
that x has exactly two non-zero components, say x� and xn. Then x forms dot
products ±x�±xn√

d
with vectors from ωd and at least three of them are distinct.

Thus, x has one non-zero component. Since x is on Sd−1, this component must
be ±1; that is, x ∈ ω∗

2d. Thus, D2(ωd) = ω∗
2d. �

We are ready to characterize universal minima of the d-demicube for d ≥ 5.

Theorem 3.4. Let d ≥ 5 and g be an admissible potential function with a convex
derivative g′′ on (−1, 1). Then the potential pg(·, ωd) of d-demicube ωd attains
its absolute minimum over Sd−1 at every point of cross-polytope ω∗

2d.
If, in addition, g′′ is strictly convex on (−1, 1), then ω∗

2d contains all points
of absolute minimum of the potential pg(·, ωd) on Sd−1.

In the case d = 5, the first paragraph of Theorem 3.4 follows from the
results of [10].

Proof. Since ωd is 2-stiff, by Theorem 2.5, the potential pg(·, ωd) attains its
absolute minimum over Sd−1, d ≥ 5, at points of the set D2(ωd), which, by
Lemma 3.3, equals ω∗

2d. If g′′ is strictly convex on (−1, 1), then, by Theorem 2.5,
the set D2(ωd) = ω∗

2d contains all absolute minima of pg(·, ωd) over Sd−1. �

4. The 241 polytope on S7

Recall that the E8 lattice is the set (lattice in R
8) of vectors in Z

8 ∪ (Z+1/2)8

whose coordinates sum to an even integer. Let ω240 be the set of minimal
length non-zero vectors of the E8 lattice normalized to lie on S7. The con-
figuration ω240 consists of 4

(
8
2

)
= 112 vectors with 6 zero coordinates and

two coordinates being ±1/
√

2 and 27 = 128 vectors with all eight coordinates
± 1

2
√

2
and even number of “−” signs (this part is the 8-demicube). For brevity,

we will also call ω240 the E8 lattice.
The 241 polytope on S7 (the name is due to Coxeter), denoted here by

ω2160, is the set of N = 2160 vectors on S7 that includes 16
(

8
4

)
= 1120

vectors with 4 zero coordinates and 4 coordinates being ±1/2 (let us call them
type I vectors), 16 vectors with 7 zero coordinates and one coordinate being
±1 (let us call them type II vectors), and 8

((
8
1

)
+

(
8
3

)
+

(
8
5

)
+

(
8
7

))
= 1024

vectors with 7 coordinates being ±1/4, one coordinate being ±3/4, and an odd
number of negative coordinates (call them type III vectors). One can verify
directly that equality (2.1) holds for d = 7 and n ∈ {1, . . . , 7, 9, 10}. Indeed,
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since ω2160 is antipodal, (2.1) holds trivially for every n odd. For n = 2, 4, 6, 10,
we have ∑

x∈ω2160

∑

y∈ω2160

P (7)
n (x · y) = 4320(P (7)

n (1) + 64P (7)
n (3/4)

+ 280P (7)
n (1/2) + 448P (7)

n (1/4) + 287P (7)
n (0)) = 0.

(4.1)

The code ω2160 is a 7-design (and not an 8-design). However, it is not stiff,
since D4(ω2160) = ∅ as the following lemma suggests.

Lemma 4.1. For every vector x ∈ S7, the set D(x, ω2160) has at least five
distinct elements. The only vectors x ∈ S7 such that D(x, ω2160) has ex-
actly five distinct elements are those in ω240. For each x ∈ ω240, we have
D(x, ω2160) =

{
0,± 1

2
√

2
,± 1√

2

}
.

Proof. Let x = (x1, . . . , x8) ∈ D5(ω2160) be arbitrary. If non-zero coordinates
of x had at least three distinct absolute values, then x would form at least 6
distinct dot products with vectors of type II. Therefore, non-zero coordinates
of x have at most two distinct absolute values.

Assume to the contrary that non-zero coordinates of x have exactly two
distinct absolute values. Denote them by 0 < b < c. Then x forms each of the
dot products ±b,±c with vectors of type II. If x formed with some vector z ∈
ω2160 a positive dot product u distinct from b and c, since ω2160 is antipodal,
there would be a sixth dot product −u, contradicting the assumption that
x ∈ D5(ω2160). Thus, D(x, ω2160) contains only two positive dot products:
b and c. Let k coordinates of x have absolute value b and � coordinates have
absolute value c. If it were that � ≥ 2, then x would form positive dot products
2c+b+v

2 and b+v
2 with two appropriately chosen vectors of type I, where v ≥ 0

is the absolute value of one of the coordinates of x. Then 2c+b+v
2 = c forcing

b ≤ 0. Thus, � = 1. If it were that k ≥ 3, then x would form positive dot
products c+3b

2 and c+b
2 with two vectors of type I. This would force c+b

2 = b;
that is, c = b. Thus, k ≤ 2. We can now take vector z to be of type III with
the coordinate ±3/4 corresponding to a zero coordinate of x such that x forms
positive dot products x · z = c+kb

4 and c+(k−2)b
4 . Then c = c+kb

4 ≤ c+2b
4 < 3c

4 ,
which is a contradiction.

Thus, all non-zero coordinates of x have the same absolute value, which we
denote by a. Let n be the number of non-zero coordinates of x. If n = 1, then
a = 1 and x forms nine dot products, 0,±1/4,±1/2,±3/4,±1, with points
of ω2160. If n = 3, then x forms seven dot products, 0,±a/2,±a,±3a/2,
with type I vectors. If now 4 ≤ n ≤ 7, then x forms nine dot products
0,±a/2,±a,±3a/2,±2a with type I vectors. Therefore, n = 2 or 8.

