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On symbolic computation of C.P. Okeke functional equations
using Python programming language

Chisom Prince Okeke , Wisdom I. Ogala, and Timothy Nadhomi

Abstract. This present paper is inspired by one of the questions posed by Okeke (Results
Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust com-
puter code based on the theoretical results obtained in Okeke (2023), which determines the
polynomial solutions of the following functional equation,

n∑

i=1
γiF (aix + biy) =

m∑

j=1
(αjx + βjy)f(cjx + djy), (0.1)

for all x, y ∈ R, γi, αj , βj ∈ R, and ai, bi, cj , dj ∈ Q, and their special forms. The primary
motivation for writing such a computer code is that solving even simple equations belonging
to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such
a computer code is that it allows us to solve complicated problems quickly, easily, and ef-
ficiently. Additionally, the computer code will significantly improve the level of accuracy in
calculations. Along with that, there is also the factor of speed. We point out that the com-
puter code will operate with symbolic calculations provided by the programming language
Python, which means that it does not contain any numerical or approximate methods, and
it yields the exact solutions of the equations considered.
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1. Introduction

In the theory of functional equations, there are few methods for solving a
broader class of functional equations. In situations where such a method exists,
it requires tedious computations. Therefore, in this present paper, we aim to
develop a computer code based on the theoretical results obtained in [16] that
will operate with symbolic calculations provided by the programming language
Python, which means that it does not contain any numerical or approximate
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methods and it yields the exact polynomial solutions of the following functional
equation,

n∑

i=1

γiF (aix + biy) =
m∑

j=1

(αjx + βjy)f(cjx + djy), (1.1)

for all x, y ∈ R, γi, αj , βj ∈ R, and ai, bi, cj , dj ∈ Q, and their special forms.
This computer code will spare us monotonous calculations and the same te-
dious procedure. The computer code will significantly improve the level of
accuracy and speed in calculations. Additionally, the computer code will be
fully equipped with the functionality to solve various real-life problems, for ex-
ample, the functional equations stemming from quadrature rules such as the
Midpoint rule, Simpson rule, and Trapezoidal rule used in numerical analysis
for integral approximation; the functional equations connected to the Lagrange
mean value theorem which has many applications in mathematical analysis,
computational mathematics, and other fields, and the functional equations
arising from descriptive geometry, which is still a rigorous way to deal with
graphical constructions. We note that using a computer programming lan-
guage to solve functional equations has been studied by few mathematicians.
We mention here some of them, S. Baják and Z. Páles [4], and [5], G.G. Borus
and A. Gilányi [6], A. Házy [9], and [10], and C.P. Okeke and M. Sablik [15]. In
their works, they used Maple as the programming tool to obtain their results
which is less flexible in usage and accessible only to a small portion of the
academic research community; however, in our work, we achieved our results
using the programming language Python, designed to be an easily readable,
highly versatile, general-purpose, open-source programming language, which
avails robustness and facilitates the deployment of theorems to computational
and symbolic frameworks. Special forms of (1.1) have been studied by several
mathematicians. Let us quote here a few of them, J. Aczél [1], J. Aczél and
M. Kuczma [2], C. Alsina, M. Sablik, and J. Sikorska [3], W. Fechner and E.
Gselmann [7], B. Koclȩga-Kulpa, T. Szostok and S. Wa̧sowicz [11], [12] and
[13], T. Nadhomi, C. P. Okeke, M. Sablik and T. Szostok [14], and C. P. Okeke
and M. Sablik [15].

Theoretical background

We start by presenting some basic definitions.
Fix a nonnegative integer n, and let (G,+) and (H,+) be groups. We say that
a function f : G → H satisfies the Fréchet equation (of order n) if, and only
if

Δn+1
yn+1yn...y1

f(x) = 0, (1.2)

for all y1, . . . , yn+1, x ∈ G (here Δn+1
yn+1yn...y1

f := Δyn+1 ◦ Δn
yn...y1

f, and Δ is
the Fréchet operator, defined by Δyf(x) = f(x+y)−f(x) for every y, x ∈ G).
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We say that any solution to (1.2) is a polynomial function of order at most n.
Now, we present the characterization of polynomial functions.

Theorem 1.1. (cf. Theorem 9.1 in [19]) Let (G,+) be a commutative semigroup
with identity, let (H,+) be a commutative group and let n be a nonnegative
integer. Moreover, assume that H is uniquely divisible by n!. Then f : G → H
is a solution of (1.2) if and only if it has the form

f(x) =
n∑

k=0

A∗
k(x), (1.3)

for all x ∈ G where A∗
k, k ∈ {0, · · · , n}, are diagonalizations of k-additive

symmetric functions Ak : Gk → H.

