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Banakh and Jab�lońska (Israel J Math 230:361–386, 2019), Jab�lońska and Nikodem (Math
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1. Introduction

Let X be an abelian metric group with an invariant metric and Y be a real
topological vector space. Assume that K is a subsemigroup of Y (i.e. K +K ⊂
K). Denote by n(Y ) the family of all nonempty subsets of Y , and by B(Y )
and CC(Y ) its subfamilies of all bounded subsets of Y and all convex compact
subsets of Y , respectively.

Definition 1. A set-valued map (s.v. map for short) F : X → n(Y ) is called
K-subadditive if

F (x1) + F (x2) ⊂ F (x1 + x2) + K (1)
for all x1, x2 ∈ X. If F satisfies
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F (x1 + x2) ⊂ F (x1) + F (x2) + K (2)
for all x1, x2 ∈ X then it is called K-superadditive.

The concepts of K-subadditivity and K-superadditivity were introduced
in [11], following the notions of K-midconvexity and K-midconcavity from
[13]. Clearly, if F is a single-valued function, Y = R and K = [0,∞), then
K-subadditivity means the classical subadditivity, i.e. f : X → R satisfies

f(x1 + x2) ≤ f(x1) + f(x2) for every x1, x2 ∈ X,

as well as K-superadditivity means the classical superadditivity, i.e. −f is
subadditive.

Let us recall also the notion of K-lower (K-upper) semicontinuity from [13]
which generalizes the classical notion of upper (lower, resp.) semicontinuity of
a single-valued real function.

Definition 2. Let x0 ∈ X. The s.v. map F : X → n(Y ) is called:
• K-lower semicontinuous at x0, if for every neighborhood W of 0 in Y

there exists a neighborhood U of 0 in X such that

F (x0) ⊂ F (x) + W + K for x ∈ x0 + U,

• K-upper semicontinuous at x0, if for every neighborhood W of 0 in Y
there exists a neighborhood U of 0 in X such that

F (x) ⊂ F (x0) + W + K for x ∈ x0 + U.

Moreover, F is K-lower (K-upper) semicontinuous on X, if it is K-lower (K-
upper, resp.) semicontinuous at each point x ∈ X.

Definition 3. A s.v. map F : X → B(Y ) is called:
• weakly K-upper bounded on a set A ⊂ X, if there is B ∈ B(Y ) such that

F (x) ∩ (B − K) �= ∅ for all x ∈ A,

• K-upper bounded on a set A ⊂ X, if there is B ∈ B(Y ) such that

F (x) ⊂ B − K for all x ∈ A,

• weakly K-lower bounded on a set A ⊂ X, if there is B ∈ B(Y ) such that

F (x) ∩ (B + K) �= ∅ for all x ∈ A,

• K-lower bounded on a set A ⊂ X, if there is B ∈ B(Y ) such that

F (x) ⊂ B + K for all x ∈ A.

The above idea of (weak) K-upper/K-lower boundedness was introduced
in [13] as a generalization of the notion of boundedness from above/below of
single-valued real functions. More precisely, weak [0,∞)-upper boundedness,
as well as [0,∞)-upper boundedness of a single-valued real function means
its classical boundedness from above. The same holds for (weak) [0,∞)-lower
boundedness of a single-valued real function.
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Definition 4. A s.v. map F : X → B(Y ) is called:
• locally (weakly) K-upper (K-lower) bounded at x ∈ X, if it is (weakly)

K-upper (K-lower, resp.) bounded on some neighborhood of x,
• locally K-bounded at x ∈ X, if it is both locally weakly K-upper bounded

and locally K-lower bounded at x,
• locally K-bounded on X, if it is locally K-bounded at each point of X.

It is well known that for every subadditive real function defined on an
abelian metric group boundedness from above on a “large” (in the sense of
category or measure) set implies its local boundedness on the whole domain
(see e.g. [12, Theorem 16.2.3]). Some recent results on subadditive functions
can be found e.g. in [3]–[7].

In [2] the following generalization of the mentioned classical result was
proved.

Theorem 1. [2, Theorem 2.2] Let X be an abelian metric group with an in-
variant metric and f : X → R be a subadditive function. If f is bounded from
above on a non-null-finite set A ⊂ X then f is locally bounded on X.