If n = 2, then a = 1/
√

2 and x ∈ ω240. Finally, if n = 8, then every
coordinate of x is ± 1

2
√

2
. Assume to the contrary that x has an odd number

of negative coordinates. Then for every vector z of type III, x · z is a sum of
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seven signed terms 1
8
√

2
and one signed term 3

8
√

2
with an even total number of

minus signs. Then x · z, in particular, has six values ±2w,±6w,±10w, where
w = 1

8
√

2
. Therefore, the coordinates of x have an even number of minus signs

and x ∈ ω240.
Thus, if x /∈ ω240 then x forms more than five distinct dot products with

points of ω2160. One can also verify directly that every x ∈ ω240 forms exactly
five distinct dot products with points of ω2160, which are 0,± 1

2
√

2
,± 1√

2
. �

We are now ready to state the main result of this section.

Theorem 4.2. Let ω2160 = {x1, . . . ,x2160} be the 241 polytope on S7 and g be
an admissible potential function with non-negative derivatives g(8), g(9), and
g(10) on (−1, 1). Then, for every point x∗ ∈ ω240,

min
x∈S7

2160∑

i=1

g(x · xi) =
2160∑

i=1

g(x∗ · xi). (4.2)

If, in addition, g(10) > 0 on (−1, 1), then the absolute minimum in (4.2) is
achieved only at points of the set ω240.

Proof. We have {1, 2, 3, 4, 5, 6, 7, 9, 10} ⊂ I(ω2160) in view of (4.1). Applying
Theorem 2.6 with d = 7, m = 5, {t1, . . . , t5} =

{
0,± 1

2
√

2
,± 1√

2

}
we have

D = ω240 and equality (4.2) holds for every x∗ ∈ ω240. If g(10) > 0 on (−1, 1),
then, by Theorem 2.6, (4.2) holds only for x∗ ∈ ω240. �

5. Symmetrizations of sharp codes that are non-tight designs

In this section, we discuss one simple method which allows us to construct
some new stiff configurations and obtain their universal minima.

Lemma 5.1. Let ωN ⊂ Sd be an m-stiff configuration, m, d ≥ 1, which does
not contain an antipodal pair. Let ω′

N := ωN ∪ (−ωN ) be its symmetrization.
Then ω′

N is also m-stiff with Dm(ω′
N ) = Dm(ωN ).

Proof. The configurations ωN and −ωN are disjoint and both are (2m − 1)-
designs. Then their union ω′

N has 2N points and is also a (2m − 1)-design.
We immediately have Dm(ω′

N ) ⊂ Dm(ωN ). If x ∈ Dm(ωN ) then, by Proposi-
tion 2.3, x forms one of the dot products κm

1 , . . . , κm
m with any point from ωN .

Since κm
1 , . . . , κm

m are zeros of P
(d)
m , they are symmetric about the origin. Since

−x ∈ Dm(ωN ), for every y ∈ −ωN , we have x ·y = −x · (−y) ∈ {κm
1 , . . . , κm

m}
because −y ∈ ωN . Then x ∈ Dm(ω′

N ); that is, Dm(ωN ) = Dm(ω′
N ). Since

Dm(ωN ) �= ∅, we have Dm(ω′
N ) �= ∅; that is, ω′

N is m-stiff. �
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We remark that Lemmas 5.1 and 3.2 immediately imply Lemma 3.3 for
d ≥ 5 odd, since, in this case, ωd has no antipodal pair, Ud = ωd ∪ (−ωd), and
D2(Ud) = ω∗

2d. Lemma 5.1 also applies to the following two cases.
Table 1 in [11] contains known sharp codes on the sphere. Among them,

the following codes are not tight designs. Vertices of an (N − 1)-dimensional
regular simplex in R

d, 3 ≤ N ≤ d (we denote this code by TN ), vertices of
the demihypercube ω5 on S4, the 112- and 162-point sharp codes on S20, the
Higman–Sims configuration and the 891-point sharp code on S21, as well as
isotropic subspaces that appear for an infinite sequence of dimensions.

Since TN is 1-stiff, so is the code T2N := TN ∪ (−TN ). By Proposition 2.3
and Theorem 2.5, the set of universal minima of T2N is the intersection of
the sphere Sd−1 with the orthogonal complement of TN . The symmetrization
ω5 ∪ (−ω5) is the cube U5 whose universal minima are at the vertices of the
cross-polytope in R

5. We will not consider the 891-point sharp code9 or the
sequence of isotropic subspaces, since the sets of their universal minima are
not known.10 The remaining three codes will be split into two cases.

Case I. The Higman–Sims configuration, denoted by ω100, is a 100-point
3-design on S21, where distinct points form only dot products −4/11 and 1/11
with each other (see, e.g., [11, Table 1]). According to [10], this configuration
is 2-stiff. Paper [10] finds 176 pairs of antipodal vectors on S21, where each
vector forms only dot products 1√

22
and − 1√

22
with vectors from ω100. Denote

this set of 2 · 176 = 352 vectors by ω352. We have ω352 ⊂ D2(ω100). Each of
these vectors is a universal minimum of ω100 (see Theorem 2.5). Since no dot
product in ω100 is −1, the set ω100 does not contain an antipodal pair.

By Lemma 5.1, the symmetrized Higman–Sims configuration ω200 := ω100∪
(−ω100) is 2-stiff with D2(ω200) = D2(ω100) ⊃ ω352.

