
Aequat. Math. 98 (2024), 333–346
c© The Author(s) 2023
0001-9054/24/010333-14
published online September 18, 2023
https://doi.org/10.1007/s00010-023-00985-8 Aequationes Mathematicae

Minimal codewords in Norm-Trace codes

Daniele Bartoli, Matteo Bonini, and Marco Timpanella

Abstract. In this paper, we consider the affine variety codes obtained evaluating the poly-
nomials by = akx

k + . . . + a1x + a0, b, ai ∈ Fqr , at the affine Fqr -rational points of the
Norm-Trace curve. In particular, we investigate the weight distribution and the set of mini-
mal codewords. Our approach, which uses tools of algebraic geometry, is based on the study
of the absolute irreducibility of certain algebraic varieties.
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1. Introduction

Affine variety codes [1] are linear codes obtained evaluating multivariate poly-
nomials at the Fq-rational points of a certain affine variety. Since any linear
code can be described as an affine variety code (see [1, Prop 1.4]), such codes
constitute the entire class of linear codes. Even though it is easy to determine
the length and the dimension of an affine variety code, a more difficult task
is to provide estimates on the minimum distance, or, more generally, on the
weight distribution of the code. Still, computing the planar intersections of the
chosen variety with some low-degrees ones is often useful in obtaining infor-
mation on the weight spectrum and the weight distribution of affine-variety
codes, see for example [2–6].

Given any linear code C, another challenging task is the determination of
the set of its minimal codewords. For a codeword c ∈ C, the support of c,
denoted by Supp(c), is the set of its nonzero coordinate positions, and the
weight of c is wt(c) = #Supp(c). If the support of a codeword c contains the
support of another codeword c′, then we will say that c covers c′. A codeword c
is said to be minimal if it covers only the proportional codewords, i.e. if c′ ∈ C
is linearly independent from c, then Supp(c′) �⊆ Supp(c). Minimal codewords
were employed by Massey [7] for the construction of a secret sharing scheme.
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For this reason, in recent years, several papers have been dedicated to the
determination of the minimal codewords of a linear code [8–17].

In this paper, we give information on the weight distribution and the min-
imal codewords of affine variety codes arising from the Norm-Trace curve, as
already investigated in the literature; see [18–20].In more detail, throughout
the paper we consider the affine variety code Cq,r,k obtained evaluating the
polynomials

by = akxk + . . . + a1x + a0, (1)

where b, ai ∈ Fqr , at the affine Fqr -rational points of the Norm-Trace curve
Nq,r, that is the plane curve defined by the affine equation

x
qr−1
q−1 = yqr−1

+ yqr−2
+ . . . + yq + y. (2)

Note that, up to rescaling, we can assume that the polynomials as in (1) are
either of type

y = akxk + . . . + a1x + a0, (3)

or

akxk + . . . + a1x + a0 = 0.

In order to obtain information on the weight distribution of the code Cq,r,k, we
deal with the possible intersection patterns of the curve Nq,r and the curves
with affine Equation (3). To do this, our approach is based on the investigation
of the absolute irreducibility of a certain algebraic variety, and therefore it relies
on tools of algebraic geometry; see Sect. 2 for the details. In the last decades,
such tools have proved successful in the construction and investigation of many
classes of linear codes; see for instance [5,21–25].

The paper is organized as follows. The prerequisites on Norm-Trace curves,
affine variety codes, and the description of our approach, are give in Sect. 2.
Section 3 deals with the absolute irreducibility of an algebraic variety attached
to the problem, and these results are then applied in Sect. 4 to investigate the
weight distribution of the code Cq,r,k. Finally, in Sect. 5, we determine the set
of minimal codewords of Cq,r,k.

2. Preliminaries

In this section, we introduce the notation and terminology that we will use
throughout the paper. Hereafter, p is a prime and q = pm, where m is a positive
integer. Also, Fq denotes the finite field with q elements. With the symbol
A

r(Fq) (resp. P
r(Fq)) we denote the affine (resp. projective) r-dimensional

space over Fq.
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The norm function NFqr

Fq
and the trace function TFqr

Fq
are the functions from

Fqr to Fq defined by

NFqr

Fq
(x) = x

qr−1
q−1 = xqr−1+qr−2+...+q+1

and

TFqr

Fq
(x) = xqr−1

+ xqr−2
+ . . . + xq + x,

respectively. When q and r are understood, we will write N = NFqr

Fq
and T =

TFqr

Fq
.

