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1. Preliminaries

Let R , Q , and N denote the set of all real numbers, rationals, and positive
integers, respectively. We call a function ϕ : R → R additive if

ϕ(x + y) = ϕ(x) + ϕ(y) (1)

holds for all x, y ∈ R . The function ϕ is called Q-homogeneous if the equation
ϕ(qx) = qϕ(x) is fulfilled by every q ∈ Q and x ∈ R . As it is also well-known
[10, Theorem 5.2.1], if ϕ : R → R is additive, then ϕ is Q-homogeneous as
well. An additive function is called a linear function if ϕ(x) = xϕ(1).

A function f : R → R is called quadratic if it satisfies the functional equa-
tion

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2)

for every x, y ∈ R . As it is well known ([1], [2, Section 11.1]), we can associate
with a quadratic function f : R → R the bi-additive and symmetric functional
F : R × R → R , given by the formula

F (x, y) =
1
2

[f(x + y) − f(x) − f(y)] (3)
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for all x, y ∈ R . Then F is bi-additive (the mappings t �→ F (t, x) and t �→
F (x, t) (t ∈ R) are additive for each x ∈ R), and f is obtained as the diagonal-
ization of F (i.e., f(x) = F (x, x) for all x ∈ R ). Applying the Q-homogeneity
of additive functions, we have

F (rx, sy) = rsF (x, y) and f(rx) = F (rx, rx) = r2F (x, x) = r2f(x) (4)

for every r, s ∈ Q and x, y ∈ R . On the other hand, applying Eq. (3) and
induction on n, one can easily prove the identity

f

(
n∑

k=0

uk

)
=

n∑
k=0

f(uk) + 2
∑

0≤i<j≤n

F (ui, uj) (5)

for every n ∈ N and u0 , u1 , . . . , un ∈ R .
We say that ϕ : R → R is a derivation if ϕ satisfies (1) (i.e. ϕ is additive)

and

ϕ(xy) = ϕ(x)y + xϕ(y) (6)

for all x, y ∈ R . The family of derivations ϕ : R → R is denoted by D(R) in
the sequel.

Equation (6) implies ϕ(1) = 0 . Hence, any linear derivation is identically
zero. On the other hand, it is also well known (and easy to prove) that the graph
of any non-linear additive function ϕ : R → R is dense in R

2. In particular, the
graph of any non-trivial (i.e., not identically zero) derivation ϕ : R → R has
to be dense in R

2. The existence of such functions is established, in a more
general setting, for instance, in [13] (and in [10, Section 14.2]).

We need the notion of higher order derivation. The concept of derivations
of higher order was introduced and characterized via functional equations by
Unger and Reich [12]. The theory has been developed by Reich [11], Halter-
Koch and Reich [9], Ebanks [5], and quite recently by Gselmann, Vincze and
Kiss [8]. The recursive definition is based on the notion of bi-derivations. A
functional B : R × R → R is called a bi-derivation if the mappings

t �→ B(t, x) and t �→ B(x, t) (t ∈ R)

are derivations for each x ∈ R .

Definition 1.1. The identically zero map is the only derivation of order zero.
For each n ∈ N, an additive mapping ϕ : R → R is called a derivation of order
n, if there exists B : R ×R → R such that B is a (symmetric) bi-derivation of
order n − 1 (that is, B is a derivation of order n − 1 in each variable) and

ϕ(xy) − xϕ(y) − ϕ(x)y = B(x, y) (x, y ∈ R).

The set of derivations of order n will be denoted by Dn(R).

Then D1(R) is the set of derivations. Since the identically zero mapping
from R × R into R is a bi-derivation, we have the inclusion D1(R) ⊆ D2(R) .
Then an inductive argument yields the inclusion Dn−1(R) ⊆ Dn(R) for every
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n ∈ N . In the sequel we consider various characterizations of derivations of
order 3.

Proposition 1.2. (Unger and Reich [12] and Ebanks [5]). Let ϕ : R → R be an
additive function. Then ϕ ∈ D3(R) if and only if

ϕ
(
x4

) − 4xϕ
(
x3

)
+ 6x2ϕ

(
x2

) − 4x3ϕ (x) = 0 (7)

for all x ∈ R.

We also need the following Lemma:

Lemma 1.3. (Amou [3, Lemma 2.3]). Let ϕ : R → R be an additive function
such that

ϕ
(
x8

) − 14x4ϕ
(
x4

)
+ 56x6ϕ

(
x2

) − 64x7ϕ (x) = 0 (8)

for every x ∈ R . Then ϕ ∈ D3(R).

Though it is not explicitly mentioned by Amou [3], the converse implica-
tions is valid as well. Details are given in Proposition 1.5 below.

We shall also make use of the following observation.

Lemma 1.4. (Z. Boros and E. Garda-Mátyás [4]). If F is a field, n ∈ N , X is
an arbitrary set, V ⊂ F contains at least n + 1 elements, and the functions
Gk : X → F (k = 0, 1, . . . , n) satisfy the equation

n∑
k=0

Gk(x)rk = 0 (9)

for every x ∈ X and r ∈ V , then Gk(x) = 0 for every x ∈ X and k ∈
{ 0 , 1 , . . . , n }.

In this paper, we shall apply Lemma 1.4 for X = F = R and V = Q .
Now we can establish a stronger version of Lemma 1.3.

Proposition 1.5. Let ϕ : R → R be an additive function. Then ϕ fulfills (8) if,
and only if, ϕ ∈ D3(R).

Proof. In view of Proposition 1.2, we have to show that Eqs. (7) and (8) are
equivalent for additive mappings ϕ : R → R . Our argument is a refinement of
Amou’s proof [3, Lemma 2.3]. Namely, as it is explained in the cited argument,
if the additive function ϕ fulfills (8), taking arbitrary x ∈ R and r ∈ Q ,
substituting x + r in place of x in (8), expanding the left hand side using the
additivity and the rational homogeneity of ϕ, the coefficient of r4 equals 56
times the left hand side of (7). Then our Lemma 1.4 yields the validity of (7).
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Now let us assume that the additive function ϕ : R → R fulfills (7). Let us
take x ∈ R and r ∈ Q arbitrarily. Replacing x with x(x + r) we obtain

0 = ϕ
(
x4(x + r)4

) − 4x(x + r)ϕ
(
x3(x + r)3

)
+6x2(x + r)2ϕ

(
x2(x + r)2

) − 4x3(x + r)3ϕ (x(x + r))

=
4∑

k=0

Gk(x)rk,

where

Gk(x) =
(

4
k

) 8−k−1∑
j=0

Ak,jx
jϕ(x8−k−j)

with

A4,j = (−1)j
(

4
j

)
(j = 0, 1, 2, 3, 4),

Ak,0 = Ak,8−k = 1 (k = 0, 1, 2, 3) and

Ak,j = Ak+1,j−1 + Ak+1,j (j = 1, 2, . . . , 8 − k − 1), (k = 0, 1, 2, 3).

Lemma 1.4 yields Gk(x) = 0 for every x ∈ R and k ∈ { 0, 1, 2, 3, 4 }. Now Eq.
(8) follows from the observation that its left-hand side equals

G0(x) +
2
3
x2G2(x) + 2x3G3(x) + 8x4G4(x).

�

2. Motivation

In a recent paper, Z. Boros and E. Garda-Mátyás [4] investigated quadratic
functions f : R → R that satisfy the additional equation

x2f(y) = y2f(x) (10)

for the pairs (x, y) ∈ R
2 that fulfill the condition P (x, y) = 0 for some fixed

polynomial P of two variables. The authors [4, Problem 4.1] showed that there
exist discontinuous quadratic solutions of Eq. (10) for the pairs (x, y) ∈ R

2 that
fulfill xy = 1 , giving a counterexample, and formulated the following problem:
Determine the general quadratic solution f : R → R of the equation

f(x) = x4f

(
1
x

)
(x ∈ R \ {0}). (11)

Though the continuity of f does not follow from this assumption, E. Garda-
Mátyás [6] obtained some interesting results for the mappings x �→ F (x, 1)
and x �→ F (x, 1/x). By Lemma 3.1 in [6] we have

F (x, 1) = xf(1) (12)
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for all x ∈ R , and by Lemma 3.2 in [6] we have

f
(
x2

)
= 2x4F

(
x,

1
x

)
+ 6x2f(x) − 7x4f(1) (13)

for all x ∈ R \ {0} .
In this paper we give further necessary conditions for quadratic functions

f : R → R that satisfy the additional Eq. (11).

3. Main results

Proposition 3.1. Let f : R → R be a quadratic function, which satisfies the
additional Eq. (11). Let F : R × R → R be given by (3). Let us define a map
H : R × R → R by

H(x, y) := F (x, y) − xyf(1) (14)

and let h(x) = H(x, x) (x ∈ R). Then H is symmetric and bi-additive,

H(x, 1) = 0, (15)
h(x) = f(x) − x2f(1), (16)

for every x ∈ R , and we have

H

(
x,

1
x

)
= F

(
x,

1
x

)
− f(1), (17)

h(x) = x4h

(
1
x

)
(18)

for every x ∈ R \ {0} .
Proof. From (12) and (14) we obtain (15) as

H(x, 1) = F (x, 1) − xf(1) = 0,

while (16) is obtained from (3) as

h(x) = H(x, x) = F (x, x) − x2f(1) = f(x) − x2f(1)

for every x ∈ R . Replacing y with 1
x in Eq. (14) we obtain (17). From (16) we

have h(1) = 0 . The conditional Eq. (11) has the form

h(x) + x2f(1) = x4

[
h

(
1
x

)
+

1
x2

f(1)
]

,

which yields (18) for every real number x �= 0 . �

Lemma 3.2. If a quadratic function f : R → R satisfies (11), then

F
(
x2, x

)
= 2xf(x) − x3f(1). (19)

for all x ∈ R , where F : R × R → R is given by (3).
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Proof. We rearrange Eq. (13) in the following form

f
(
x2

) − x4f(1) = 2x4

[
F

(
x,

1
x

)
− f(1)

]
+ 6x2

[
f(x) − x2f(1)

]
.

From Eq. (16) we obtain h
(
x2

)
= f

(
x2

) − x4f(1). Then with (17), Eq. (13)
has the form

h
(
x2

)
= 2x4H

(
x,

1
x

)
+ 6x2h(x). (20)

Using (20) for x ∈ R \ {0, 1}, we write h
(
(x − 1)2

)
in two ways:

h
(
(x − 1)2

)
= 2(x − 1)4H

(
x − 1,

1
x − 1

)
+ 6(x − 1)2h(x − 1).

From (15) we have h(x − 1) = h(x) and H
(
x − 1, 1

x−1

)
= H

(
x, 1

x−1

)
, so

h
(
(x − 1)2

)
= 2(x − 1)4H

(
x,

1
x − 1

)
+ 6(x − 1)2h(x),

while the addition rule (5) for the quadratic function h yields

h
(
(x − 1)2

)
= h

(
x2 − 2x + 1

)
= h

(
x2 − 2x

)
= h

(
x2

)
+ 4h(x) − 4H

(
x2, x

)
.

From the equality of the left sides of the last two equations, it follows that

(x − 1)4H
(

x,
1

x − 1

)
=

1
2
h

(
x2

)
+

(−3x2 + 6x − 1
)
h(x) − 2H

(
x2, x

)
.

(21)

Using (18) for x ∈ R \ {0, 1}, now we write h
(
x2 − x

)
in two ways:

h
(
x2 − x

)
=

(
x2 − x

)4
h

(
1

x2 − x

)
= x4(x − 1)4h

(
1

x − 1
− 1

x

)

= x4(x − 1)4
[
h

(
1

x − 1

)
+ h

(
1
x

)
− 2H

(
1
x

,
1

x − 1

)]

= x4(x − 1)4
[

1
(x − 1)4

h (x − 1) +
1
x4

h (x) − 2H

(
1
x

,
1

x − 1

)]

= x4h(x) + (x − 1)4h(x) − 2x4(x − 1)4H
(

1
x

,
1

x − 1

)
.

On the other hand, by the addition rule we have

h
(
x2 − x

)
= h

(
x2

)
+ h(x) − 2H

(
x2, x

)
.

From the equality of the last two expressions we obtain

x4(x − 1)4H
(

1
x

,
1

x − 1

)
=

− 1
2
h

(
x2

)
+

(
x4 − 2x3 + 3x2 − 2x

)
h(x) + H

(
x2, x

)
.

(22)
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Replacing x with 1
x in Eq. (22), taking also (15) and (18) into consideration,

we have

− 1
x4

(x − 1)4

x4
H

(
x,

1
x − 1

)
=

− 1
2x8

h
(
x2

)
+

(
1 − 2x + 3x2 − 2x3

)
x8

h(x) + H

(
1
x2

,
1
x

)
.

Multiplying the latter equation by −x8, we get

(x − 1)4H
(

x,
1

x − 1

)
=

1
2
h

(
x2

)
+

(
2x3 − 3x2 + 2x − 1

)
h(x) − x8H

(
1
x2

,
1
x

)
.

(23)

From the equality of the left sides of (21) and (23) we obtain(−3x2 + 6x − 1
)
h(x) − 2H

(
x2, x

)
=

(
2x3 − 3x2 + 2x − 1

)
h(x) − x8H

(
1
x2

,
1
x

)
,

therefore

2H
(
x2, x

)
=

(−2x3 + 4x
)
h(x) + x8H

(
1
x2

,
1
x

)
. (24)

Putting 1
x in place of x in this equality, we get

2H

(
1
x2

,
1
x

)
=

(−2
x3

+
4
x

)
1
x4

h(x) +
1
x8

H
(
x2, x

)
.

Substituting this expansion of H
(

1
x2 , 1

x

)
into Eq. (24), we obtain

2H
(
x2, x

)
=

(−2x3 + 4x
)
h(x) + (−x + 2x3)h(x) +

1
2
H

(
x2, x

)
,

therefore we have

H
(
x2, x

)
= 2xh(x), (25)

i.e., F
(
x2, x

)
= 2xf(x) − x3f(1). The validity of (25) for x ∈ {0, 1} is obvious

(cf. (15)). �
Lemma 3.3. If a quadratic function f : R → R satisfies (11), then

f
(
x4

)
= 20x4f

(
x2

) − 64x6f(x) + 45x8f(1) (26)

for every x ∈ R.

Proof. Let us consider the functions H and h introduced in Proposition 3.1.
Replacing x with x − 1

x in Eq. (20), we obtain

h

((
x − 1

x

)2
)

= 2
(

x − 1
x

)4

H

(
x − 1

x
,

1
x − 1

x

)
+ 6

(
x − 1

x

)2

h

(
x − 1

x

)
.
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On the other hand,

h

((
x − 1

x

)2
)

= h

(
x2 +

1
x2

− 2
)

= h

(
x2 +

1
x2

)

= h
(
x2

)
+ h

(
1
x2

)
+ 2H

(
x2,

1
x2

)

=
(

1 +
1
x8

)
h

(
x2

)
+ 2H

(
x2,

1
x2

)
.

From the equality of the left sides of the last two equations, it follows that

2H

(
x2,

1
x2

)
= 2

(
x − 1

x

)4

H

(
x − 1

x
,

1
x − 1

x

)

+ 6
(

x − 1
x

)2

h

(
x − 1

x

)
−

(
1 +

1
x8

)
h

(
x2

)
.

(27)

Using (20) for x ∈ R \ {−1, 0}, we write h
(
(x + 1)2

)
in two ways:

h
(
(x + 1)2

)
= 2(x + 1)4H

(
x + 1,

1
x + 1

)
+ 6(x + 1)2h(x + 1).

From (15) we have h(x + 1) = h(x) and H
(
x + 1 , 1

x+1

)
= H

(
x , 1

x+1

)
, so

h
(
(x + 1)2

)
= 2(x + 1)4H

(
x,

1
x + 1

)
+ 6(x + 1)2h(x),

while using (25), we have

h
(
(x + 1)2

)
= h

(
x2 + 2x + 1

)
= h

(
x2 + 2x

)
= h

(
x2

)
+ 4h(x) + 4H

(
x2, x

)
= h

(
x2

)
+ (8x + 4)h(x).

From the equality of the left sides of the last two equations we obtain

(x + 1)4H
(

x,
1

x + 1

)
=

1
2
h

(
x2

) − (
3x2 + 2x + 1

)
h(x). (28)

Using (18) for x ∈ R \ {−1, 0}, now we write h
(
x2 + x

)
in two ways:

h
(
x2 + x

)
=

(
x2 + x

)4
h

(
1

x2 + x

)
= x4(x + 1)4h

(
1
x

− 1
x + 1

)

= x4(x + 1)4
[
h

(
1
x

)
+ h

(
1

x + 1

)
− 2H

(
1
x

,
1

x + 1

)]

= x4(x + 1)4
[

1
x4

h (x) +
1

(x + 1)4
h (x + 1) − 2H

(
1
x

,
1

x + 1

)]

= (x + 1)4h(x) + x4h(x) − 2x4(x + 1)4H
(

1
x

,
1

x + 1

)
.
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On the other hand, using (25), we have

h
(
x2 + x

)
= h

(
x2

)
+ h(x) + 2H

(
x2, x

)
= h

(
x2

)
+ h(x) + 4xh(x).

From the equality of the last two expressions, it follows that

x4(x + 1)4H
(

1
x

,
1

x + 1

)
= −1

2
h

(
x2

)
+

(
x4 + 2x3 + 3x2

)
h(x). (29)

Using (25) in Eq. (21), we obtain

(x − 1)4H
(

x,
1

x − 1

)
=

1
2
h

(
x2

)
+

(−3x2 + 2x − 1
)
h(x). (30)

Using (25) in Eq. (22), we have

x4(x − 1)4H
(

1
x

,
1

x − 1

)
= −1

2
h

(
x2

)
+

(
x4 − 2x3 + 3x2

)
h(x). (31)

Now we write

2
(
x2 − 1

)4
H

(
x − 1

x
,

1
x − 1

x

)
= 2

(
x2 − 1

)4
H

(
x − 1

x
,

x

x2 − 1

)

= 2
(
x2 − 1

)4
H

(
x − 1

x
,

1
2

(
1

x − 1
+

1
x + 1

))

=
(
x2 − 1

)4
H

(
x,

1
x − 1

)
+

(
x2 − 1

)4
H

(
x,

1
x + 1

)

− (
x2 − 1

)4
H

(
1
x

,
1

x − 1

)
− (

x2 − 1
)4

H

(
1
x

,
1

x + 1

)
.

Substituting (28),(29),(30) and (31) into the latter equation, after some com-
putation we get

2
(
x2 − 1

)4
H

(
x − 1

x
,

1
x − 1

x

)
=

(
x4 + 6x2 + 1

) (
x4 + 1

)
x4

h
(
x2

) − 2
(
3x8 + 12x6 + 2x4 + 12x2 + 3

)
x2

h(x).

(32)

Substituting (32) into Eq. (27), we have

2H

(
x2,

1
x2

)

=

(
x4 + 6x2 + 1

) (
x4 + 1

)
x8

h
(
x2

) − 2
(
3x8 + 12x6 + 2x4 + 12x2 + 3

)
x6

h(x)

+6
(

x − 1
x

)2

h

(
x − 1

x

)
−

(
1 +

1
x8

)
h

(
x2

)
. (33)
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Expressing H
(
x, 1

x

)
from Eq. (20), we get

h

(
x − 1

x

)
= h(x) + h

(
1
x

)
− 2H

(
x,

1
x

)

= h(x) +
1
x4

h(x) − 1
x4

h
(
x2

)
+

6
x2

h(x)

=
x4 + 6x2 + 1

x4
h(x) − 1

x4
h

(
x2

)
.

Substituting this into Eq. (33), after some computation we obtain

H

(
x2,

1
x2

)
=

7
x4

h
(
x2

) − 32
x2

h(x). (34)

Replacing x with x2 in Eq. (20), we have

h
(
x4

)
= 2x8H

(
x2,

1
x2

)
+ 6x4h

(
x2

)
.

Finally we substitute (34) into the latter equation to obtain

h
(
x4

)
= 20x4h

(
x2

) − 64x6h(x). (35)

The statement of the Lemma follows from Eqs. (35) and (16). �

Theorem 3.4. If a quadratic function f : R → R satisfies (11), then there exists
a symmetric bi-derivation H of order 3 for which

f(x) = H(x, x) + x2f(1) for every x ∈ R.

Proof. As well as in the previous arguments, we consider the functions H and
h introduced in Proposition 3.1.

Let x, y ∈ R and r ∈ Q . Substituting x + ry in place of x in Eq. (25), we
get

H
(
x2 + 2rxy + r2y2, x + ry

)
= 2(x + ry)h(x + ry).

Rearranging the latter equation and using (25) we obtain

0 = 2rH(xy, x) + r2H
(
y2, x

)
+ rH

(
x2, y

)
+ 2r2H(xy, y)

− 2r2xh(y) − 4rxH(x, y) − 2ryh(x) − 4r2yH(x, y).

Thus we get a polynomial in r. The coefficient of r1 equals zero (by Lemma 1.4),
hence we obtain

2H(xy, x) + H
(
x2, y

)
= 4xH(x, y) + 2yh(x). (36)

Let x, y ∈ R and r ∈ Q . Replacing x with x + ry in Eq. (35) (derived in
the proof of Lemma 3.3) we obtain

h
(
(x + ry)4

)
= 20(x + ry)4h

(
(x + ry)2

) − 64(x + ry)6h(x + ry). (37)
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Expanding the powers of sums on both sides, Eq. (37) can be written as

h

(
4∑

k=0

(
4
k

)
xkrn−kyn−k

)
= 20

(
4∑

l=0

(
4
l

)
xlr4−ly4−l

)
h

(
x2 + 2rxy + r2y2

)

− 64
6∑

q=0

(
6
q

)
xqrn−qyn−qh(x + ry).

Applying the identity (5), the rational homogeneity properties of H and h, Eq.
(15), and using h(1) = 0 , we obtain

0 =
4∑

k=0

(
4
k

)2

r8−2kh
(
xky4−k

)

+ 2
∑

0≤i<j≤4

(
4
i

)(
4
j

)
r8−(i+j)H

(
xiy4−i, xjy4−j

)

− 20

(
4∑

l=0

(
4
l

)
xlr4−ly4−l

)

· [
h

(
x2

)
+ 4r2h(xy) + r4h

(
y2

)
+ 4rH

(
x2, xy

)
+ 4r3H

(
y2, xy

)
+ 2r2H

(
x2, y2

)]
+ 64

6∑
q=0

(
6
q

)
xqr6−qy6−q

[
h(x) + 2rH(x, y) + r2h(y)

]
.

(38)

The coefficient of r1 equals zero, hence we get

0 = 2
(

4
3

)(
4
4

)
H

(
x3y, x4

) − 20
[(

4
3

)
x3yh

(
x2

)
+

(
4
4

)
x44H

(
x2, xy

)]

+ 64
(

6
5

)
x5yh(x) + 64

(
6
6

)
x62H(x, y)

= 8H
(
x3y, x4

) − 80x3yh
(
x2

) − 80x4H
(
x2, xy

)
+ 384x5yh(x) + 128x6H(x, y).

Thus

H
(
x3y, x4

)
= 10x3yh

(
x2

)
+ 10x4H

(
x2, xy

) − 48x5yh(x) − 16x6H(x, y).
(39)

Replacing y with xy in Eq. (39), we get

H
(
x4y, x4

)
= 10x4yh

(
x2

)
+ 10x4H

(
x2, x2y

) − 48x6yh(x) − 16x6H(x, xy).
(40)

Putting x2 in place of x in Eq. (36) we have

2H
(
x2y, x2

)
= −H

(
x4, y

)
+ 4x2H

(
x2, y

)
+ 2yh

(
x2

)
. (41)
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Substituting this expansion of H
(
x2y, x2

)
into Eq. (40), we obtain

H
(
x4y, x4

)
= 20x4yh

(
x2

)
+ 20x6H

(
x2, y

) − 5x4H
(
x4, y

)
− 96x6yh(x) − 32x6H(x, xy).

(42)

Expressing H(x, xy) from Eq. (36), then substituting it into Eq. (42), we get

H
(
x4y, x4

)
= 20x4yh

(
x2

)
+ 28x6H

(
x2, y

) − 5x4H
(
x4, y

)
− 64x6yh(x) − 32x7H(x, y).

(43)

Now, replacing x with x4 in Eq. (36) we have

2H
(
x4y, x4

)
= −H

(
x8, y

)
+ 4x4H

(
x4, y

)
+ 2yh

(
x4

)
. (44)

And finally, from the equality of the left sides of (43) and (44), with (35), we
obtain

H
(
x8, y

) − 14x4H
(
x4, y

)
+ 56x6H

(
x2, y

) − 64x7H(x, y) = 0. (45)

The latter equation holds for an arbitrary fixed y ∈ R and for every x ∈ R .
By Lemma 1.3, H is a derivation of order 3 in its first variable. Since H is a
symmetric, bi-additive function, it follows that H is a derivation of order 3 in
each variable, so H is a symmetric bi-derivation of order 3. �

Theorem 3.5. If a quadratic function f : R → R satisfies (11), the bi-additive
and symmetric functionals F : R × R → R and H : R × R → R are given by
the formulas (3) and (14), respectively, and

T : R × R × R → R

is defined by the formula

T (x, y, z) = H(xy, z) − xH(y, z) − yH(x, z) (x, y, z ∈ R), (46)

then

T (x, y, z) + T (z, x, y) + T (y, z, x) = 0 (47)

for every x, y, z ∈ R.

Proof. Clearly, Eq. (36) yields

0 = H
(
x2, y

)
+ 2H(xy, x) − 2yH(x, x) − 4xH(x, y) (48)

for every x, y ∈ R . Taking arbitrary x, z ∈ R , r ∈ Q , replacing x with x+rz in
Eq. (48), expanding it using the symmetry and the bi-additivity of H, applying
Lemma 1.4 for the coefficient of r, and dividing the obtained equation by 2,
we have

0 = H(xy, z) + H(yz, x) + H(zx, y)
−2xH(y, z) − 2yH(z, x) − 2zH(x, y),

which can be reformulated as Eq. (47). �
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Remark 3.6. If H : R × R → R is a symmetric bi-derivation, c ∈ R , and
f : R → R is given by the formula

f(x) = cx2 + H(x, x) (x ∈ R), (49)

then f is a quadratic function fulfilling the additional Eq. (11) (i.e., f satisfies
the additional equation y2f(x) = x2f(y) under the condition xy = 1). This
sufficient condition for the mapping H implies T (x, y, z) = 0 identically for
the tri-additive mapping T given by the formula (46). Our necessary condi-
tions established in Theorems 3.4 and 3.5 are similar but, in fact, weaker then
this sufficient condition for the mapping H. Therefore, this paper provides
only a partial solution to [4, Problem 1]. However, recent investigations by
Masaaki Amou (presented at the 58th International Symposium on Functional
Equations, Innsbruck, Austria, June 19–26, 2022) suggest that this sufficient
condition need not be necessary.
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