Case II. Two sharp codes on S20 can be derived from the McLaughlin
configuration ω275 ⊂ S21, which is strongly sharp (see, e.g., [11, Table 1]). Fix
a point x ∈ ω275. It forms dot product 1/6 with 162 points from ω275. Let ωx

162

denote the set of these 162 points. Point x forms dot product −1/4 with the
remaining set of 112 points from ω275, which we denote by ωx

112.
We apply homotheties to ωx

162 and ωx
112 to scale them to S̃20 := S21 ∩ H,

where H is the 21-dimensional linear subspace of R22 orthogonal to x. Denote
the resulting configurations by ω162 and ω112, respectively. Both ω162 and
ω112 are 3-designs. They are known sharp configurations, see [11, Table 1]
(ω112 is in fact the isotropic subspace with q = 3). Since any vector from
ωx

162 and any vector from ωx
112 form only dot products 1/6 or −1/4 with each

other, any vector from ω162 and any vector from ω112 form only dot products

9Jointly with the authors of paper [10], we are currently working to find universal minima
of the 891-point sharp code.
10Except for two first codes in the sequence of isotropic subspaces.
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1√
21

or − 1√
21

. Then both configurations are 2-stiff with ω112 ⊂ D2(ω162) and
ω162 ⊂ D2(ω112) (this was observed in [10]).

Since any two distinct points in ω275 form dot products 1/6 or −1/4 with
each other, any two distinct points in ω162 form dot products 1/7 or −2/7
and any two distinct points in ω112 form dot products 1/9 or −1/3; i.e., both
configurations do not contain antipodal pairs. Let ω324 := ω162 ∪ (−ω162) and
ω224 := ω112 ∪ (−ω112) be their symmetrization about the origin. It is not
difficult to see that ω224 ⊂ D2(ω162) and ω324 ⊂ D2(ω112). Each point of ω224

is a universal minimum of ω162 and each point of ω324 is a universal minimum
of ω112 (see Theorem 2.5).

By Lemma 5.1, both ω324 and ω224 are 2-stiff with

D2(ω324) = D2(ω162) ⊃ ω224 and D2(ω224) = D2(ω112) ⊃ ω324.

The conclusions in Cases I and II and Theorem 2.5 imply the following.

Proposition 5.2. Let g be an admissible potential function with a convex de-
rivative g′′ on (−1, 1). Then

(i) every point of the configuration ω352 is a point of absolute minimum over
S21 of the potential pg(·, ω200);

(ii) every point of the configuration ω224 is a point of absolute minimum over
S̃20 of the potential pg(·, ω324);

(iii) every point of the configuration ω324 is a point of absolute minimum over
S̃20 of the potential pg(·, ω224).

6. Certain properties of general stiff configurations

Every time we have a stiff configuration, in view of Theorem 2.5, we automat-
ically have its universal minima (the dual configuration). Moreover, every stiff
configuration attains the Fazekas–Levenshtein bound for covering [13, The-
orem 2]. Therefore, it is important to study stiff codes and their duals in
general. In this section, we characterize 1-stiff configurations on Sd, m-stiff
configurations on S1, and their duals and also prove some basic properties of
stiff configurations and their duals. We call the point c = 1

N

∑N
i=1 xi the center

of mass of a configuration ωN = {x1, . . . ,xN}.

Proposition 6.1. Let d ≥ 1. A configuration ωN ⊂ Sd, N ≥ 1, is 1-stiff if
and only if its center of mass is at the origin and ωN is contained in a d-
dimensional linear subspace of Rd+1.

Proof. The proposition follows from the fact that a point configuration is a
spherical 1-design if and only if its center of mass is located at the origin and
the fact that a hyperplane containing ωN also contains its center of mass. �

We next describe the dual of a 1-stiff configuration.
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Proposition 6.2. Let ωN ⊂ Sd, d ≥ 1, be a 1-stiff configuration. Then D1(ωN )
= L⊥ ∩ Sd, where L is the linear subspace of R

d+1 spanned by ωN . If k :=
dim L ≤ d − 1, then D1(ωN ) is a sphere in a (d + 1 − k)-dimensional subspace
of Rd+1. If k = d, then D1(ωN ) = {a,−a} for some a ∈ Sd, which is a 1-stiff
configuration.

Proof. Let z be any vector in D1(ωN ). By Proposition 2.3, we have z · y = 0
for every y ∈ ωN , since 0 is the only root of P

(d)
1 . Then z⊥L; i.e., z ∈ L⊥ ∩Sd.

If z is any vector in L⊥ ∩ Sd, then it forms only one dot product (which is
0) with any point from ωN ; that is, z ∈ D1(ωN ). The rest of Proposition 6.2
follows immediately. �

We now charactirize stiff configurations on S1.

Proposition 6.3. For every m ≥ 1, a configuration on S1 is m-stiff if and only
if it is a regular 2m-gon.

We remark that the regular 2m-gon ω̃2m on S1 is antipodal and its dual
Dm(ω̃2m) is another regular 2m-gon with Dm(Dm(ω̃2 m)) = ω̃2 m.

Proof of Proposition 6.3. If ωN = ω̃2m then it is a (2m − 1)-design and the
midpoint y of the arc joining any two neighboring vertices forms m distinct
values of dot products with points from ωN ; i.e., ωN is m-stiff.

By Proposition 2.3, the point y forms dot products κm
1 , . . . , κm

m (zeros of
P

(1)
m ) with points of ω̃2m, each with frequency 2 = 2ma0(ϕi), i = 1, . . . , m,

where {ϕ1, . . . , ϕm} is the fundamental system of polynomials for the nodes
κm

i . We have

a0(ϕi) =
1
m

and κm
i = cos

(2i − 1)π
2m

, i = 1, . . . , m. (6.1)

Assume that ωN is m-stiff. Let z be any point in Dm(ωN ). By Proposition 2.3,
point z forms dot products κm

1 , . . . , κm
m with points of ωN , where κm

i , i =
1, . . . , m, are the zeros of P

(1)
m . Then ωN is contained in the set of points of

intersection of S1 with m parallel lines; that is, #ωN ≤ 2m. By Proposition 2.3
and (6.1), the frequency Mi of the dot product κm

i is Mi = Na0(ϕi) = N/m ≤
2, i = 1, . . . , m. Hence, frequencies Mi are equal and each of the m parallel
lines contains the same number of points from ωN (one or two). Assume to
the contrary that each Mi equals 1. Then ωN has only m points, which means
that any point y ∈ ωN forms at most m distinct values of the dot product
with points of ωN ; i.e., y ∈ Dm(ωN ). One of the dot products is 1, while by
Proposition 2.3, these dot products must be zeros κm

i of P
(1)
m none of which is

1. This contradiction shows that Mi = 2, i = 1, . . . , m, and, hence #ωN = 2m.
Vector z forms each of the angles (2i−1)π

2m = arccos κm
i with exactly two points

from ωN , i = 1, . . . , m. Then ωN is a regular 2m-gon. �
We next prove the following basic statement.
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Proposition 6.4. For any configuration ωN ⊂ Sd, d ≥ 1, with Dm(ωN ) �= ∅,
m ≥ 1, the set Dm(ωN ) is antipodal.

If ωN is m-stiff, then ωN ⊂ Dm(Dm(ωN )). If, in addition, Dm(ωN ) is finite
and m-stiff, then Dm(Dm(Dm(ωN ))) = Dm(ωN ).

Though the dual Dm(ωN ) is antipodal, this is not always true for the m-
stiff configuration ωN itself. For example, the d-demicube ωd on Sd−1 is not
antipodal for any d ≥ 3 odd.

In view of Proposition 6.4, the equality ωN = Dm(Dm(ωN )) with an m-
stiff configuration ωN implies that ωN is antipodal. However, the inclusion
ωN ⊂ Dm(Dm(ωN )) can be sometimes strict (even when both ωN and Dm(ωN )
are antipodal and m-stiff). This is the case, for example, for ωN = ωd and any
d ≥ 5 in view of Lemma 3.3 and the fact that the dual of the cross-polytope
ω∗

2d is the whole cube Ud (for d ≥ 5 even, both ωd and D2(ωd) = ω∗
2d are

antipodal and 2-stiff). At the same time, every stiff configuration from [2,
Table 3] coincides with the dual of its dual.

Some other examples of non-antipodal stiff configurations ωN are given
in [10]. Since, by Proposition 6.4, the duals of their duals are antipodal, the
inclusion ωN ⊂ Dm(Dm(ωN )) is strict as well.

Proof of Proposition 6.4. Let ωN ⊂ Sd be arbitrary with Dm(ωN ) �= ∅. For
any point z ∈ Dm(ωN ), the point −z also forms at most m distinct dot prod-
ucts with points of ωN ; that is −z ∈ Dm(ωN ) and the set Dm(ωN ) is antipodal.
Choose any point z in an m-stiff ωN . For any point y ∈ Dm(ωN ), by Propo-
sition 2.3, we have y · z ∈ {κm

1 , . . . , κm
m}; that is, z forms at most m distinct

dot products with points of Dm(ωN ). Then z ∈ Dm(Dm(ωN )) and ωN ⊂
Dm(Dm(ωN )). Assume additionally that X := Dm(ωN ) is finite and m-stiff.
The inclusion ωN ⊂ Dm(Dm(ωN )) implies that X = Dm(ωN ) ⊃ Dm(Dm(X)).
Since X is m-stiff, we have the opposite inclusion. �

We say that a point set in R
d+1 is in general position if it is not contained in

any hyperplane. One can construct plenty of examples of m-stiff configurations,
m ≥ 2, whose dual is not in general position. For instance, start with the cube
U3 inscribed in S2 and let α1 and α2 be the parallel planes containing two
paralel facets of U3. For a given n ≥ 2, we rotate the cube U3 about the axis
� perpendicular to the planes α1 and α2 and passing through the origin at
angles πk

2n , k = 0, 1, . . . , n − 1, and let ωN be the union of the resulting n
cubes. Then ωN is a 3-design as a disjoint union of finitely many 3-designs.
Since ωN is still contained in planes α1 and α2, it is 2-stiff. However, its dual
is D2(ωN ) = {a,−a}, where a is a unit vector parallel to the axis �. The dual
is not in general position. It is also only 1-stiff. This example can, of course,
be extended to other dimensions and other initial configurations.

Proposition 6.5. Let ωN ⊂ Sd, d ≥ 1, be an m-stiff configuration, m ≥ 2.
Then
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(i) Dm(ωN ) contains at most md+1 points;
(ii) if Dm(ωN ) is in general position, then ωN contains at most md+1 points;
(iii) if Dm(ωN ) is not in general position, then Dm(ωN ) is 1-stiff and, hence,

not m-stiff.

Proposition 6.5 implies that an m-stiff configuration on Sd, m ≥ 2, can-
not have more than md+1 universal minima. This cardinality bound can be
achieved: take ωN to be the set of vertices of a regular cross-polytope in-
scribed in Sd. It is 2-stiff and its dual is a cube inscribed in Sd, which has
exactly 2d+1 vertices. If the universal minima of an m-stiff configuration on
Sd are in general position, then the configuration itself contains at most md+1

points. This bound is attained by the set of 2d+1 vertices of a cube inscribed
in Sd, which is 2-stiff. Its dual is the set of vertices of a (d + 1)-dimensional
regular cross-polytope.