2.1. Affine variety codes

We introduce now affine variety codes, see [1] for further information.
Let t ≥ 1 and consider an ideal I = 〈g1, . . . , gs〉 of Fq[x1, . . . , xt], {xq

1 −
x1, . . . , xq

t − xt} ⊂ I. The ideal I is zero-dimensional and radical. Let V (I) =
{P1, . . . , Pn} be the variety of I and R = Fq[x1, . . . , xt]/I.

An affine variety code C(I, L) is the image φ(L) of L ⊆ R, an Fq-vector
subspace of R of dimension r, given by the isomorphism of Fq-vector spaces
φ : R −→ F

n
q that evaluates an element f ∈ R on {P1, . . . , Pn}, i.e. φ(f) =

(f(P1), . . . , f(Pn)).

2.2. Norm-trace curve

The Norm-Trace curve Nq,r is the plane curve defined by the affine equation

NFqr

Fq
(x) = TFqr

Fq
(y).

The equation NFqr

Fq
(x) = TFqr

Fq
(y) has precisely q2r−1 solutions in F

2
qr , so the

curve Nq,r has q2r−1 + 1 rational points: q2r−1 of them correspond to affine
points, plus a single point at infinity P∞. If r = 2, Nq,r coincides with the
Hermitian curve, whereas Nq,r is singular in P∞ if r ≥ 3.

Let Cq,r,k be the affine variety code obtained evaluating the polynomials

by = akxk + . . . + a1x + a0,

with b and ai ranging in Fqr , at the q2r−1 affine Fqr -rational points of Nq,r,
and k < qr−1. Then Cq,r,k has length q2r−1, dimension k + 1, and the weight
of a codeword associated to the evaluation of a polynomial by = f(x) as in (1)
is given by

w(ev(f)) = q2r−1 − |Nq,r ∩ X ∩ A
2(Fqr )|,

where X is the curve with affine equation by − f(x) = 0. Therefore, in order
to investigate the weight distribution of the code Cq,r,k, we must study the
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possible planar intersections in A
2(Fqr ) between Nq,r and the (rational) curves

whose affine equations are given by (1). Here, by planar intersections (or simply
intersections) of two curves lying in the affine space A

2(Fqr ), we mean the
number of points in A

2(Fqr ) lying on both curves, disregarding multiplicity.
Notice that, when b is non-zero then up to rescaling it is possible to assume
b = 1. For this reason in our investigation we will concentrate on the study of
the cases b = 0 and b = 1.

For the remaining part of this section, we report the approach used in
[19,20] to deal with this problem.

In the following we deal with the case b �= 0 in (1). Substituting y = f(x) as
in (3) in the equation of Nq,r, and exploiting the linearity of the trace function,
we get

N(x) = T(akxk) + . . . + T(a2x
2) + T(a1x) + T(a0). (4)

Now, fix a normal basis B = {α, αq, . . . , αqr−1} of Fqr over Fq with a suitable
α ∈ Fqr (see [26] for the details), and let ΦB be the canonical vector space
isomorphism defined by

ΦB : (Fq)r −→ Fqr

ΦB((s1, . . . , sr)) = s1α + s2α
q + . . . + srα

qr−1
.

This isomorphism allows us to read the norm N and the trace T as maps
from (Fq)r to Fq, by taking ˜N = N ◦ ΦB and ˜T = T ◦ ΦB. Let Ti := T (aix

i)
and ˜Ti := Ti ◦ ΦB, for 1 ≤ i ≤ k. Then it is readily seen that ˜N and ˜Ti are
homogeneous polynomials of degrees r and i, respectively, in Fq[x1, . . . , xr],
i = 0, . . . , k.

Therefore, we can rewrite (4) as
˜N(x1, . . . , xr) = ˜Tk(x1, . . . , xr) + . . . + ˜T1(x1, . . . , xr) + T(a0). (5)

Equation (5) is the equation of a variety S defined over Fq. Note that the
RHS of (5) has degree r, and the LHS has degree k. By construction, the Fq-
rational points of S, correspond to the planar intersections in A

2(Fqr ) between
the Norm-Trace curve Nq.r and the rational curve of equation y = f(x), see
[19, Remark 4.1].

Let Vk,r be the variety ψ(S), where ψ is the affine change of variables of
A

r(Fq) defined by

ψ(x1, . . . , xr) = M(x1, . . . , xr)t = (X1, . . . , Xr)t,

and M is the non-singular matrix

M =

⎛

⎜

⎜

⎜

⎜

⎝

α αq . . . αqr−1

αq . . . αqr−1
α

...
...

...
...

αqr−1
α . . . αqr−2

⎞

⎟

⎟

⎟

⎟

⎠

.
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Then, the variety Vk,r is defined over Fqr , and it has affine equation
Vk,r(X1, . . . , Xr) = 0, with

Vk,r(X1, . . . , Xr) = −
r

∏

i=1

Xi +
r

∑

i=1

aqi−1

k Xk
i + . . . +

r
∑

i=1

aqi−1

1 Xi + T(a0). (6)

Note that ψ is an affine change of variables and thus preserves the number
of absolutely irreducible components of S, and their degrees. This equivalence
between Vk,r and S is crucial in our investigation and in the next sections we
will make use of this link a number of times.

3. Planar intersections of Nq,r and the curves y − f(x) = 0

As it was shown in Sect. 2, finding the planar intersections of the norm-trace
curve Nq,r and the curves of Equation (3) is equivalent to finding the number
of Fq-rational points of the Fq-rational variety S. Our aim is to prove that
S is absolutely irreducible under certain assumptions on k and r, by proving
the absolute irreducibility of Vk,r. Indeed, since ψ(x1, . . . , xr) preserves the
number of absolutely irreducible components of a variety, it follows that if
Vk,r is absolutely irreducible the same holds for S. Also, if S is absolutely
irreducible we can apply the Lang-Weil bound to estimate the number of its
Fq-rational points.

Theorem 3.1. [27, Lang-Weil bound] Let V ⊂ P
N (Fq) be an absolutely irre-

ducible variety of dimension n and degree d. Then there exists a constant C
depending only on N , n, and d such that

∣

∣

∣

∣

∣

#(V ∩ P
N (Fq)) −

n
∑

i=0

qi

∣

∣

∣

∣

∣

≤ (d − 1)(d − 2)qn−1/2 + Cqn−1.

Although the constant C was not computed in [27], explicit estimates have
been provided for instance in [26,28–32] and they have the general shape C =
r(d) provided that q > s(n, d), where r and s are polynomials of (usually)
small degree. We refer to [29] for a survey on these bounds. We only include
the following result due to Cafure and Matera.

Theorem 3.2. [29, Theorem 7.1] Let V ⊂ A
N (Fq) be an absolutely irreducible

variety defined over Fq of dimension n and degree d. If q > 2(n + 1)d2, then
the following estimate holds:

|#(V ∩ A
N (Fq)) − qn| ≤ (d − 1)(d − 2)qn−1/2 + 5d13/3qn−1.

We report here some results that we will use to prove the irreducibility of
Vk,r, under certain conditions on k and r. As a corollary of [33, Lemma 4.15],
we have the following.
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Proposition 3.3. Let H be a hyperplane of P
r(Fqr ) such that Vk,r ∩ H is abso-

lutely irreducibile and of multiplicity one. Then Vk,r is absolutely irreducible.

The following result about the absolute irreducibility of varieties of Fermat-
type is well known and it is a direct consequence of their non-singularity.

Proposition 3.4. Let n, r be two positive integers such that p � n and r ≥ 3.
Then, the variety of P

r−1(Fq) with homogeneous equation

a1X
n
1 + a2X

n
2 + . . . + arX

n
r = 0,

where a1, . . . , ar ∈ Fq, is absolutely irreducible.

Proposition 3.5. Suppose that k > r ≥ 3 and p � k. Then Vk,r is absolutely
irreducible.

Proof. It is readily seen that the homogeneous part in Vk,r of the highest
degree is

r
∑

i=1

aqi−1

k Xk
i ,

which is absolutely irreducible by Proposition 3.4. Since
∑r

i=1 aqi−1

k Xk
i = 0

is the intersection between Vk,r and the hyperplane at infinity, it follows that
Vk,r is absolutely irreducible by Proposition 3.3. �

Proposition 3.6. Suppose that k = r ≥ 4 and p � k. Then Vk,r is absolutely
irreducible.

Proof. In this case, the homogeneous part in Vk,r(X1,X2, . . . , Xr) of the high-
est degree is

R(X1, . . . , Xr) := −
r

∏

i=1

Xi +
r

∑

i=1

aqi−1

r Xr
i .

Since r ≥ 4, the polynomial

R(0,X2, . . . , Xr) =
r

∑

i=2

aqi−1

r Xr
i

is absolutely irreducible by Proposition 3.4, and hence also R(X1, . . . , Xr) is
absolutely irreducible by Proposition 3.3.

Finally, since R(X1, . . . , Xr) = 0 is the intersection between Vk,r and the
hyperplane at infinity, by Proposition 3.3 the claim follows. �

Proposition 3.7. Suppose that k = r ≥ 4 and p | r. Then Vk,r is absolutely
irreducible.
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Proof. Write r = r̄pα, with p � r̄. Then α ≥ 1 and r̄ < r. The homogeneous
part in Vk,r(X1,X2, . . . , Xr) of the highest degree is

R(X1, . . . , Xr) := −
r

∏

i=1

Xi +
r

∑

i=1

aqi−1

r Xr
i = −

r
∏

i=1

Xi +

(

r
∑

i=1

āqi−1

r X r̄
i

)pα

,

where āpα

r = ar.
We will prove that R(X1, . . . , Xr−1, 1) = 0 is absolutely irreducible.
Let F =

∑r−1
i=1 āqi−1

r X r̄
i . Observe that F is absolutely irreducible by Propo-

sition 3.4. Suppose now that

R(X1, . . . , Xr−1, 1) = G(X1,X2, . . . , Xr)H(X1,X2, . . . , Xr),

where G(X1,X2, . . . , Xr) and H(X1,X2, . . . , Xr) have the following shape

G(X1,X2, . . . , Xr) = F β + Gr̄β−1 + . . . + G0,

H(X1,X2, . . . , Xr) = F pα−β + H(pα−β)r̄−1 + . . . + H0,

with 0 < β < pα, and Hi and Gj are either homogeneous polynomials of degree
i and j respectively, or they are the zero polynomials. Thus

F βH(pα−β)r̄−1 + F pα−βGr̄β−1 = −
r−1
∏

i=1

Xi.

This yields F | ∏r
i=1 Xi, a contradiction. Therefore R(X1, . . . , Xr−1, 1) = 0 is

absolutely irreducible and so is Vr,k by Proposition 3.3. �

Proposition 3.8. Suppose that 0 < k < r. Then Vk,r is absolutely irreducible.

Proof. If Vk,r is reducible then Vk,r(X1,X2, . . . , Xr) splits into the product of
two polynomials H and G with the following shape,

H(X1,X2, . . . , Xr) = X1 . . . Xs + Hs−1 + . . . + H0,

G(X1,X2, . . . , Xr) = Xs+1 . . . Xr + Gr−s−1 + . . . + G0,

where Hi and Gj are either homogeneous polynomials of degree i and j
respectively, or they are the zero polynomials, and 1 ≤ s ≤ r − 1. Let
Fu =

∑r
i=1 aqi−1

u Xu
i , then

H(X1,X2, . . . , Xr)G(X1,X2, . . . , Xr) = X1 · . . . · Xr +
k

∑

u=0

Fu.

Because of the shape of Vk,r(X1,X2, . . . , Xr), for each i such that i ