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Abstract. Let X be a metric space and U : X∞ → R be a continuous function satisfying
the Koopmans recursion U(x0, x1, x2, . . .) = ϕ(x0, U(x1, x2, . . .)), where ϕ : X × I → I is a
continuous function and I is an interval. Denote by � a preference relation defined on the
product X∞ represented by a function U : X∞ → R, called a utility function, that means
(x0, x1, . . .) � (y0, y1, . . .) ⇔ U(x0, x1, . . .) ≥ U(y0, y1, . . .). We consider a problem when the
preference relation � can be represented by another utility function V satisfying the affine
recursion V (x0, x1, x2, . . .) = α(x0)V (x1, x2, . . .) + β(x0). Under suitable assumptions on
relation � we determine the form of the functions ϕ defining the utility functions possessing
the above property. The problem is reduced to solving a system of simultaneous functional
equations. The subject is strictly connected to a problem of preference in economics. In this
note we extend the results obtained in Zdun (Aequ Math 94, 2020).
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1. Introduction

This note is closely related to the study of a problem of preference in economics.
We present a method of solving some economic problems applying functional
equations.

Let X be a metric space. Let U : X∞ → R be a continuous, non constant
function such that the range I is a non-trivial interval. Define on X∞ the
following relation:

(x0, x1, . . .) � (y0, y1, . . .) ⇔ U(x0, x1, . . .) ≥ U(y0, y1, . . .).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-023-01009-1&domain=pdf
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The mapping U is said to be a utility function and “�” a preference rela-
tion represented by U . This relation is transitive, reflexive and connected. In
preference theory the space X is treated as a set of consumption products. The
sequence (x0, x1, x2, . . .) ∈ X∞ describes a consumption program over time.
The preference relation “�” describes how an individual consumer would rank
all consumption programs.

In the considered subject economists assume that the preference relation is
stationary (see e.g. [4]), that is

∀x ∈ X ∀a, b ∈ X∞ a � b ⇐⇒ (x, a) � (x, b).

If the relation � represented by the utility function U is stationary, then
there exists a unique function ϕ : X × I → I weakly increasing with respect
to the second variable such that

U(x0, x1, x2, . . .) = ϕ(x0, U(x1, x2, . . .)), (1)

where I = U [X∞].
This statement has a simple explanation. Let � be stationary. Note that

if U(a) = U(b) for some a = (a1, a2, . . .) and b = (b1, b2, . . .), then U(x, a) =
U(x, b) for every x ∈ X. This is obvious since U(a) ≥ U(b) and U(b) ≥ U(a)
imply that U(x, a) ≥ U(x, b) and U(x, b) ≥ U(x, a) thus U(x, a) = U(x, b).

Let x ∈ X and t ∈ I. By the surjectivity of U there exists an a ∈ X∞ such
that t = U(a). Define ϕ(x, t) := U(x, a). This definition is correct since the
value ϕ(x, t) does not depend on the choice of an element a. Directly by this
definition we get that ϕ(x,U(a)) = U(x, a) for all a ∈ X∞ and x ∈ X.

Let s < t. There exist a, b ∈ X∞ such that s = U(a) and t = U(b). We have
b � a and (x, b) � (x, a) i.e. U(x, a) ≤ U(x, b). Since U(x, a) = ϕ(x,U(a)) =
ϕ(x, s) and U(x, b) = ϕ(x,U(b)) = ϕ(x, t) we have ϕ(x, s) ≤ ϕ(x, t).

To prove the uniqueness assume that (1) holds also with a function ψ : X ×
I → I. Let x ∈ X and t ∈ I. By the surjectivity of U , there exists (x1, x2, . . .) ∈
X∞ such that t = U(x1, x2, . . .). Then we have ψ(x, t) = ψ(x,U(x1, x2, . . . )) =
U(x, x1, x2, . . .) = ϕ(x,U(x1, x2, . . .)) = ϕ(x, t). Thus ψ = ϕ.

We also have the reverse statement. If ϕ is strictly increasing with respect
to its second variable then relation � is stationary. In fact, if U(a) ≤ U(b) then
U(x, a) = ϕ(x,U(a)) ≤ ϕ(x,U(b)) = U(x, b). Conversely, if U(x, a) ≤ U(x, b)
then ϕ(x,U(a)) ≤ ϕ(x,U(b)), so U(a) ≤ U(b).

The recursion (1) was introduced in paper [5] by Koopmans T.C., Diamond
P.A. and Willson R.E.. They gave there a system of axioms on the preference
relation which is equivalent to the fact that ϕ : X × I → I is a continuous
function strictly increasing in its second variable.

Definition 1. The recursion (1) is called Koopmans recursion. Moreover, the
function ϕ in (1) is said to be an aggregator of U .
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Further we will consider the aggregator ϕ in the form of one parameter
family of continuous strictly increasing functions {fx : I → I, x ∈ X}, where

fx(t) := ϕ(x, t).