In the case of G = H = R, we obtain the following

Corollary 1.1. Let n be a nonnegative integer. Then f : R → R is a continuous
solution of (1.2) if and only if it has the form

f(x) =
n∑

k=0

akxk, (1.4)

where ak, k ∈ {0, · · · , n}, are some real constants.

In other words, a continuous real solution of (1.2) is an ordinary polyno-
mial. Next, we quote all theoretical results obtained in [16] without proofs
for completeness and the reader’s convenience. Before we state the results,
let us adopt the following notation. Let G and H be commutative groups.
Then SAi(G;H) denotes the group of all i-additive, symmetric mappings
from Gi into H for i � 2, while SA0(G;H) denotes the family of constant
functions from G to H and SA1(G;H) = Hom(G;H). We also denote by I
the subset of Hom(G;G) × Hom(G;G) containing all pairs (α, β) for which
Ran(α) ⊂ Ran(β). Furthermore, we adopt the convention that a sum over an
empty set of indices equals zero. We denote also for an Ai ∈ SAi(G;H) by A∗

i

the diagonalization of Ai, i ∈ N ∪ {0}.

Lemma 1.1. (Lemma 1.1 in [16]) Fix N ∈ N ∪ {0}, M ∈ N ∪ {−1, 0} and, if
M ≥ 0, let Ip,n−p, 0 ≤ p ≤ n, n ∈ {0, . . . , M} be finite subsets of I. Suppose
further that H is an Abelian group uniquely divisible by N ! and G is an Abelian
group. Moreover, let functions ϕi : G → SAi(G;H), i ∈ {0, . . . , N} and, if
M ≥ 0, ψp,n−p,(α,β) : G → SAi(G;H), (α, β) ∈ Ip,n−p, 0 ≤ p ≤ n, n ∈
{0, . . . , M},satisfy

ϕN (x)(yN ) +
N−1∑

i=0

ϕi(x)(yi) = RM (x, y), (1.5)
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where RM (x, y) is defined in the following way

RM (x, y) =

⎧
⎨

⎩

0, M = −1,
M∑

n=0

n∑

p=0

∑

(α,β)∈Ip,n−p

ψp,n−p,(α,β) (α(x) + β(y)) (xp, yn−p), M ≥ 0

for every x, y ∈ G. Then ϕN is a polynomial function of degree not greater
than m, where

m =
M∑

n=0
card

(
M⋃

s=n
Ks

)

− 1, (1.6)

and Ks =
⋃s

p=0 Ip,s−p for each s ∈ {0, . . . ,M}, if M ≥ 0. Moreover, if M =
−1,

ϕN (x)(yN ) +
N−1∑

i=0

ϕi(x)(yi) = 0

then m = −1 and ϕN is the zero function.

Let us mention a very important result used in [16] due to L. Székelyhidi
who proved that every solution of a very general linear equation is a polynomial
function (see [19] Theorem 9.5, cf. also W. H. Wilson [20]).

Theorem 1.2. (Theorem 1.2 in [16]) Let G be an Abelian semigroup, S an
Abelian group, n a positive integer, ϕi, ψi additive functions from G to G and
let ϕi(G) ⊂ ψi(G), i ∈ {1, . . . , n}. If functions f, fi : G → S satisfy the
equation

f(x) +
n∑

i=1

fi(ϕi(x) + ψi(y)) = 0, (1.7)

then f satisfies (1.2).

Székelyhidi’s result makes it easier to solve linear equations because it is no
longer necessary to deal with each equation separately. Instead, we may for-
mulate results which are valid for large classes of equations.
Now applying Lemma 1.1 and Theorem 1.2 to (1.1), we obtain that (1.1) has
polynomial functions as solutions. With such a result, it is now enough to
assume that the pair of functions (F, f) satisfying Eq. (1.1) are monomials.
A characteristic feature of equation (1.1) is that the existence of solutions
depends on the sequences (Lk)k∈N∪{0} and (Rk)k∈N∪{0} given by

Lk =
n∑

i=1

γi(ai + bi)k+1, (1.8)

and,

Rk =
m∑

j=1

(αj + βj)(cj + dj)k, (1.9)

respectively, for all k ∈ N ∪ {0}. Hence, we proceed to the next theorem.
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Theorem 1.3. (Theorem 2.1 in [16]) Suppose γi, αj , βj ∈ R, ai, bi, cj , dj ∈
Q, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. Let (Lk)k∈N∪{0} and (Rk)k∈N∪{0} be defined
by (1.8) and (1.9) respectively. Assume that Lk, Rk 	= 0 for some k ∈ N∪ {0},
and equation (1.1) is satisfied by the pair (F, f) : R −→ R, of monomial func-
tions of order k + 1 and k, respectively.
(i) If k = 0, then f = 0 = F or f = A0 	= 0 and F (x) = R0