For m ≥ 3, there may exist an m-stiff configuration on Sd with more than
2d+1 points in it or in its dual. For example, the 24-cell on S3 has N =
24 > 24 points (its dual is another 24-cell), or the dual of the symmetrized
Schläffi configuration on S5, which has N = 72 > 26 points, see [2]. All these
configurations are 3-stiff.

If the universal minima are not in general position, then no upper bound
depending only on m and d can be written for the cardinality of an m-stiff
configuration ωN , d ≥ 2 (when ωN exists for those m and d), see Proposition
6.7 below.

Another interesting question related to Proposition 6.5 is about the general
assumptions under which the dual of a given m-stiff configuration, m ≥ 2, is
in general position and whether this is sufficient for the dual to be also m-stiff.
The dual is m-stiff with the same m, for example, for every stiff configuration
mentioned in [2, Table 3] and for the d-demicube, d ≥ 4.

To establish Proposition 6.5, we need the following auxiliary statement.

Lemma 6.6. Suppose m, d ≥ 1 and X ⊂ Sd is a finite set in general position.
Then for any m-element subset Λ ⊂ [−1, 1], there are at most md+1 points
z ∈ Sd such that D(z,X) ⊂ Λ.

Proof. Since X is in general position, it contains a linearly independent subset
{y1, . . . ,yd+1}. Let z ∈ Sd be any point with D(z,X) ⊂ Λ. Then z · yj = αj ,
j = 1, . . . , d + 1, where α1, . . . , αd+1 ∈ Λ. Consequently, z is a solution to a
linear system with a fixed non-singular coefficient matrix and vector of right-
hand sides (α1, . . . , αd+1) ∈ Λd+1. Each such system has a unique solution.
Since there are md+1 possible vectors of right-hand sides for these systems,
there are at most md+1 points z ∈ Sd with D(z,X) ⊂ Λ. �

Proof of Proposition 6.5. Since ωN is at least a 3-design, it is in general po-
sition. If it were not, then ωN would not be a 2-design: for the polynomial
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p(x) = (x · v − α)2, where x · v = α is an equation of the hyperplane con-
taining ωN , the average of p over ωN would be zero while the average of p
over Sd would be positive. By Proposition 2.3, for every z ∈ Dm(ωN ), we
have D(z, ωN ) ⊂ Λm := {κm

1 , . . . , κm
m}, where κm

j ’s are zeros of P
(d)
m . Then, by

Lemma 6.6, we have #Dm(ωN ) ≤ md+1.
Assume that Dm(ωN ) is in general position. Since ωN is m-stiff, by Propo-

sition 2.3, for any z ∈ ωN and y ∈ Dm(ωN ), we have z · y ∈ Λm. Then
D(z,Dm(ωN )) ⊂ Λm, z ∈ ωN . By Lemma 6.6, we have N ≤ md+1.

Assume that Dm(ωN ) is not in general position; i.e., contained in some
hyperplane H. By Proposition 6.4, it is antipodal. Then its center of mass is
at the origin; i.e., H is a d-dimensional linear subspace of Rd+1. By Proposition
6.1, Dm(ωN ) is 1-stiff. Since Dm(ωN ) is contained in one hyperplane, by the
above argument, it cannot be a 3-design. Then Dm(ωN ) cannot be m-stiff for
any m ≥ 2. �

The statement below implies that the set of possible cardinalities of m-stiff
configurations on Sd, d ≥ 2 (provided that an m-stiff configuration exists on
Sd), forms an additive semigroup (in particular, it is not bounded above). This
is not the case for d = 1 in view of Proposition 6.3. In the case m = 1 and
d ≥ 2, this semigroup is the set of all integers N ≥ 2, see Proposition 6.1.

Proposition 6.7. Suppose that for given m ≥ 1 and d ≥ 2, there exist m-
stiff configurations on Sd of cardinalities N1 and N2. Then there is an m-stiff
configuration on Sd of cardinality N1 + N2.

Proposition 6.7 and Bézout’s identity imply that if, for a given pair (m, d),
d ≥ 2, the cardinalities of two m-stiff configurations on Sd have the greatest
common divisor δ, then for any sufficiently large multiple N of δ, there exists
an m-stiff configuration on Sd of cardinality N .

Proof. Let ωNi
⊂ Sd be an m-stiff configuration of cardinality Ni, i = 1, 2,

and let zi ∈ Dm(ωNi
), i = 1, 2, be chosen so that z1 �= z2 (if it happens

that z1 = z2, we choose −z2 instead of z2). We will construct an m-stiff
configuration of cardinality N1 + N2. By Proposition 2.3, both vectors z1 and
z2 form only dot products κm

1 , . . . , κm
m with points from the corresponding

configuration ωNi
. Let H be the d-dimensional subspace of Rd+1, which is the

perpendicular bisector for the line segment [z1, z2]. Let rH : Rd+1 → R
d+1 be

the reflection transformation about the subspace H and let U be its matrix
(U is orthogonal). Then for every x ∈ ω′

N1
:= rH(ωN1), there is y ∈ ωN1 such

that x = Uy and

x · z2 = Uy · z2 = y · UT z2 = y · z1 = κm
i for some i = 1, . . . , m. (6.2)

The set ω′
N1

is m-stiff. Denote by a ∈ Sd a vector perpendicular to z2, not
contained in any subspace span{w − v}, where w ∈ ωN2 and v ∈ ω′

N1
, and

a is not perpendicular to any vector from ωN2 . Such a vector a exists, since



528 S. Borodachov AEM

all these conditions delete a set of the (d − 1)-dimensional measure zero from
Sd ∩ {z2}⊥.

Then L = {a}⊥ is disjoint with ωN2 . Furthermore, z2 ∈ L and the con-
figuration ω′′

N1
:= rL(ω′

N1
) is disjoint with ωN2 . If it were not, then L would

be the perpendicular bisector for a line segment whose one endpoint w1 is in
ωN2 and the other endpoint v1 is in ω′

N1
. We have w1 �= v1, since, otherwise,

w1 ∈ L and, hence, a⊥w1. Then w1 − v1 is a non-zero vector perpendicular
to L and a ∈ span{w1 − v1} contradicting the choice of a.

Let V be the matrix of the reflection transformation rL. Then for every
z ∈ ω′′

N1
, there is x ∈ ω′

N1
such that z = V x and using (6.2) we have

z · z2 = V x · z2 = x · V T z2 = x · z2 = κm
i for some i = 1, . . . , m.

Thus, z2 ∈ Dm(ω′′
N1

∪ ωN2) and ω′′
N1

∪ ωN2 is a disjoint union of two (2m − 1)-
designs. Then it is also a (2m−1)-design, and, hence is an m-stiff configuration
of cardinality N1 + N2. �

We conclude this section with the following important existence result for
codes attaining the Fazekas–Levenshtein bound for covering, see [13, Theo-
rem 2]. Recall that for a given m ∈ N, a spherical (2m − 1)-design on Sd

attains the Fazekas–Levenshtein bound if and only if it is m-stiff. Any m-stiff
configuration ωN on Sd is a set of nodes of a cubature (with equal weights)
exact on multivariate polynomials of degree up to 2m−1. It gives a rise to the
unique univariate quadrature for integration with weight wd(t) with m nodes
and algebraic degree of precision 2m − 1. It is called the Gauss–Gegenbauer
quadrature. Its weights are rational and positive, since they equal the frequen-
cies of the m dot products formed by each universal minimum point of ωN

with points of ωN . Here we establish the converse: if the Gauss–Gegenbauer
quadrature with m nodes for integration with weight wd(t) has positive and
rational weights, then one can construct an m-stiff configuration on Sd.

Recall that {ϕ1, . . . , ϕm} are the fundamental polynomials for the set of
zeros κm

1 , . . . , κm
m of the m-th Gegenbauer polynomial P

(d)
m .

Theorem 6.8. For every m, d ≥ 1, there exists an m-stiff configuration ωN ⊂
Sd if and only if every 0-th Gegenbauer coefficient a0(ϕk), k = 1, . . . , m, is a
positive rational.

The Gauss–Gegenbauer quadrature is the quadrature

a0(h) =
∫ 1

−1

h(t)wd(t) dt ≈
m∑

i=1

βih(κm
i ), (6.3)

where βi = a0(ϕi), i = 1, . . . , m. It is exact for all polynomials h ∈ P2m−1.
Theorem 6.8 can be restated as follows: there extsis an m-stiff configuration
on a given sphere Sd if and only if all the coefficients of the corresponding
Gauss–Gegenbauer quadrature are positive rationals.
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Remark 6.9. The coefficients of the Gauss–Gegenbauer quadrature are positive
rationals for d = 1 and any m ≥ 1. In this case, vertices of a regular 2m-gon
on S1 form an m-stiff configuration. The Gauss–Gegenbauer quadrature also
has positive rational coefficients (for all d ≥ 1) when m = 1 (there is only one
coefficient that equals 1), m = 2 (both coefficients equal 1/2), and m = 3.
When d ≥ 2 and m ≥ 4, the Gauss–Gegenbauer quadrature may also have
positive rational coefficients. For example, this happens for d = 22 and m = 4,
when the 4600-point tight 7-design on S22 appears to be 4-stiff, see [10].

We will need the following statement which immediately follows from the
results of Seymour and Zaslavsky [22, Main Theorem].

Lemma 6.10. Let n and d be arbitrary positive integers. Then for every cardi-
nality N sufficiently large, there exists an N -point spherical n-design on Sd.

Proof of Theorem 6.8. Assume that for a given pair m, d ≥ 1, there exists an
m-stiff configuration on Sd. Then by Proposition 2.3, each frequency a0(ϕi)N ,
i = 1, . . . , m, is a positive integer; that is, each a0(ϕi) is a positive rational.

Assume now that for a given pair m, d ≥ 1, each coefficient a0(ϕi), i =
1, . . . , m, is a positive rational. We will construct an m-stiff configuration on
Sd.

Case I: d = 1. An m-stiff configuration on S1 is a regular 2m-gon.
Case II: m = 1. There exists a 1-stiff configuration on Sd, d ≥ 1, in view of

Proposition 6.1. When d = 1, it is an antipodal pair and, when d ≥ 2, it is, for
example, a regular d-simplex inscribed in the intersection of a d-dimensional
linear subspace of Rd+1 with Sd.

The remaining case (d,m ≥ 2) will be handled using the following lemma.
For a given u ∈ [−1, 1], define the mapping πu : Sd−1 → Sd by

πu(z) := ued+1 +
√

1 − u2(z, 0), z ∈ Sd−1,

where we recall that ed+1 = (0, . . . , 0, 1) ∈ R
d+1. The mapping πu is injective

for u ∈ (−1, 1). �

Lemma 6.11. Let d ≥ 2 and n ≥ 1. Suppose positive rationals γ1, . . . , γν and
reals −1 < t1 < . . . < tν < 1 are such that

∫ 1

−1

h(t)wd(t) dt =
ν∑

i=1

γih(ti) (6.4)

holds for every polynomial h ∈ Pn. Suppose also that Xi, i = 1, . . . , ν, are
spherical n-designs on Sd−1 such that #X1

γ1
= . . . = #Xν

γν
. Denote N := #X1 +

. . . + #Xν and let
ωN := πt1(X1) ∪ . . . ∪ πtν

(Xν).

Then ωN is an n-design on Sd contained in the union of ν parallel hyperplanes.
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Proof. By item (iii) of Theorem 2.1, it is sufficient to show that

p�(x, ωN ) :=
N∑

i=1

(x · xi)� = Nc�,d, x ∈ Sd, � = 1, . . . , n, (6.5)

where c�,d :=
∫ 1

−1
t�wd(t) dt. Choose arbitrary 1 ≤ � ≤ n and x ∈ Sd. Let u be

the (d+1)-th coordinate of x. If u ∈ (−1, 1), let x̃ ∈ R
d be the vector obtained

from x by deleting the (d + 1)-th coordinate and normalizing the resulting
vector to lie on Sd−1. If |u| = 1, we let x̃ be any vector on Sd−1. Then

p�(x, ωN ) =
ν∑

i=1

∑

y∈πti
(Xi)

(x · y)�

=
ν∑

i=1

∑

z∈Xi

(
(ued+1 +

√
1 − u2(x̃, 0)) ·

(
tied+1 +

√
1 − t2i (z, 0)

))�

=
ν∑

i=1

∑

z∈Xi

(
uti +

√
1 − u2

√
1 − t2i (x̃ · z)

)�

.

Since quadrature (6.4) is exact for h(t) = 1, we have
∑ν

i=1 γi = 1. Then
#Xi = γiN , i = 1, . . . , ν. Since Xi is an n-design on Sd−1, by item (iii) of
Theorem 2.1, for u ∈ [−1, 1] fixed, we have

p�(x, ωN ) = N
ν∑

i=1

γi

1∫

−1

(
uti + t

√
1 − u2

√
1 − t2i

)�

wd−1(t) dt.

For (u, v) ∈ [−1, 1]2, we have

q(u, v) :=

1∫

−1

(
uv + t

√
1 − u2

√
1 − v2

)�

wd−1(t) dt

=

1∫

−1

�∑

k=0

(
�

k

)
u�−kv�−k(1 − u2)k/2(1 − v2)k/2tkwd−1(t) dt

=
�∑

k=0
k even

ck,d−1

(
�

k

)
u�−kv�−k(1 − u2)k/2(1 − v2)k/2,

(6.6)

where we omitted terms corresponding to k odd, since ck,d−1 = 0 for odd k.
Then q(u, v) is a polynomial defined on [−1, 1]2. For every u ∈ [−1, 1] fixed, q
is a polynomial in v of degree � ≤ n and, in view of (6.4),

p�(x, ωN ) = N

ν∑

i=1

γiq(u, ti) = N

1∫

−1

q(u, v)wd(v) dv. (6.7)
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If � is odd, the polynomial q(u, v) is odd in v. Therefore,

p�(x, ωN ) = 0 = Nc�,d.

Assume that � is even. From (6.6), we have

τ(u) :=

1∫

−1

q(u, v)wd(v) dv =
�∑

k=0
k even

ck,d−1
γd

γd+k
c�−k,d+k

(
�

k

)
u�−k(1 − u2)k/2.

It remains to show that τ(u) = c�,d, u ∈ [−1, 1]. For u ∈ (0, 1], making the
substitution u = (w2 + 1)−1/2, w ∈ [0,∞), we obtain

τ(u) =
1

(w2 + 1)�/2

�∑

k=0
k even

θ�
k,d

(
�

k

)
wk =

1
(w2 + 1)�/2

�/2∑

j=0

θ�
2j,d

(
�

2j

)
w2j ,

(6.8)
where θ�

k,d := ck,d−1
γd

γd+k
c�−k,d+k.

We will show that the coefficient of w2j in (6.8) is proportional to the
binomial coefficient

(
�/2
j

)
. Then the sum in (6.8) will be a constant multiple

of (w2 + 1)�/2 thus showing that τ(u) is constant. It is not difficult to verify

that c2j,d =
Γ( d+1

2 )Γ(j+ 1
2 )

Γ( 1
2 )Γ(j+ d+1

2 ) , j ≥ 0, γd =
Γ( d+1

2 )
Γ( 1

2 )Γ( d
2 )

, and
Γ(k+ 1

2 )
Γ( 1

2 )(2k)!
= 1

k!·22k , k ≥ 0.

Then

θ�
2j,d

(
�

2j

)
=

�! · Γ
(

d+1
2

)

Γ
(

�+d+1
2

) · Γ
(
j + 1

2

)

Γ
(

1
2

)
(2j)!

·
Γ

(
�−2j

2 + 1
2

)

Γ
(

1
2

)
(� − 2j)!

=
�! · Γ

(
d+1
2

)

Γ
(

�+d+1
2

) · 1
j! · 22j

· 1
2�−2j (�/2 − j)!

=
·Γ (

d+1
2

)

Γ
(

�+d+1
2

) · �!
(�/2)! · 2�

·
(

�/2
j

)
=

Γ
(

d+1
2

)
Γ

(
�+1
2

)

Γ
(

�+d+1
2

)
Γ

(
1
2

) ·
(

�/2
j

)

= c�,d

(
�/2
j

)

holds for every j = 0, 1, . . . , �/2. From (6.8), we now have

τ(u) =
c�,d

(w2 + 1)�/2

�/2∑

j=0

(
�/2
j

)
w2j = c�,d, u ∈ (0, 1].

Since τ(u) is an even polynomial, we have τ(u) = c�,d, u ∈ [−1, 1]. From (6.7)
we have

p�(x, ωN ) = Nτ(u) = Nc�,d, u ∈ [−1, 1].
Thus, (6.5) holds for every � = 1, . . . , n and, trivially, for � = 0. Then item (iii)
of Theorem 2.1 implies that ωN is an N -point n-design on Sd. It is contained
in the union of ν parallel hyperplanes. �
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We are now ready to prove the remaining case of Theorem 6.8.
Case III: m, d ≥ 2. In view of Lemma 6.10, there is a cardinality N0 such

that for every N ≥ N0, there exists a spherical (2m−1)-design on Sd−1. Denote
ρ := min

i=1,m
a0(ϕi) and let μ be the least common denominator of positive

rationals a0(ϕi)
ρ N0, i = 1, . . . , m. Let Xi be a (2m − 1)-design on Sd−1 of

cardinality Ni := μa0(ϕi)
ρ N0, i = 1, . . . , m. Applying Lemma 6.11 with ν = m,

γi = a0(ϕi), i = 1, . . . , m, and ti’s being the zeros of P
(d)
m and taking (6.3)

into account, we obtain a spherical (2m − 1)-design ωN on Sd of cardinality
N = μ

ρ N0 contained in m parallel hyperplanes. Then ωN is m-stiff. �

Author contributions All the work was done by the author, Sergiy Borodachov

Declarations

Conflict of interest The authors declare no competing interests.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Bilogliadov, M.: Equilibria of Riesz potentials generated by point charges at the roots
of unity. Comput. Methods Funct. Theory 15(4), 471–491 (2015)

[2] Borodachov, S.V.: Absolute minima of potentials of a certain class of spherical designs
(submitted). arXiv:abs/2212.04594

[3] Borodachov, S.V.: Absolute minima of potentials of certain regular spherical configura-
tions. J. Approx. Theory 294, 105930 (2023)

[4] Borodachov, S.V.: Extreme values of potentials of spherical designs and the polarization
problem. XII Annual International Conference of the Georgian Mathematical Union,
Batumi State University, Georgia, August 29–September 3

[5] Borodachov, S.V.: Min-max polarization for certain classes of sharp configurations on
the sphere. Constr. Approx. (2023). https://doi.org/10.1007/s00365-023-09661-1

[6] Borodachov, S.V.: Min-max polarization for certain classes of sharp configurations on
the sphere. Workshop “Optimal Point Configurations on Manifolds”, ESI, Vienna, Jan-
uary 17–21, (2022). https://www.youtube.com/watch?v=L-szPTFMsX8

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/2212.04594
https://doi.org/10.1007/s00365-023-09661-1
https://www.youtube.com/watch?v=L-szPTFMsX8


Vol. 98 (2024) Odd strength spherical designs attaining. . . 533

[7] Borodachov, S.V.: Polarization problem on a higher-dimensional sphere for a simplex.
Discret. Comput. Geom. 67, 525–542 (2022)

[8] Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer, New
York (2019)

[9] Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: On po-
larization of spherical codes and designs. J. Math. Anal. Appl. 524(1), 127065 (2023)

[10] Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: Universal
minima of discrete potentials for sharp spherical codes. https://arxiv.org/pdf/2211.
00092.pdf

[11] Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Amer.
Math. Soc. 20(1), 99–148 (2007)

[12] Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata.
6(3), 363–388 (1977)

[13] Fazekas, G., Levenshtein, V.I.: On upper bounds for code distance and covering radius
of designs in polynomial metric spaces. J. Combin. Theory Ser. A 70(2), 267–288 (1995)

[14] Giorgadze, G., Khimshiashvili, G.: Stable equilibria of three constrained unit charges.
Proc. I. Vekua Inst. Appl. Math. 70, 25–31 (2020)

[15] Gosset, T.: On the regular and semi-regular figures in space of n dimensions. Macmillan,
Messenger of Mathematics (1900)

[16] Hardin, D., Kendall, A., Saff, E.: Polarization optimality of equally spaced points on
the circle for discrete potentials. Discrete Comput. Geom. 50(1), 236–243 (2013)

[17] Levenshtein, V.I.: On bounds for packings in n-dimensional Euclidean space. Soviet
Math. Dokladi 20, 417–421 (1979)

[18] Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl.
Math. 25, 1–82 (1992)

[19] Levenshtein, V.I.: Universal bounds for codes and designs. In: V. Pless and W.C. Huff-
man (Eds.), Chapter 6 in Handbook of Coding Theory. Elsevier Science B.V. (1998)

[20] Nikolov, N., Rafailov, R.: On the sum of powered distances to certain sets of points on
the circle. Pacific J. Math. 253(1), 157–168 (2011)

[21] Nikolov, N., Rafailov, R.: On extremums of sums of powered distances to a finite set of
points. Geom. Dedicata. 167, 69–89 (2013)

[22] Seymour, P.D., Zaslavsky, T.: Averaging sets: a generalization of mean values and spher-
ical designs. Adv. Math. 52, 213–240 (1984)

[23] Stolarsky, K.: The sum of the distances to certain pointsets on the unit circle. Pacific
J. Math. 59(1), 241–251 (1975)

[24] Stolarsky, K.: The sum of the distances to N points on a sphere. Pacific J. Math. 57(2),
563–573 (1975)
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