Moreover, the recursion (1) will be written in a shorten form

U(x, a) = fx(U(a)), x ∈ X, a ∈ X∞. (2)

Example 1. Let L ∈ N, L ≥ 2 and X := {0, .., L − 1}. Define the function

U(x0, x1, x2, ...) :=
∞∑

i=0

xi

Li+1
, (x0, x1, . . . ) ∈ X∞.

The expansion of every t ∈ [0, 1] on base L has the form t =
∑∞

i=0
xi

Li+1 for
some xi ∈ X, i ∈ N. Hence U is a utility function with range [0, 1].

Put fi(t) = t
L + i

L , where t ∈ [0, 1] and i ∈ {0, . . . , L − 1}. It is easy to see
that

fi(U(x1, x2, ...)) = U(i, x1, x2, ...), i ∈ X, (x1, x2, . . .) ∈ X∞,

which means that U satisfies the Koopmans recursion (1) with aggregator
ϕ(t, x) := t

L + x
L , t ∈ [0, 1], x ∈ X.

A basic role in the study of problems of preference is played by the property
of “impatience” introduced by Koopmans in [4].

Definition 2. We will say that the preference relation “ �′′ satisfies impatience

if for all n ≥ 1, â, b̂ ∈ Xn and all x ∈ X∞

(â, â, â, . . . ) � (b̂, b̂, b̂, . . .) ⇔ (â, b̂, x) � (b̂, â, x).

In simple terms this means that, if the repeated consumption â ∈ Xn is
preferred over the repeated consumption b̂ ∈ Xn, so that â is “better” than b̂,
then the individual would sooner consume â than b̂.

Koopmans set the problem how the relation of preference should be rep-
resented to satisfy impatience. This property has relations represented by the
utility functions having the affine aggegator fx(t) = αxt+βx. We consider the
problem when the preference relation satisfying impatience can be represented
by a utility function with affine aggregator. For this purpose we will focus
on studying the properties of continuous solutions of systems of simultaneous
linear functional equations. A partial answer to the above mentioned problem
is given in [11]. In this note we extend previous results.
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2. Preliminaries

Define on the infinite Cartesian product X∞ the following metric �(x, y) :=∑∞
n=1

1
2n

d(xn,yn)
1+d(xn,yn) , where d is the metric on the space X, x = (x1, x2, . . . )

and y = (y1, y2, . . .). Note that the metric space (X∞, �) has the following
property.

Remark 1. The convergence of the sequences is equivalent to the convergence
with respect to coordinates, that is limk→∞(x0,k, x1,k, . . .) = (x0, x1, . . .), if
and only if, limk→∞ xn,k = xn for every n ∈ N.

Let ϕ satisfy (1) with a utility function U . Introduce the notation

fa := ϕ(a, ·), a ∈ X.

From now on we assume that, for any a ∈ X the functions fa : I → I are
strictly increasing and continuous. We extend this notation

f(x0,x1,...,xk) := fx0 ◦ fx1 ◦ . . . fxk
, xi ∈ X, k ∈ N.

Note that, by (2),

U(a1, a2, . . . , ak, x) = fa1 ◦ fa2◦, . . . fak
(U(x)), x ∈ X∞, a1, . . . , ak ∈ X.

Thus (1) is equivalent to

U(â, x) = fâ(U(x)), â ∈ Xk, x ∈ X∞, k ∈ N. (3)

We have the following generalization of Remark 1 from [11].

Remark 2. Every function fâ for â ∈ ⋃
k≥1 Xk has a unique fixed point. This

fixed point is attractive.

Proof. Note that

pâ := U(â, â . . .)

is a fixed point of fâ. In fact, by (1), we have

pâ := U(â, â . . .) = ϕ(â, U(â, â . . .)) = fâ(pâ).

Let p ∈ I. By the surjectivity of U there exists a sequence (c1, c2, . . .) ∈ X∞

such that U(c1, c2, . . .) = p. It follows, by (3), that

fâ(p) = fâ(U(c1, c2, . . .)) = U(â, c1, c2, . . .).

Hence f2
â (U(c1, c2, . . .)) = fâ(U(â, c1, c2, . . .)) = U(â, â, c1, c2, . . .). Further, by

induction, we get

fn
â (p) = U(â, . . . , â︸ ︷︷ ︸

n

, c1, c2, . . .).

By Remark 1

(â, . . . , â, c1, c2, . . .) → (â, â, â, . . .),
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the continuity of U implies that

fn
â (p) = U(â, . . . , â, c1, c2, . . .) → U(â, â, â, . . .) = pâ.

�
Especially if p is a fixed point, then fn

â (p) = p, so p = pâ. Moreover, pâ is
an attractive fixed point.

Since p = pâ is a unique attractive fixed point we get

Remark 3. For every â ∈ Xk and k ∈ N

(H) fâ(t) < t for t > pâ and fâ(t) > t for t < pâ.