L0
A0x; in the latter

case necessarily

R0
L0

n∑

i=1

γiai =
m∑

j=1

αj , (1.10)

and,

R0
L0

n∑

i=1

γibi =
m∑

j=1

βj . (1.11)

(ii) If k 	= 0, then either f = F = 0 is the only solution of (1.1), or f is an
arbitrary additive function while F is given by F (x) = Rk

Lk
xf(x), x ∈ R

when the below equations hold

Rk

Lk

n∑

i=1

γia
k+1
i =

m∑

j=1

αjc
k
j , (1.12)

Rk

Lk

n∑

i=1

γib
k+1
i =

m∑

j=1

βjd
k
j , (1.13)

and,

Rk

Lk

n∑

i=1

(
k+1

p

)
γia

p
i b

k+1−p
i =

m∑

j=1

(
k
p

)
βjc

p
jd

k−p
j +

m∑

j=1

(
k

p−1

)
αjc

p−1
j dk+1−p

j ,

(1.14)

for each p ∈ {1, · · · , k}. Furthermore, for non-trivial f we see that either

(a)
m∑

j=1

βjc
p
jd

k−p
j =

m∑

j=1

αjc
p−1
j dk+1−p

j for each p ∈ {1, · · · , k}, and f is an

arbitrary k-monomial function, or

(b)
m∑

j=1

βjc
p
jd

k−p
j 	=

m∑

j=1

αjc
p−1
j dk+1−p

j for each p ∈ {1, · · · , k}, and f is nec-

essarily a continuous monomial function of order k and so is F of order
k + 1.

Remark 1.1. (Remark 2.1 in [16]) We note here that in equations (1.1) and
(1.8), if f = 0 and k ∈ N ∪ {0} with

Lk =
n∑

i=1

γi(ai + bi)k+1 = 0,

then F is not necessarily equal to zero. Of course this does not contradict
Theorem 1.3 because Lk 	= 0. Therefore, we state the below propositions.
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Proposition 1.4. (Proposition 2.2 in [16]) Let γi ∈ R, ai, bi ∈ Q, i ∈ {1, · · · , n}.
Let (Lk)k∈N∪{0} be defined by (1.8). Assume that k = 0 so that

L0 =
n∑

i=1

γi(ai + bi) = 0, (1.15)

holds then either f = F = 0 is the only solution of (1.1) or,
(a) If f = 0 and F = const = A0 where A0 is any real number is the solution

to (1.1) then
n∑

i=1

γi = 0.

(b) If f = 0 and F = A1 is an additive function is the solution to (1.1) then
n∑

i=1

γiai =
n∑

i=1

γibi = 0.

Proposition 1.5. (Proposition 2.3 in [16]) Let γi ∈ R, ai, bi ∈ Q, i ∈ {1, · · · , n}.
Let (Lk)k∈N∪{0} be defined by (1.8). Assume that k ∈ N such that

Lk =
n∑

i=1

γi(ai + bi)k+1 = 0, (1.16)

holds then either f = F = 0 is the only solution of (1.1) or, f = 0 and
F = A∗

k+1 is an arbitrary k + 1 additive function when
n∑

i=1

(
k+1

p

)
γia

p
i b

k+1−p
i = 0,

for each p ∈ {0, · · · , k + 1}.

Remark 1.2. (Remark 2.2 in [16]) We note that if f = 0, k = 0, and
n∑

i=1

γi = 0

then F = A0, where A0 is any real number, is also a solution to (1.1).

Remark 1.3. (Remark 2.3 in [16]) Since we are interested in the pairs (F, f)
of polynomial functions that satisfy (1.1), we mention here that assumptions
(1.15), (1.16) and Remark 1.2 are essential when f = 0. Therefore, if f = 0
and k ∈ N ∪ {0} with Lk 	= 0 then f = F = 0 is the only solution to (1.1).

2. Algorithm and computer code

Given that the proofs of the theoretical results described above are construc-
tive, we can formulate the following algorithm to solve any equation of type
(1.1).
(1) We rewrite the equation to get a form similar to (1.5) and apply Lemma

1.1 to obtain the potential polynomial degree of one of the unknown
functions, either F or f .
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(2) From Lemma 1.1, we get that if the potential degree of F was obtained,
then

k =
{

m − 1 if m ≥ 1,
0 if m = −1, 0 (2.1)

whereas if the potential degree of f was obtained, then

k =
{

m if m ≥ 0,
0 if m = −1.

(2.2)

(3) Using k obtained above, we apply Theorem 1.3 by checking its conditions.
(4) Next, we check if Propositions 1.4, 1.5, Remarks 1.2 and 1.3 are satisfied.
(5) Finally, we combine the results obtained in steps 3 and 4 to get the exact

polynomial solutions of the functions that satisfy equations of class (1.1).

2.1. Description of the computer code

The Python code described below runs only on the Python Sagemath environ-
ment. It is important to note that the line from sage.all import * will work
only on Python with Sagemath installed. Our code steps are as follows:
(a) Import the following python libraries: sage.all, sys, sympy (Function and

Symbol), numpy, scipy.special (comb), and time
import sys
from sage.all import *
from sympy import Function, Symbol
import numpy as np
from scipy.special import comb
import time
x=Symbol(’x’)
y=Symbol(’y’)
f= Function(’f’)
F=Function(’F’)

(b) We defined a Python function called PSFE(·)(Polynomial Solutions of
Functional Equations), where the entire code is embedded and takes a
functional equation of the form:

n∑

i=1

γiF (aix + biy) −
m∑

j=1

(αjx + βjy)f(cjx + djy) = 0 (2.3)

where “ =0” is not part of the input. That is, the code is executed with
the command:

PSFE

(
n∑

i=1

γiF (aix + biy) −
m∑

j=1

(αjx + βjy)f(cjx + djy)

)
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The input has functions in terms of F or f , where f is multiplied by a
variable x and/or y, and we note that any other representation will pop
an error message.

(c) The sub-Python function Seperator12(·) defined in the Python function
PSFE(·) separates the input into an array or list separated by “,”.

(d) We defined another Python function Left right3(·) in PSFE(·) that trans-
forms the list in (c) above into the form of equation (1.5). Recognize N
and M and apply Lemma 1.1 to obtain m, then the value of k is obtained
by Eqs. (2.1) or (2.2). To see the process of calculations taken by the code
in applying Lemma 1.1, we recommend you to see Theorem 3.1, Example
2 and Example 3 in [14] and Theorem 2.3 - 2.6 and Example (2.1) - (2.4)
in [16].

(e) Note that (c) and (d) above are encapsulated in the function
Sablik Lemma(·) contained in PSFE(·). Next, we rearrange the functional
equation again in the form of equation (1.1), obtain the values of n,m
and the parameters γi, αj , βj ∈ R, ai, bi, cj , dj ∈ Q, i ∈ {1, . . . , n}, j ∈
{1, . . . , m}. For different values of k, use Theorem 1.3 to obtain the de-
sired monomials alongside verifying if any of Propositions 1.4, 1.5, Re-
marks 1.2 and 1.3 apply. The monomials are summed in their generic
form to give a polynomial. These processes are contained in the Python
function:

Theorem 1 3 Proposition 1 4 1 5 Remark 1 2 1 3(·, ·).
(f) The processes mentioned in (c), (d) and (e) combines to form PSFE (·).

def PSFE(Equation):
start_time = time.time()
k = Sablik_Lemma(Equation)
if k == "":

print(’f(x) = 0’)
print(’F(x) = 0’)

else:
Theorem_1_3_Proposition_1_4_1_5_Remark_1_2_1_3(Equation,k)

print("-%s seconds-" % round(time.time()-start_time,2))

You can download the python source code from the below GitHub URL:
https://github.com/CPOkeke/

CPOkeke-Polynomial-Solutions-of-Functional-Equations
or please send your request to the e-mail address of the first author:

chisom.okeke@us.edu.pl
It is important to note that our Python codes were developed in Python version
3.8, Sagemath 9.2, and comply with the requirements therein. Python and
Sagemath are open-source programming software and a little adjustment may
be required in the future to get the codes running in future versions of the
aforementioned software.

https://github.com/CPOkeke/CPOkeke-Polynomial-Solutions-of-Functional-Equations
https://github.com/CPOkeke/CPOkeke-Polynomial-Solutions-of-Functional-Equations
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2.2. Results of the computer code

Functional equations are mostly named after the mathematicians who discov-
ered them. Sometimes, the functional equations are given names based on the
property involved in the given functional equation. Our Python codes only
accept inputs written in terms of variables x and/or y and functions F and/or
f that belong to the functional equation class (1.1). The following are exam-
ples of well-known functional equations of class (1.1) solved with the computer
code. Suppose that (F, f) : R → R,

Example 2.1. Fechner–Gselmann functional equation(cf. Theorem 3.1 in [7],
Proposition 3.2 in [14], and Example 2 in [15]).

F (x + y) − F (x) − F (y) = xf(y) + yf(x)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) − F (x) − F (y) − x ∗ f(y) − y ∗ f(x))
OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = B1(x) + a3x

2

F (x) = A1(x) + xB1(x) + 1
3a3x

3

where a3 is a real number.
A1(x), B1(x) are arbitrary additive functions. − 0.05 s -

Example 2.2. B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz in [12], considered
the following functional equation, which stems from a well-known quadrature
rule used in numerical analysis.

a) (See Theorem 1 in [12] and Theorem 2.3 in [16].)

8 [F (y) − F (x)] = (y − x)
[
f(x) + 3f

(
x+2y

3

)
+ 3f

(
2x+y

3 )
)

+ f(y)
]

for all x, y ∈ R.

INPUT:
PSFE(8∗ (F (y)−F (x))− (y −x)∗ (f(x)+3∗ f((x+2∗ y)∗Rational(1/3))+
3 ∗ f((2 ∗ x + y) ∗ Rational(1/3)) + f(y)))
OUTPUT:
By Sablik Lemma f has degree at most 5
f(x) = a1 + a2x + a3x

2 + a4x
3

F (x) = a0 + a1x + 1
2a2x

2 + 1
3a3x

3 + 1
4a4x

4

where a0, a1, a2, a3, a4 are real numbers.
− 0.13 s -

b) (See Theorem 2 in [12] and Theorem 2.4 in [16].)

F (y) − F (x) = (y − x)
[
1
6
f(x) +

2
3
f

(
x + y

2

)

+
1
6
f(y)

]
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for all x, y ∈ R.

INPUT:
PSFE(F (y)−F (x)− (y −x)∗ (Rational(1/6)∗ f(x)+Rational(2/3)∗ f((x+
y) ∗ Rational(1/2)) + Rational(1/6) ∗ f(y)))
OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = a1 + a2x + a3x

2 + a4x
3

F (x) = a0 + a1x + 1
2a2x

2 + 1
3a3x

3 + 1
4a4x

4

where a0, a1, a2, a3, a4 are real numbers.
− 0.09 s -

Example 2.3. In [13] B. Koclȩga-Kulpa, T. Szostok, S. Wa̧sowicz, considered
the polynomial functions connected with the Hermite-Hadamard inequality in
the class of continuous functions. (cf. Theorem 4 in [13] and Theorem 2.6 in
[16]).

F (y) − F (x) = (y − x)
[
1
4f(x) + 3

4f
(
1
3x + 2

3y
)]

for all x, y ∈ R.
INPUT:
PSFE(F (y) − F (x) − (y − x) ∗ (Rational(1/4) ∗ f(x) + Rational(3/4)
∗ f(Rational(1/3) ∗ x + Rational(2/3) ∗ y)))
OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = a1 + a2x + a3x

2

F (x) = a0 + a1x + 1
2a2x

2 + 1
3a3x

3

where a0, a1, a2, a3 are real numbers.
− 0.05 s -

Example 2.4. J. Aczél [1], J. Aczél and M. Kuczma [2] considered variations
of the Lagrange mean value theorem, which has many applications in mathe-
matical analysis, computational mathematics, and other fields.

a) (See J. Aczél’s result in [1] and Example 2.2 in [16].)
F (y)−F (x)

y−x = f(x + y)

for all x, y ∈ R.

INPUT:
PSFE(F (y) − F (x) − ((y − x) ∗ f(x + y)))
OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = a1 + a2x
F (x) = a0 + a1x + a2x

2

where a0, a1, a2 are real numbers.
− 0.02 s -



Vol. 98 (2024) On symbolic computation of C.P. Okeke 493

b) (See Theorem 5 in [1] and Example 2.3 in [16].)
F (x)−F (y)

x−y = f
(

x+y
2

)

for all x, y ∈ R.

INPUT:
PSFE(F (x) − F (y) − ((x − y) ∗ f((x + y) ∗ Rational(1/2))))
OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = a1 + a2x
F (x) = a0 + a1x + 1

2a2x
2

where a0, a1, a2 are real numbers.
− 0.03 s -

Example 2.5. C. Alsina, M. Sablik, and J. Sikorska in [3] considered a func-
tional equation arising from descriptive geometry, which is still a rigorous way
to deal with graphical constructions (cf. Example 2.4 in [16]).

2F (y) − 2F (x) = (y − x)
[
f

(
x+y
2

)
+ f(x)+f(y)

2

]

for all x, y ∈ R.
INPUT:
PSFE(2 ∗ (F (y) − F (x)) − (y − x) ∗ (f((x + y) ∗ Rational(1/2)) + ((f(x) +
f(y)) ∗ Rational(1/2))))
OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = a1 + a2x
F (x) = a0 + a1x + 1

2a2x
2

where a0, a1, a2 are real numbers.
− 0.09 s -

Example 2.6. (cf. Example 2 in [14])

F (x) − 4F

(
x + y

2

)

+ F (y) = xf(y) + yf(x)

for all x, y ∈ R.
INPUT:
PSFE(F (x) − 4 ∗ F ((x + y) ∗ Rational(1/2)) + F (y) − x ∗ f(y) − y ∗ f(x))
OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = B1(x) + a1

F (x) = −a1x − xB1(x)
where a1 is a real number.
B1(x) is an arbitrary additive function. − 0.05 s -
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Example 2.7. (cf. Example 3 in [14])

F (x) − 8F

(
x + y

2

)

+ F (y) = xf(y) + yf(x)

for all x, y ∈ R.
INPUT: PSFE(F (x)−8∗F ((x+y)∗Rational(1/2))+F (y)−x∗f(y)−y∗f(x))
OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = a1 + a3x

2

F (x) = − 1
3a1x − 1

3a3x
3

where a1, a3 are real numbers.
− 0.06 s -

Example 2.8. Additive Cauchy functional equation

F (x + y) = F (x) + F (y)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) − F (x) − F (y))
OUTPUT:
By Sablik Lemma F has degree at most 1
f(x) = 0
F (x) = A1(x)
A1(x) is an arbitrary additive function. - 0.01 s -

Example 2.9. Jensen functional equation

F

(
x + y

2

)

=
1
2

[F (x) + F (y)]

for all x, y ∈ R.
INPUT:
PSFE(F ((x + y) ∗ Rational(1/2)) − Rational(1/2) ∗ (F (x) + F (y)))
OUTPUT:
By Sablik Lemma F has degree at most 1
f(x) = 0
F (x) = a0 + A1(x)
where a0 is a real number.
A1(x) is an arbitrary additive function.
− 0.01 s -

Example 2.10. Drygas functional equation

F (x + y) + F (x − y) = 2F (x) + F (y) + F (−y)

for all x, y ∈ R.
INPUT:
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PSFE(F (x + y) + F (x − y) − 2 ∗ F (x) − F (y) − F (−y))
OUTPUT:
By Sablik Lemma F has degree at most 3
f(x) = 0
F (x) = A1(x)
A1(x) is an arbitrary additive function.
− 0.01 s -

Example 2.11. (cf. Example 3 in [15])

F (x + y) − F (x) − F (y) = xf(3y) + yf(3x)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) − F (x) − F (y) − x ∗ f(3 ∗ y) − y ∗ f(3 ∗ x))
OUTPUT:
By Sablik Lemma f has degree at most 3

f(x) = B1(x) + a3x
2

F (x) = A1(x) + 3xB1(x) + 3a3x
3

where a3 is a real number.
A1(x), B1(x) are arbitrary additive functions.
− 0.05 s -

Example 2.12. (cf. Example 4 in [15])

F (x + y) − F (x) − F (y) = xf(y)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) − F (x) − F (y) − x ∗ f(y))
OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = a2x
F (x) = A1(x) + 1

2a2x
2

where a2 is a real number.
A1(x) is an arbitrary additive function.
− 0.02 s -

Example 2.13. (cf. Example 5 in [15])

F (x + y) − F (x) − F (y) = 3xf(2y) − 4yf(3x)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) − F (x) − F (y) − 3 ∗ x ∗ f(2 ∗ y) + 4 ∗ y ∗ f(3 ∗ x))
OUTPUT:
By Sablik Lemma f has degree at most 3
f(x) = a2x
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F (x) = A1(x) − 3a2x
2

where a2 is a real number.
A1(x) is an arbitrary additive function.
− 0.06 s -

Example 2.14. (cf. Example 6 in [15])

F (x + y) − F (x) − F (y) = xf(3y) + yf(3x) + xf(y) + yf(x) + xf(2y) + yf(2x)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) − F (x) − F (y) − x ∗ f(3 ∗ y) − y ∗ f(3 ∗ x) − x ∗ f(y) − y ∗
f(x) − y ∗ f(2 ∗ x) − x ∗ f(2 ∗ y))
OUTPUT:
By Sablik Lemma f has degree at most 6
f(x) = B1(x) + a3x

2

F (x) = A1(x) + 6xB1(x) + 14
3 a3x

3

where a3 is a real number.
A1(x), B1(x) are arbitrary additive functions.
− 0.09 s -

Example 2.15. Consider the square-norm-equation in [8] and [6]

F (x + y) + F (x − y) = 2F (x) + 2F (y)

for all x, y ∈ R.
INPUT:
PSFE(F (x + y) + F (x − y) − 2 ∗ F (x) − 2 ∗ F (y))
OUTPUT:
By Sablik Lemma F has degree at most 2
f(x) = 0
F (x) = A∗

2(x)
A∗

2(x) is an arbitrary additive function.
− 0.01 s -

Example 2.16. Consider the polynomial equation for n = 5 in [8]

F (x + 6y) − 6F (x + 5y) + 15F (x + 4y) − 20F (x + 3y) + 15F (x + 2y)
−6F (x + y) + F (x) = 0

for all x, y ∈ R.
INPUT:

PSFE(F (x + 6 ∗ y) − 6 ∗ F (x + 5 ∗ y) + 15 ∗ F (x + 4 ∗ y) − 20 ∗ F (x + 3 ∗
y) + 15 ∗ F (x + 2 ∗ y) − 6 ∗ F (x + y) + F (x))
OUTPUT:
By Sablik Lemma F has degree at most 5
f(x) = 0
F (x) = a0 + A1(x) + A∗

2(x) + A∗
3(x) + A∗

4(x) + A∗
5(x)
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where a0 is a real number.
A1(x), A∗

2(x), A∗
3(x), A∗

4(x), A∗
5(x) are arbitrary additive functions.

− 0.02 s -

Example 2.17. In [17], P.K Sahoo arrived at the functional equation stemming
from the trapezoidal rule.

F (y) − F (x) =
y − x

6

[

f(x) + 2f
(

2x + y

3

)

+ 2f

(
x + 2y

3

)

+ f(y)
]

for all x, y ∈ R, where F is an antiderivative of f .
INPUT:
PSFE(F (y) − F (x) − (y − x) ∗ Rational(1/6) ∗ (f(x) + 2 ∗ f((2 ∗ x + y) ∗
Rational(1/3)) + 2 ∗ f((x + 2 ∗ y) ∗ Rational(1/3)) + f(y)))
OUTPUT:
By Sablik Lemma f has degree at most 5
f(x) = a1 + a2x
F (x) = a0 + a1x + 1

2a2x
2

where a0, a1, a2 are real numbers.
− 0.02 s -

Example 2.18.

F (y) − F (x) = (y − x)

[
1
9
f(x) +

16 +
√

6
36

f

(
x + y

2

)]

for all x, y ∈ R.
INPUT:
PSFE(F (y)−F (x)−(y−x)∗((1/9)∗f(x)+((16+sqrt(6))/36)∗(f(Rational(1/2)
∗x + Rational(1/2) ∗ y)))))
OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = a1

F (x) = a0 + (
√
6

36 + 5
9 )a1x

where a0, a1 are real numbers.
− 0.11 s -

Example 2.19.

16 − √
6

36
(F (y) − F (x)) = (y − x)

[

f

(
x + 2y

3

)

+
16 +

√
6

36
f

(
7x + y

8

)]

for all x, y ∈ R.
INPUT:
PSFE(((16− sqrt(6))/36)∗ (F (y)−F (x))− (y −x)∗ ((f((Rational(1/3)∗x+
Rational(2/3)∗y)))+ ((16+sqrt(6))/36)∗(f(Rational(7/8)∗x+Rational(1/8)∗
y))))
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OUTPUT:
By Sablik Lemma F has degree at most 4
f(x) = a1

F (x) = a0 + (34
√
6

125 + 419
125 )a1x

where a0, a1 are real numbers.
− 3.35 s -

Example 2.20.
√

2(F (y) − F (x)) = (y − x)
[√

5f

(
5x + 7y

12

)

+
√

3f (x + y)
]

for all x, y ∈ R.
INPUT:
PSFE((sqrt(2))∗ (F (y)−F (x))− (y −x)∗ (sqrt(5)∗ (f((Rational(5/12)∗x+
Rational(7/12) ∗ y))) + ((sqrt(3))) ∗ (f(x + y))))
OUTPUT:
By Sablik Lemma F has degree at most 4
f(x) = a1

F (x) = a0 + (
√
6
2 +

√
10
2 )a1x

where a0, a1 are real numbers.
− 1.55 s -

Example 2.21.

4 − √
6

10
(F (y) − F (x)) = (y − x)

[
2
9
f (x) +

4 +
√

6
10

f (5x + 7y)

]

for all x, y ∈ R.
INPUT:
PSFE(((4 − sqrt(6))/10) ∗ (F (y) − F (x)) − (y − x) ∗ ((2/9) ∗ f(x) + ((4 +
sqrt(6))/10) ∗ (f(5 ∗ x + 7 ∗ y))))
OUTPUT:
By Sablik Lemma f has degree at most 2
f(x) = a1

F (x) = a0 + (46
√
6

45 + 139
45 )a1x

where a0, a1 are real numbers.
− 3.31 s -

Example 2.22.

3 +
√

3
6

(F (y) − F (x)) = (y − x)

[
3 +

√
3

6
f

(
x + y

2

)

+
3 − √

3
6

f

(
x + 3y

4

)]

for all x, y ∈ R.
INPUT:
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PSFE(((3 + sqrt(3))/6) ∗ (F (y) − F (x)) − (y − x) ∗ ((((3 + sqrt(3))/6) ∗
(f(Rational(1/2)∗x+Rational(1/2)∗y)) +((3−sqrt(3))/6)∗(f(Rational(1/4)∗
x + Rational(3/4) ∗ y)))))
OUTPUT:
By Sablik Lemma F has degree at most 4
f(x) = a1

F (x) = a0 + (3 − √
3)a1x

where a0, a1 are real numbers.
− 4.26 s -

Example 2.23.

5 − √
15

10
(F (y) − F (x))

= (y − x)

[
5 − √

15
10

f (8x + 12y) +
5 +

√
15

10
f (20x + 11y)

]

for all x, y ∈ R.

INPUT:
PSFE(((5 − sqrt(15))/10) ∗ (F (y) − F (x)) − (y − x) ∗ (((5 − sqrt(15))/10) ∗
(f(8 ∗ x + 12 ∗ y)) + ((5 + sqrt(15))/10) ∗ (f(20 ∗ x + 11 ∗ y))))
OUTPUT:
By Sablik Lemma F has degree at most 4
f(x) = a1

F (x) = a0 + (
√

15 + 5)a1x

where a0, a1 are real numbers.
− 3.88 s -

3. Conclusions and future research

A computer code developed in a Python programming language has been pre-
sented for obtaining the polynomial solutions of the functional equation of
type (1.1). The method’s success can be attributed to the theoretical results
obtained in [16]. We note that the functional equation of type (1.1) consists
of at most two unknown functions [(in particular, at most one unknown func-
tion on either side of (1.1)], say F or f , where f is multiplied by a variable
x and/or y. Therefore, we aim to extend the approach to consider a Pexider
form of (1.1), that is, an equation with more than two unknown functions.
Namely, an equation of the form

n∑

i=1

N∑

p=1
γipFp(aipx + bipy) =

m∑

j=1

M∑

q=1
(αjqx + βjqy)fq(cjqx + djqy), (3.1)
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(Fp, fq) : R → R, for every x, y ∈ R, γip, αjq, βjq ∈ R, aip, bip, cjq, djq ∈ R, i ∈
{1, · · · , n}, j ∈ {1, · · · ,m}, n,m,N,M ∈ N and its special forms. Below are
examples of special forms of (3.1)

(1) Additive Cauchy Pexider functional equation

F1(x + y) = F2(x) + F3(y)

for all x, y ∈ R.
(2) A generalization of the square-norm-equation in [8]

F1(x + y) + F2(x − y) = F3(x) + F4(y)

for all x, y ∈ R.
(3) The general class of linear functional equations considered in [8] and [6]

n∑

i=1

N∑

p=1
Fp(aipx + bipy) = 0

for all x, y ∈ R, and aip, bip ∈ Q.
(4) P. K. Sahoo and T. Riedel, in [18, see Chapter 3], considered the func-

tional equations

F1(x) − F1(y) = (x − y) [f1(x + y) + f2(x) + f2(y)]
xf1(y) − yf1(x) = (x − y) [f2(x + y) + f3(x) + f3(y)]

for all x, y ∈ R.
(5) Equation (1.1)

n∑

i=1

γi1F1(ai1x + bi1y) =
m∑

j=1

(αj1x + βj1y)f1(cj1x + dj1y)

for all x, y ∈ R, γi1, αj1, βj1 ∈ R, and ai1, bi1, cj1, dj1 ∈ Q.

Next, we will consider non-polynomial solutions of the functional equation
(3.1), and finally, we will study solutions of its inequalities. An example of
such a functional inequality was considered in [7], namely,

F1(x + y) − F1(x) − F1(y) ≥ xf1(y) + yf1(x)

for all x, y ∈ R.
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