The concept of null-finite sets was introduced in [1].1

Definition 5. A subset A of an abelian metric group X is called null-finite
if there exists a sequence (xn)n∈N tending to zero in X such that the set
{n ∈ N : x + xn ∈ A} is finite for every x ∈ X.

In a complete abelian metric group X with an invariant metric the following
sets are not null-finite: open sets, non-meager sets with the Baire property, sets
of positive Haar measure provided X is locally compact, universally measurable
sets which are not Haar-null, Borel sets which are not Haar-meager (see [1,
Theorems 5.1 and 6.1]).

The notions of a Haar-null set and a Haar-meager set have been introduced
by Christensen [8] and Darji [9], respectively. A subset B of an abelian Polish
group X is called:

• Haar-meager if there exist a Borel set A ⊃ B, a compact metric space K
and a continuous function f : K → X such that f−1(A + x) is meager in
K for every x ∈ X;

• Haar-null if there exist a universally measurable set A ⊃ B and a σ-
additive probability Borel measure μ on X such that μ(A + x) = 0 for
every x ∈ X.

It was proved in [8] and [9] that every Haar-meager set is meager and, moreover,
in every locally compact abelian Polish group the notions of a Haar-meager

1 The notion of a null-finite set is directly equivalent to the notion of a non-shift-compact
set from [5].
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set and a Haar-null set are equivalent to the notions of a meager set and a set
of Haar measure zero, respectively.

In [11] we proved the following generalization of Theorem 1.

Theorem 2. [11, Theorems 2 and 3] Let X be an abelian metric group with
an invariant metric and Y be a locally convex real topological vector space.
Assume that A ⊂ X is a non-null-finite set, K is a subsemigroup of Y , and
F : X → B(Y ) is a s.v. map. If F satisfies one of the following conditions:

(i) F is K-subadditive and weakly K-upper bounded on A,
(ii) F is K-superadditive and K-lower bounded on A,

then F is locally K-bounded on X.2

Here we use the above theorem to show some relationships between a K-
subadditivie or K-superadditive s.v. map F : X → CC(Y ) and the functionals
fy∗ : X → R defined by

fy∗(x) = inf y∗(F (x)) for x ∈ X, (3)

where y∗ ∈ K∗ and K∗ means the set of all real continuous functionals on
a real topological vector space Y which are non-negative on K, i.e.

K∗ = {y∗ ∈ Y ∗ : y∗(y) ≥ 0 for every y ∈ K}.

The results obtained refer to [10, Theorem 5] and [14, Theorem 1], where the
continuity of a K-midconvex (K-midconcave) s.v. map was proved under the
assumption that the functionals (3) are lower (upper, resp.) semicontinuous.
This paper relates also to [1, Theorem 9.1].

2. Main results

Theorem 3. Let X be an abelian metric group with an invariant metric, and
A ⊂ X be a non-null-finite set. Assume that Y is a locally convex real topolog-
ical vector space, K is a subsemigroup of Y , and F : X → B(Y ) is a s.v. map.
If one of the following conditions holds:

(i) F is K-subadditive and weakly K-upper bounded on A,
(ii) F is K-superadditive and weakly K-lower bounded on A,

then for every y∗ ∈ K∗ the functional fy∗ : X → R defined by (3) is locally
bounded on X.

2 In fact that theorem was formulated originally with the assumption that Y is an abelian
metric group with an invariant metric, but the proof “works” also if Y is a locally convex
real topological vector space.
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Proof. Assume that F satisfies (i) (if F satisfies (ii), the proof runs in the same
way). Then there exists a bounded set B ⊂ Y such that

F (x) ∩ (B − K) �= ∅, x ∈ A. (4)

Fix any y∗ ∈ K∗ and take the functional fy∗ defined by (3). Since F is K-
subadditive and y∗ ∈ K∗, we have

y∗(F (x1)) + y∗(F (x2)) = y∗(F (x1) + F (x2)) ⊂ y∗(F (x1 + x2) + K)
⊂ y∗(F (x1 + x2)) + [0,∞)

for all x1, x2 ∈ X. Hence

fy∗(x1) + fy∗(x2) = inf y∗(F (x1)) + inf y∗(F (x2))
= inf (y∗(F (x1)) + y∗(F (x2))) ≥ inf y∗(F (x1 + x2)
= fy∗(x1 + x2),

which means that fy∗ is subadditive. By (4), for every x ∈ A we have

y∗(F (x)) ∩ y∗(B − K) �= ∅.

Hence
y∗(F (x)) ∩ (

y∗(B) + (−∞, 0]
) �= ∅. (5)

But the set y∗(B) is bounded, i.e. y∗(B) ⊂ [m,M ] for some m < M . Then, by
(5),

y∗(F (x)) ∩ (−∞,M ] �= ∅,

which means that

fy∗(x) ≤ M, x ∈ A.

Consequently, in view of Theorem 1, fy∗ is locally bounded on X. �

Now, which assumptions on the functionals fy∗ defined by (3) for y∗ ∈ K∗

imply the local K-boundedness on X of a K-subadditive s.v. map F? The
next theorem gives an answer.

Let us recall that in a real vector space by a convex cone we mean the set
K satisfying K + K ⊂ K and tK ⊂ K for every t ∈ [0,∞).

Theorem 4. Let X be a complete metric space with an invariant metric, Y be
a real normed space, and K be a convex cone in Y . If a s.v. map F : X → CC(Y )
is K-subadditive and for every y∗ ∈ K∗ the functional fy∗ : X → R defined by
(3) is lower semicontinuous on X, then F is locally K-bounded on X.

Proof. Let B be the unit ball in Y and Bn := nB, n ∈ N. Denote

An := {x ∈ X : F (x) ∩ cl (Bn − K) �= ∅}, n ∈ N.

Clearly,
⋃

n∈N
An = X. We will prove that the sets An are closed.
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If An = X, it is obvious. So, fix n ∈ N such that An �= X and fix x0 ∈ X\An.
Then

F (x0) ∩ cl (Bn − K) = ∅.

Since F (x0) is compact convex and Bn is convex, by the separation theorem
(see [14, Lemma 1]) there exists a functional y∗ ∈ K∗ such that

inf y∗(F (x0)) > sup y∗(Bn).

Let

ε := inf y∗(F (x0)) − sup y∗(Bn).

Since y∗ is continuous at zero, we can find a neighborhood V of zero in Y
with y∗(V ) ⊂ (− ε

2 , ε
2

)
. By the lower semicontinuity of fy∗ at x0 there exists a

neighborhood U of x0 such that

fy∗(x) > fy∗(x0) − ε

2
for every x ∈ U.

Now, we prove that

F (x) ∩ cl (Bn − K) = ∅ for every x ∈ U. (6)

Indeed, if for some x ∈ U it was not true, there would exist a point

z ∈ F (x) ∩ cl (Bn − K) ⊂ F (x) ∩ (Bn − K − V ).

Let z = b − k − v with some b ∈ Bn, k ∈ K and v ∈ V . Then

y∗(b) = y∗(z) + y∗(k) + y∗(v) > y∗(z) − ε

2
≥ fy∗(x) − ε

2
> fy∗(x0) − ε = sup y∗(Bn),

a contradiction.
Thus (6) holds and, consequently, U ⊂ X\An which shows that X\An is

open and hence An is closed.
Since X is a complete metric space and X =

⋃
n∈N

An, by the Baire cate-
gory theorem there exists n0 ∈ N such that int An0 �= ∅. By the definition of
An0 we have

F (x) ∩ (
(Bn0 + B) − K

) �= ∅ for x ∈ An0 .

Since the set Bn0 + B is bounded, this means that F is weakly K-upper
bounded on the set An0 with non-empty interior. Consequently, by Theorem 2,
F is locally K-bounded on X. This finishes the proof. �

The next example shows that it is not possible to get the same result in
Theorem 4 if we weaken the assumption on the functionals fy∗ , i.e. replace
lower semicontinuity on X of fy∗ by local boundedness from below on X.
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Example 1. Let K = [0,∞) and F : R → CC(R) be defined by

F (x) =
[|a(x)|, |a(x)| + 1

]
for every x ∈ R,

where a : R → R is a discontinuous additive function. Clearly, then F is K-
subadditive, even locally K-lower bounded on X, and every y∗ ∈ K∗ is given
by y∗(x) = cx with some c ≥ 0. Hence

fy∗(x) = inf y∗(F (x)
)

= inf c
[|a(x)|, |a(x)| + 1

]
= c|a(x)| ≥ 0

which means that fy∗ is bounded from below on the whole R, but F is not
locally weakly K-upper bounded at any point.

Indeed, if for some open set U ⊂ R and some [m,M ] ⊂ R we had F (x) ∩(
[m,M ] − K

) �= ∅ for x ∈ U , then a(x) ≤ |a(x)| ≤ M for x ∈ U , which would
be impossible because of the discontinuity of a.

Problem 1. Let X, Y , K and F be as in Theorem 4. Can we obtain the same
result replacing the lower semicontinuity of fy∗ on X by upper semicontinuity
on X for every y∗ ∈ K∗, or by local boundedness on X for every y∗ ∈ K∗?

We know that the answer to Problem 1 is positive in the case when Y = R

and K = [0,∞) (even under the weaker assumptions that for some nonzero
y∗ ∈ K∗ the functional fy∗ is upper semicontinuous at a point of X or it is
locally bounded at a point of X).

Indeed, let F (x) = [m(x),M(x)] for x ∈ X. Then the K-subadditivity
of F means the subadditivity of m. Moreover, fy∗(x) = cm(x), x ∈ X, with
c > 0 and the upper semicontinuity (local boundedness) of fy∗ at some x0 ∈ X
implies the upper semicontinuity (local boundedness, resp.) of m at x0, and
hence m is locally bounded on X in view of Theorem 1. Thus, for every x ∈ X
we can find a neighborhood U of x such that m(U) ⊂ [a,A] with some a < A.
For every t ∈ U we get

F (t) ∩ ([a,A] − K) = [m(t),M(t)] ∩ (−∞, A] �= ∅;
F (t) = [m(t),M(t)] ⊂ [a,∞) = [a,A] + K,

which means that F is locally K-bounded on X.
Let us recall that the subadditivity of a single-valued real function f : X →

R means the superadditivity of the function −f . Unfortunately there is no
analogous property for K-subadditive s.v. maps, i.e. the K-superadditivity
of F does not mean the ±K-subadditivity of −F (see [11, Examples 2 and
3]). That is why we have to prove an analogous result for K-superadditive
s.v. maps independently.

Theorem 5. Let X be a complete metric space with an invariant metric, Y be
a real normed space and K be a convex cone in Y. If a s.v. map F : X → CC(Y )
is K-superadditive and for every y∗ ∈ K∗ the functional fy∗ : X → R defined
by (3) is upper semicontinuous on X, then F is locally K-bounded on X.
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Proof. Let B be the unit ball in Y and Bn := nB for n ∈ N. Define

An := {x ∈ X : F (x) ⊂ cl (Bn + K)}, n ∈ N. (7)

Then
⋃

n∈N
An = X. We will show that F (x) ⊂ cl (Bn +K) for every x ∈ cl An

and n ∈ N.
For a proof by contradiction suppose that there are n0 ∈ N, x0 ∈ cl An0

and z ∈ F (x0)\cl (Bn0 + K). Since the set cl (Bn0 + K) is convex and closed,
by the separation theorem (see e.g [15, Theorem 3.4]) there exists a continuous
linear functional y∗ ∈ Y ∗ such that

y∗(z) < inf y∗(cl (Bn0 + K)
)
. (8)

Since

y∗(k) ≥ y∗(z) − y∗(b0) =: M for all k ∈ K

with arbitrarily fixed b0 ∈ Bn0 , and, moreover,

y∗(k) =
1
m

y∗(mk) ≥ 1
m

M for every m ∈ N,

for m → ∞ we obtain y∗(k) ≥ 0 for all k ∈ K which means that y∗ ∈ K∗.
Now, put

ε := inf y∗(cl (Bn0 + K)
) − y∗(z).

By the upper semicontinuity of fy∗ at x0 there exists a neighborhood U of x0

such that
fy∗(x) < fy∗(x0) + ε for every x ∈ U. (9)

Since x0 ∈ cl An0 , there exists an x1 ∈ An0 ∩ U. Then, according to (9) and
the definition of ε, we obtain

fy∗(x1)< fy∗(x0) + ε ≤ y∗(z) + ε = inf y∗(cl (Bn0 + K)
)

≤ inf y∗(F (x1)
)

= fy∗(x1).

This contradiction proves that F is K-lower bounded on clAn for every n ∈ N,
i.e.

F (x) ⊂ cl (Bn + K) for every x ∈ cl An.

Since X =
⋃

n∈N
cl An and X is complete, in view of the Baire category

theorem there exists n0 ∈ N such that int clAn0 �= ∅. Moreover,

F (x) ⊂ cl (Bn0 + K) ⊂ Bn0 + B + K for every x ∈ cl An0 ,

so F is K-lower bounded on an open set. Now, to complete the proof it is
enough to apply Theorem 2. �

Modifying Example 1, it is easy to observe that it is impossible to get the
same result in Theorem 5 assuming the local boundedness from above on X
(instead of upper semicontinuity on X) of functionals fy∗ .
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Example 2. Let K = (−∞, 0] and F : R → CC(R) be defined by

F (x) =
[|a(x)|, |a(x)| + 1

]
for every x ∈ R,

where a : R → R is a discontinuous additive function. Clearly, then F is K-
superadditive, even locally K-upper bounded on X, and every y∗ ∈ K∗ is
given by y∗(x) = cx with some c ≤ 0. Hence

fy∗(x) = inf y∗(F (x)
)

= inf c
[|a(x)|, |a(x)| + 1

]
= c

(|a(x)| + 1
) ≤ 0

which means that fy∗ is bounded from above on the whole R, but F is not
locally K-lower bounded at any point.

The following question arises which is analogous to Problem 1.

Problem 2. Let X, Y , K and F be as in Theorem 5. Can we obtain the same
result replacing the upper semicontinuity of fy∗ on X by lower semicontinuity
on X for every y∗ ∈ K∗, or by local boundedness on X for every y∗ ∈ K∗?

For now we can give a positive answer only in the case Y = R and K =
[0,∞) (the solution runs in the same way as the solution of Problem 1).

Remark 1. Notice that in the conclusion of Theorems 4 and 5 we are not able
to get the local K-upper boundedness (instead of the local weak K-upper
boundedness) of F on X.

For example, let K = [0,∞) and F : R → CC(R) be given by

F (x) =

⎧
⎨

⎩

[
0, 1

|x|
]
, x �= 0,

{0}, x = 0.

Clearly, F is K-subadditive and K-superadditive. Moreover, for every y∗ ∈ K∗

(i.e. y∗(x) = cx with c ≥ 0) the functional fy∗ = 0, so it is continuous on R.
But F is not K-upper bounded at 0.

3. Applications and final remarks

One can easily observe that if F : X → B(Y ) is a s.v. map, where X is a metric
space and Y is a real normed space, then

(i) the K-upper semicontinuity of F at a point x0 ∈ X implies local K-lower
boundedness at this point,

(ii) the K-lower semicontinuity of F at a point x0 ∈ X implies local weak
K-upper boundedness at this point.

Indeed, to obtain (i) it is enough to put the bounded set B := F (x0) + W
with a fixed neighbourhood W ⊂ Y of 0. The proof of (ii) runs by contradiction.
Fix a neighborhood W ⊂ Y of 0. Then, by the K-lower semicontinuity of F ,
there is a neighbourhood U of x0 such that

F (x0) ⊂ F (x) + W + K for every x ∈ U.
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If for the bounded set B := F (x0) − W we could find x1 ∈ U such that
F (x1) ∩ (B − K) = ∅, then

(F (x1) + W + K) ∩ F (x0) = ∅.

This contradiction proves that F is weakly K-upper bounded at x0.
Moreover, in view of Examples 1 and 2, a K-subadditive s.v. map which is

locally K-lower bounded on X, as well as K-superadditive s.v. map which is
locally K-upper bounded on X, needn’t be locally K-bounded on X.

However, as an immediate consequence of Theorems 4 and 5, we obtain the
following result.

Corollary 6. Let X be a complete metric space with an invariant metric, Y be a
real normed space, and K be a convex cone in Y . If a s.v. map F : X → CC(Y )
satisfies one of the following two conditions:

(i) F is K-subadditive and K-upper semicontinuous on X,
(ii) F is K-superadditive and K-lower semicontinuous on X,
then F is locally K-bounded on X.

Proof. Assume that F satisfies (i) (if F satisfies (ii) the proof runs in the same
way). Let B be the unit ball in Y . Fix arbitrary x0 ∈ X, y∗ ∈ K∗ and ε > 0.
Since F is K-upper semicontinuous at x0, there exists a neighborhood U of 0
in X such that

F (x) ⊂ F (x0) +
ε

‖y∗‖B + K for every x ∈ x0 + U.

Hence

y∗(F (x)
) ⊂ y∗(F (x0)

)
+

ε

‖y∗‖ [−‖y∗‖, ‖y∗‖] + [0,∞), x ∈ x0 + U.

Consequently,

fy∗(x) ≥ fy∗(x0) − ε, x ∈ x0 + U,

which shows that fy∗ is lower semicontinuous at x0. To complete the proof it
is enough to apply Theorem 4. �

In Theorems 4 and 5 we assume that K is a convex cone in a real normed
space, but considerations on K-subadditivity/K-superadditivity seem to be
much more natural for a subsemigroup K.

It is easy to check that if K is a subsemigroup with 0, then conv K is
a convex cone. Clearly then

• K-subadditivity implies conv K-subadditivity,
• K-superadditivity implies conv K-superadditivity,
• local K-boundedness at a point implies local conv K-boundedness at the

same point,
• y∗ ∈ K∗ implies y∗ ∈ (conv K)∗.
Consequently, by Theorems 4 and 5, we get the following corollary.
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Corollary 7. Let X be a complete metric space with an invariant metric, Y
be a real normed space, and K be a subsemigroup of Y with 0. Assume that
F : X → CC(Y ) is a s.v. map and fy∗ : X → R is the functional defined by (3)
for every y∗ ∈ K∗. If one of the following conditions holds:

(i) F is K-subadditive and fy∗ is lower semicontinuous on X for every y∗ ∈
K∗,

(ii) F is K-superadditive and fy∗ is upper semicontinuous on X for every
y∗ ∈ K∗,

then F is locally conv K-bounded on X.

Problem 3. Is it possible to get the stronger result that F is locally K-bounded
on X in Corollary 7?

The next corollary gives an answer in the case Y = R.

Corollary 8. Let X be a complete metric space with an invariant metric, and
K be a subsemigroup of R with 0. Assume that F : X → CC(R) is a s.v. map
and fy∗ : X → R is the functional defined by (3) for every y∗ ∈ K∗. If one of
the following conditions holds:

(i) F is K-subadditive and fy∗ is lower semicontinuous on X for every y∗ ∈
K∗,

(ii) F is K-superadditive and fy∗ is upper semicontinuous on X for every
y∗ ∈ K∗,

then F is locally K-bounded on X.

Proof. Assume that F satisfies (i) (the proof for (ii) is similar). Let F (x) =
[m(x),M(x)] for x ∈ X.

The case when conv K = {0} is trivial because then K = {0}, so it is
enough to use Corollary 7.

Now, consider the case when conv K = [0,∞). By Corollary 7 F is locally
conv K-bounded on X; i.e., for every x ∈ X there are a neighborhood U of x
and intervals [m1,M1], [m2,M2] with mi < Mi for i = 1, 2 such that for any
t ∈ U

[m(t),M(t)] ∩ (−∞,M1] = F (t) ∩ ([m1,M1] − conv K) �= ∅,

[m(t),M(t)] = F (t) ⊂ [m2,M2] + conv K = [m2,∞).

Hence m(U) ⊂ [m2,M1]. Since 0 ∈ K, for B = [m2,M1] and every t ∈ U

F (t) ∩ (B − K) ⊃ [m(t),M(t)] ∩ B = [m(t),M(t)] ∩ [m2,M1] �= ∅,

which means that F is weakly K-upper bounded at x ∈ X. Hence, in view of
Theorem 2, F is locally K-bounded on X.

If conv K = (−∞, 0], then the proof runs in a similar way (then M is
bounded at x).
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Finally, let conv K = R. Then there are k1, k2 ∈ K with k1 < 0 and k2 > 0.
Moreover, for every x ∈ X

F (x) ∩ (
[k1, k2] − K

)
= F (x) ∩ R �= ∅,

F (x) ⊂ R = [k1, k2] + K,

which means that F is locally K-bounded on X. �
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[1] Banakh, T., Jab�lońska, E.: Null-finite sets in metric groups and their applications. Israel
J. Math. 230, 361–386 (2019)
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