Remark 4. The family G := {fâ : â ∈ ⋃
k≥1 Xk} is a semigroup of strictly

increasing continuous functions possessing property (H).

The mappings fa : I → I need not be surjections (see Example 1).
Put Ia := fa[I]. We have

⋃

a∈X

Ia = I.

In fact, fa[I] = fa[U(X∞)] = U(a,X∞) and
⋃

a∈X U(a,X∞) = U(X∞) = I.

Theorem 1. If a utility function U satisfies (2) then for every sequence (x1,
x2, . . .) and every t ∈ I there exists the limit limn→∞ fx1 ◦ fx2◦, . . . , fxn

(t).
This limit does not depend on t and

U(x1, x2, . . .) = lim
n→∞ fx1 ◦ fx2◦, . . . , fxn

(t).

Proof. Let t ∈ I and (x1, . . . ) ∈ X∞. Then there exists a ∈ X∞ such that t =
U(a). In view of Remark 1 there exists the limit limn→∞(x1, x2, . . . , xn, a) =
(x1, x2, . . .). The continuity of U implies that

lim
n→∞ U(x1, x2, . . . , xn, a) = U(x1, x2, . . .).

On the other hand, by (3),

fx1 ◦ fx2◦, . . . , fxn
(t) = f(x1,x2,...,xn)(U(a)) = U(x1, x2, . . . , xn, a).

Hence we get our assertion. �
Corollary 1. For a given family of continuous injections fx, x ∈ X there exists
at most one utility function U fulfilling (2). If it exists then every fx satisfies
(H).

Corollary 2. If the functions fx; I → I, x ∈ X are the agreggator of a utility
function, then for every t ∈ I the set {fx1 ◦ fx2◦, . . . , fxn

(t), xi ∈ X,n ∈ N} is
dense in I.

In fact, let s ∈ I and U be a utility function satisfying (2). By the surjectiv-
ity of U there exists x = (x1, x2, . . . ) such that s = U(x). In view of Theorem
1, for every t ∈ I the sequence fx1 ◦ fx2◦, . . . , fxn

(t) converges to s.
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3. Conjugacy

Definition 3. We say that two utility functions U, V : X∞ → R are equivalent
if they represent the same preference relation.

By the definition of a utility function the sets I := U [X∞] and J := V [X∞]
are intervals.

Lemma 1. (See [11].) The utility functions U and V are equivalent if and only
if there exists an increasing homeomorphism Φ : J → I such that U = Φ ◦ V .

Let a utility function V satisfy the recursion

V (x, a) = gx(V (a)), x ∈ X, a ∈ X∞. (4)

Theorem 1 and Corollary 2 let us to generalize Th.3 from [11]. We have the
following statement

Remark 5. The utility functions U and V satisfying, respectively, recursions
(2) and (4) are equivalent if and only if there exists an increasing homeomor-
phism Φ : I → J such that

Φ ◦ fx = gx ◦ Φ, x ∈ X. (5)

Proof. The necessity of (5) was proved in [11, Theorem 3]. Furthermore, in
the same theorem the sufficiency of (5) was shown under the assumption of
uniqueness of the continuous solution of (4). Now, in view of Corollary 1, we
see that this assumption is satisfied. �

Remark 6. The continuous solution of equation (5) is unique.

In fact, let a = (x1, x2, . . . ) and x̂n := (x1, x2, . . . , xn). By (5) we get
inductively

Φ(fx̂n
(t)) = gx̂n

(Φ(t)), n ∈ N, t ∈ I.

Letting n → ∞ in both sides of the equality we get, by Theorem 1, that
Φ(U(a)) = V (a). If a continuous function Ψ satisfies (5) then similarly Ψ(U(a))
= V (a), so Ψ(U(a)) = Φ(U(a)) for every a ∈ X∞. Since U [X∞] = I we have
Φ = Ψ.

Let us consider a particular case, where gx(t) = αxt + βx, αx ∈ (0,∞) and
βx ∈ R for x ∈ X. Then (4) has the following form

V (x0, x1, x2, . . . ) = αx0V (x1, x2, . . . ) + βx0 , x0, x1, · · · ∈ X. (6)

Remark 7. If V is a utility function, then 0 < αx < 1 for x ∈ X.

In fact, Remark 3 implies that all functions gx satisfy (H), so 0 < αx < 1.
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Definition 4. The function V satisfying recurrence (6) is called affine utility
function.

Definition 5. The preference relation defined by a utility function equivalent
to an affine function is said to be an affine relation.

In economic literature such a relation is also called Uzawa-Epstein prefer-
ence relation (see [1]).

As a consequence of Remarks 5, 6 and 7 we get the new, more general
version of Th.4 in [11].

Theorem 2. Let U satisfy (2) and V satisfy (6) with coefficients αx and βx. If
U and V are equivalent then the system

Φ(fx(t)) = αxΦ(t) + βx, t ∈ I, x ∈ X (7)

has a unique strictly increasing and continuous solution and 0 < αx < 1.
Conversely, if (7) has a strictly increasing continuous solution then U and V
are equivalent.

Hence we get

Corollary 3. A preference relation is affine if and only if for every x ∈ X there
exist αx ∈ (0, 1) and βx ∈ R such that system (7) has a continuous and strictly
increasing solution.

Note that in general a continuous solution Φ : I → R need not be surjective.
Usually system (7) has a one parameter family of continuous strictly increasing
solutions (see e.g. [8]). This is a sum of a particular solution of (7) and functions
c γ for c > 0, where γ is a continuous increasing solution of γ ◦ fx = αxγ. In
our case the assumption that fx satisfies (2) with a utility function U implies
that γ = 0.

Remark 8. If (7) holds then βx

1−αx
∈ J := Φ[I] for x ∈ X.

In fact, put gx(t) := αxt + βx. It follows, by (7), that gx[J ] ⊂ J . This
inclusion is equivalent to the fact that the fixed point of the mapping gx

belongs to J . Note that βx

1−αx
is a fixed point of gx.

Since the composition of affine functions is affine, it is easy to see, that for
the functions fx, x ∈ X satisfying system (7), for every x̂ = (x1, . . . , xn−1) we
have

Φ(fx̂(t)) = αx̂Φ(t) + βx̂,

where αx̂ = αx1αx2 . . . αxn
and a βx̂ ∈ R.

Knowing the solution of system (7) allows us to determine the utility func-
tion with given aggregator functions. This shows the following.
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Theorem 3. If a utility function U satisfies recursion (2) and system (7) with
coefficients 0 < αx < 1 has a not constant continuous solution Φ, then
limn→∞ ax0 · · · axn

= 0 and the series

βx0 +
∞∑

k=0

k∏

i=0

αxi
βxk+1 =: S(x0, x1, . . .)

is convergent. Moreover,

Φ(U(x)) = S(x), x ∈ X∞

and S(x0, x1, . . . ) = αx0S(x1, x2, . . .) + βx0 for (x0, x1, . . . ) ∈ X∞.

The function S is known in economic literature as Uzawa-Epstein function.

Proof. Let Φ satisfy system (7), then it is easy to verify that

Φ(fx0 ◦ fx1 ◦ . . . fxn
(t)) = αx0 . . . αxn

Φ(t) + βx0 +
n−1∑

k=0

k∏

i=0

αxi
βxk+1 .

Let x = (x0, x1, . . .). It follows, by Theorem 1, that for every t ∈ I there
exists limn→∞ fx0 ◦ fx1 ◦ . . . fxn

(t). Since 0 < αx < 1 there exists the limit
limn→∞ ax0 · · · axn

=: A(x). Letting n → ∞ in the last equality we get

Φ(U(x)) = A(x)Φ(t) + S(x) for t ∈ I.

Thus, the series S(x) is convergent. If A(x) �= 0 for an x ∈ X∞, then Φ(t) =
Φ(U(x))−S(x)

A(x) , t ∈ I. This is a contradiction, since Φ is an injective function.
Thus A(x) = 0 for x ∈ X∞.

It is easy to see that S(x0, a) = αx0S(a) + βx0 for a = (x1, x2, . . .) ∈ X∞

and x0 ∈ X. On the other hand S[X∞] = Φ[U [X∞]] = Φ[I]. Thus the range
of S is an interval, since Φ is continuous and not constant. Thus S is an affine
utility function. �

We have the following property which is inverse to that given in Theorem
3

Remark 9. If a utility function U satisfies (2) and there exists a function ϕ
such that ϕ ◦ U = S, then

ϕ(fx(t)) = αxϕ(t) + βx, for x ∈ X.

Indeed, let ϕ ◦ U = S and t ∈ I. By the surjectivity of U there exists
a ∈ X∞ such that t = U(a). Since S is an affine utility function, we have

ϕ(fx(t)) = ϕ(fx(U(a))) = ϕ(U(x, a)) = S(x, a) = αxS(a) + βx

= αxϕ(U(a)) + βx = αxϕ(t) + βx.

An affine preference relation can be determined by different affine aggre-
gators with different coefficients αx and βx. The relationship between these
coefficients gives the following.
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Proposition 1. Let fx for x ∈ X be the aggregator functions of a utility func-
tion U . If Φ and Ψ are continuous and strictly increasing solutions of (7) and
the system of equations

Ψ(fx(t)) = αxΨ(t) + βx, (8)

respectively, then

αx = αx and βx = aβx + b(1 − αx)

for some a > 0 and b ∈ R. Moreover, Ψ = aΦ + b.

Proof. Assume that V and W are affine utility functions such that V satisfies
(6) and W satisfies

W (x0, x1, x2, . . . ) = αx0W (x1, x2, . . . ) + βx0
. (9)

By Theorem 2 the utility functions U and W are equivalent, as well as U and
V . Thus V and W are equivalent. By Theorem 3 V and W are Uzawa-Epstein
functions. They have the following forms.

V (x0, x1, x2, . . .) := βx0 +
∞∑

k=0

k∏

i=0

αxi
βxk+1 ,

W (x0, x1, x2, . . .) := βx0
+

∞∑

k=0

k∏

i=0

αxi
βxk+1

.

Bommier et al., in [1], proved that W = aV + b for some a > 0 and b ∈ R

(see also [2]). The recursions (6) and (9) can be written in the shorter form

V (x, y) = αxV (y) + βx, x ∈ X, y ∈ X∞,

W (x, y) = αxW (y) + βx, x ∈ X, y ∈ X∞.

Since W = aV + b we have

W (x, y) = aV (x, y) + b = a(αxV (y) + βx) + b = aαxV (y) + aβx + b,

W (x, y) = αxW (y) + βx = αx(aV (y) + b) + βx = aαxV (y) + αxb + βx.

Thus

aαxV (y) + aβx + b = aαxV (y) + αxb + βx for y ∈ X∞.

Since V is a surjection of X∞ onto I, we have αx = αx and aβx + b =
αxb + βx, so αx = αx and βx = aβx + b(1 − αx).

It is easy to verify that the function aΦ + b satisfies (8) with αx = αx and
βx = aβx + b(1 − αx). By Theorem 2, system (8) has a unique continuous
strictly increasing solution, so Ψ = aφ + b. �

As a corollary of Proposition 1 we conclude that the coefficients αx are
determined uniquely, whereas the coefficients βx depend on two parameters.
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Remark 10. If every fx is differentiable at its fixed point px and solution Φ of
(7) is differentiable and Φ′ > 0, then

αx = f ′
x(px) and βx = (1 − f ′

x(px))Φ(px).

In fact, putting in (7) x = px we get Φ(px) = βx

1−αx
. Next, differentiating

both sides of (7) at px, we get f ′
x(px) = αx.

Lemma 2. If system (7) has an injective solution Φ and βx

1−αx
∈ Φ[I] for x ∈

Y ⊂ X, then the following conditions are equivalent:
(i) fx, x ∈ Y have a common fixed point,
(ii) fx, x ∈ Y pairwise commute,
(iii) gx(t) := αxt + βx, x ∈ Y have a common fixed point.

Proof. If fx(p) = p, then Φ(p) = gx(Φ(p)) = βx

1−αx
. Hence gx commute as affine

functions having a common fixed point. Since Φ◦fx ◦fy = gx ◦gy ◦Φ = gy ◦gx ◦
Φ = Φ◦fy◦fx we have fx◦fy = fy◦fx. By the same equality the commutativity
of fx, x ∈ Y implies the commutativity of gx, x ∈ Y . However, commuting
affine functions have a common fixed point. If gx(q) = q, then q = βx

1−αx
∈ Φ[I],

so q = Φ(p) for a p ∈ I. We have Φ(fx(p)) = gx(Φ(p)) = gx(q) = q = Φ(p). So
the functions fx have a common fixed point. �

Theorem 4. Let fx, x ∈ X be the aggregator functions of a utility function
U and satisfy system (7) with αx ∈ (0, 1), βx ∈ R and a continuous, strictly
increasing function Φ. If fx for x ∈ Y ⊂ X have a common fixed point, then
U restricted to Y ∞ is constant.

Proof. Let x = (x0, x1, . . . ) ∈ Y ∞. By Lemma 3 the functions fxi
pairwise

commute, as well as gxi
, where gxi

(t) = αxi
t + βxi

for t ∈ I, i ∈ N. By (7)

Φ(fx0 ◦ fx1 ◦ . . . fxn
(t)) = wn(x0, x1, . . . xn)(Φ(t)),

where wn(x0, x1, . . . xn)(t) = αx0αx1 . . . αxn
t + Sn(x0, x1, . . . xn) and

Sn(x0, x1, . . . xn) = βx0 +
n−1∑

k=0

k∏

i=0

αxi
βxk+1 .

By Lemma 2, the functions wn commute and have a common fixed point.
Denote it by q. Thus we have

q(1 − αx0αx1 . . . αxn
) = Sn(x0, x1, . . . xn).

By Theorem 3, limn→∞ ax0 · · · axn
= 0. Letting n → ∞ in the last formula

we get that Sn(x0, x1, . . . xn) converges to q. On the other hand, by Theorem
3, limn→∞ Sn(x0, x1, . . . xn) = S(x), where S is the Uzawa-Epstein function.
Also Theorem 3 implies that Φ(U(x)) = S(x) = q for x ∈ Y ∞. Thus U is
constant on Y ∞. �

Putting Y = X we get the following.
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Corollary 4. If fx, x ∈ X pairwise commute and system (7) has a continuous
and strictly increasing solution, then there is no utility function satisfying (2).

4. Impatience

The following characterization of impatience is given in [11].
The preference relation � defined by a utility function with aggregator

functions {fx, x ∈ X} satisfies impatience if and only if
(P) ∀k≥1∀a,b∈Xk pa ≥ pb ⇔ fa ◦ fb ≥ fb ◦ fa,

where pa is the only one fixed point of fa.
Hence, if � satisfies impatience, then fa ◦ fb = fb ◦ fa if and only if fa and

fb have a joint fixed point.
In [11] it is proved that every affine relation satisfies impatience. The proof

is to check the condition (P) for the functions fx̂(t) = αx̂t + βx̂.
As a simple consequence of the above properties and Theorem 2 we get the

following statement.
If fx, x ∈ X are the aggregator functions of U and system (7) has a strictly

increasing continuous solution, for some αx ∈ (0, 1), βx ∈ R, then the prefer-
ence relation defined by U satisfies impatience (see also Th.5 in [11]).

We consider the inverse problem: When is a preference relation satisfying
impatience affine? To answer this problem we determine the form of all aggre-
gators satisfying condition (P) such that the system of simultaneous equations
(7) has a continuous strictly increasing solution.

Some necessary and sufficient conditions for the surjective aggregator func-
tions fx to satisfy condition (P) are given in [11]. They ensure the affinity of
the preference relation. In this section we do not assume the surjectivity of fx.
We complete and extend the results presented in [11].

If the relation � is affine then, by Corollary 3, system (7) has an injective
solution. Then, similarly as in [11] one can prove the following property: If �
is affine and fâ �= fb̂, then their graphs are either disjoint or intersect in one
point.

We have fn
a = f(a, a, . . . , a︸ ︷︷ ︸

n

), so if fn
a �= fm

b then fn
a (t) �= fm

b (t) for all t ∈ I,

except for one point at most.
Recall that the functions fa and fb are said to be iteratively incommensu-

rable if fn
a (t) �= fm

b (t) for all t ∈ I and all n,m ∈ N (see [3,9]).
Hence we get

Corollary 5. If the relation � is affine then for every a, b ∈ X the functions
fa �= fb, are iteratively incommensurable except for one point at most.

A direct checking of iterative incommensurability is a difficult task. In the
considered problem the following property of the relation � is very useful.
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Define on X∞ the relation x ∼ y ⇔ x � y ∧ y � x. This means that x ∼ y
if and only if U(x) = U(y).

Consider the following axiom concerning the properties of relation ∼.
(A) If for a, b ∈ X there exist x, x ∈ X∞ such that x � x, (a, x) ∼ (b, x),

(a, x) ∼ (b, x), then for every x ∈ X∞, (a, x) ∼ (b, x).
Notice that (A) is equivalent to the following property of the utility func-

tion: If for a, b ∈ X there exist x, x ∈ X∞ such that U(a, x) = U(b, x) and
U(a, x) = U(b, x) and U(x) �= U(x), then for every x ∈ X∞, U(a, x) = U(b, x).

Lemma 3. Let � be the relation generated by U with the aggregators fx, x ∈ X.
The graphs of fx are either disjoint or intersect in one point if and only if the
relation � satisfies (A).

Proof. Let (A) hold and fa(t1) = fb(t1) and fa(t2) = fb(t2) for some t1 �= t2.
Then there exist x, x ∈ X∞ such that t1 = U(x) and t2 = U(x). Hence, by
(2), U(a, x) = U(b, x) and U(a, x) = U(b, x) so, by (A), U(a, x) = U(b, x) for
all x ∈ X∞. Further, by (2), fa = fb.

Conversely, let U(a, x) = U(b, x), U(a, x) = U(b, x) and U(x) �= U(x)
for some x, x ∈ X∞. By (2) we have fa(U(x)) = fb(U(x)) and fa(U(x)) =
fb(U(x)), so fa = fb. Thus fa(U(x)) = fb(U(x)) for x ∈ X∞ and, by (2),
U(a, x) = U(b, x), that is (a, x) ∼ (b, x). �

Note that axiom (A) implies that any functions fa �= fb are iteratively
incommensurable.

Remark 11. If the preference relation � is affine then it satisfies (A).

Proof. Let an affine relation � be represented by U and fx, x ∈ X be its
aggregator. In view of Theorem 2, system (7) has an injective solution Φ.
Suppose that there exist t1 �= t2 such that fx(t1) = fy(t1) and fx(t2) = fy(t2).
It follows, by (7), that

(αx − αy)Φ(t1) = (βy − βx) and (αx − αy)Φ(t2) = (βy − βx).

The injectivity of Φ implies that αx = αy and βy = βx, so fx = fy. Thus
the graphs of fx, x ∈ X are either disjoint or intersect in one point so, by
Lemma 3, condition (A) holds. �

Assume that the preference relation satisfies impatience and consider the
following two cases:
(I) There exist a, b ∈ X, a �= b such that fa and fb have a common fixed

point.
(II) For any a, b ∈ X, a �= b fa and fb have not common fixed point.
Case (I)

Let fa(p) = fb(p) = p. Then fa and fb commute. Assume that � satisfies
(A). Then fa, fb are iteratively incommensurable except for the point p or
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fn
a = fm

b for some n,m ∈ N. This second case is trivial and has been considered
in [11]. Further we assume that fn

a �= fm
b for n,m ∈ N.

Consider the following system of simultaneous equations
{

Ψ ◦ fa = αaΨ + βa,
Ψ ◦ fb = αbΨ + βb.

(10)

A necessary and sufficient condition for the existence of homeomorphic solu-
tions of the systems (10), is given in Th.7 in [11]. There it is assumed that fa

and fb are iteratively incommensurable. The non-surjective case is considered
in the comment at the end of this paper.

Moreover, if fa and fb belong to the same continuous iteration semigroup,
then system (10) has a continuous and strictly increasing solution. This case
occurs if fa and fb are sufficiently regular. For example if they are of class C2

and log f ′
a(p)/ log f ′

b(p) /∈ Q, then a solution of (10) is also of class C2 (see [7]
Th.10.2 and Th.6.1).

Note that, if system (10) has a solution then, obviously, βa

1−αa
= βb

1−αb
.

Putting G := Ψ− βa

1−αa
we get the equivalent system of simultaneous Schröder

equations {
G ◦ fa = αaG,
G ◦ fb = αbG.

(11)

Introduce the notation I− := I ∩ (−∞, p] and I+ := [p.∞). By Remark 3
fx[I−] ⊂ I− and fx[I+] ⊂ I+ for x ∈ X. In each of the intervals I− and I+

the continuous solution of (11) is uniquely determined up to a multiplicative
constant (see [9,11]). Hence a two parameter family of functions

G(t) =
{

η1G−(t), t ∈ I−
η2G+(t), t ∈ I+

where, G−, G+ are the particular solutions of (11), respectively on I− and I+,
gives the general form of continuous solutions of (11) on I.

The injective, continuous solutions of (10) allow us to determine the aggre-
gator functions of a given utility function. We have

Proposition 2. Let a utility function U satisfying (2) be equivalent to an affine
utility function. If Ψ is an injective continuous solution of (10), then, there
exist μ1 > 0 and μ2 > 0 such that the formula

fx(t) =

{
Ψ−1(αxΨ(t) + μ1βx + βa

1−αa
(1 − αx)(1 − μ1)), x ∈ X, t ∈ I−

Ψ−1(αxΨ(t) + μ2βx + βa

1−αa
(1 − αx)(1 − μ2)), x ∈ X, t ∈ I+

(12)
expresses the aggregator functions fx of U for which μβx

1−αx
+ βa

1−αa
(1 − μi) ∈

Ψ[I], i = 1, 2.
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Proof. Let Ψ be a continuous solution of system (10). Then G := Ψ − βa

1−αa

is a particular continuous solution of (11). The constant function βa

1−αa
is a

particular solution of (11), thus two parameter family of functions

Fη1,η2(t) =

{
η2G−(t) + βa

1−αa
, t ∈ I−

η2G+(t) + βa

1−αa
, t ∈ I+

gives the general continuous solution of (10). By Theorem 2 system (7) has a
continuous solution. Let Φ be a continuous solution of (7). Note that Φ satisfies
also system (10), so Φ = Fη1,η2 for some η1 > 0 and η2 > 0. Thus for t ∈ I− we
have η1G−(fx(t))+ βa

1−αa
= Φ(fx(t)) = αxΦ(t)+βx = η1αxG−(t)+ αxβa

1−αa
+βx.

Putting μ1 = 1/η1 we get

1
μ1

(G−(fx(t)) − αxG−(t)) =
βa(αx − 1)

1 − αa
+ βx, t ∈ I−.

Thus

G−(fx(t)) − αxG−(t) = μ1(βx − βa(1 − αx)
1 − αa

), t ∈ I−.

Since Ψ = G + βa

1−αa
, we have Ψ(fx(t)) = G−(fx(t)) + βa

1−αa
= αxG−(t) +

μ1(βx− βa(1−αx)
1−αa

)+ βa

1−αa
= αxG−(t)+μ1βx+ βa

1−αa
(1−μ1(1−αx)) = αx(Ψ(t)−

βa

1−αa
) + μ1βx + βa

1−αa
(1 − μ(1 − αx)) = αxΨ(t) + μβx + βa

1−αa
(1 − αx)(1 − μ1),

so

Ψ(fx(t)) = αxΨ(t) + μ1βx +
βa

1 − αa
(1 − αx)(1 − μ1), x ∈ X, t ∈ I−.

Similarly we get

Ψ(fx(t)) = αxΨ(t) + μ2βx +
βa

1 − αa
(1 − αx)(1 − μ2), x ∈ X, t ∈ I+.

Hence we get (12). The condition limiting the coefficients βx and αx is a
consequence of Remark 8. �

From the above facts we get the following final result.

Theorem 5. Let a relation � defined by a utility function U fulfilling (2) satisfy
impatience. Suppose that Ψ is a strictly increasing continuous solution of (10).
Then the relation � is affine if and only if fx for x ∈ X are given by formula
(12).

Proof. Let an affine relation � be defined by a function U satisfying (2). By
Theorem 2 system (7) has a continuous and strictly increasing solution. Then,
by Proposition 1, the functions fx are given by (12).

Inversely, if fx are given by (12), then Ψ satisfies system (7) with coefficients
αx and μβx + βa

1−αa
(1 − αx)(1 − μ). Hence, in view of Theorem 2, the relation

� is affine. �
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Case II
The case where the mappings fx : I → I are homeomorphisms was consid-

ered in [11]. Now we study the case of non-surjective mappings. Let a = inf I
and b = sup I. We allow that a = −∞ and b = ∞. If I is not closed then we
may extend fx continuously on cl I.

In this section we consider the special case where X = {0, 1, . . . , n − 1},
Intfp[I] ∩ Intfq[I] = ∅ for p, q ∈ X, p �= q and

⋃
k∈X fk[I] = I.

Assume the hypothesis

(i) f0, . . . , fn−1 : [a, b] → [a, b] are continuous strictly increasing mappings
and f0(a) = a, fn−1(b) = b, fk+1(a) = fk(b), k = 0, . . . , n − 2.

Let us start from the following

Remark 12. Let the aggregators f0, . . . fn−1 of a utility function U satisfy (i).
Then the preference relation defined by U satisfies impatience.

Proof. To show this we verify that the functions f0, . . . , fn−1 satisfy condition
(P). Let â = (a1, a2 . . . ) and b̂ = (b1, b2, . . .), where ak, bk ∈ {0, 1, . . . , n − 1},
k ∈ N. We have that fâ maps I onto Ia1 and fb̂ maps I onto Ib1 .

Let fâ(pâ) = pâ and fb̂(pb̂) = pb̂. Since pâ ∈ Ia1 and pb̂ ∈ Ib1 the inequality
pâ < pb̂ occurs if and only if sup Ia1 ≤ inf Ib1 . On the other hand, since
fâ ◦ fb̂(t) ∈ Ia1 and fb̂ ◦ fâ(t) ∈ Ib1 for t ∈ I we have fâ ◦ fb̂ ≤ sup Ia1 and
inf Ib1 ≤ fb̂ ◦ fâ. Hence fâ ◦ fb̂ ≤ fb̂ ◦ fâ if and only if sup Ia1 ≤ inf Ib1 . Thus
condition (P) holds. �

Let J := [c, d]. Define on J the functions

Hk(t) = αkt + βk

for k = 0, 1, . . . , n−1. Assume that H0, . . . , Hn−1 satisfy the following hypoth-
esis.

(ii) H0(c) = c = μ0, Hn−1(d) = d =: μn−1, Hk−1(d) = Hk(c) =: μk,
k = 1, . . . , n − 1.

The functions Hk : J → [μk, μk+1] are determined uniquely by the pa-
rameters μk. The coefficients αk and βk are the solutions of the systems of
equations

αkc + βk = μk, αkd + βk = μk+1, k = 0, 1, . . . , n − 1. (13)

Applying the results from [10] we get the following criterion for affinity of
the preference relation.

Theorem 6. Let f0, . . . , fn−1 be aggregator functions of a utility function U
and satisfy (i). If

|fk(s) − fk(t)| < |s − t|, s �= t, k = 0, . . . , n − 1, (14)

then the preference relation defined by the function U is affine.
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Proof. It was proved in [10] (see Th.4 and Th.5) that if f0, . . . , fn−1 satisfy (i)
and H0, . . . Hn−1 satisfy (ii), then the system

ϕ(fk(t)) = Hk(ϕ(t)), k = 0, . . . , n − 1, t ∈ I (15)

has a unique bounded solution ϕ. This solution is monotonic, ϕ(a) = c and
ϕ(b) = d. If, in addition, condition (14) holds, then the solution ϕ is continuous
and strictly increasing. In our case system (15) has the form

ϕ(fk(t)) = αkϕ(t) + βk, k = 0, . . . , n − 1.

Thus, by Theorem 2, U is affine. �

Corollary 6. If the assumptions of Theorem 6 are satisfied then for every n−2
parameters c < μ1 <, · · · < μn−2 < d there exists a unique homeomorphic
solution Φ of system (7) such that Φ(fi(a)) = μi for i = 1, . . . n − 2. The
coefficients αk and βk in (7) are uniquely determined by the system of linear
equations (13).
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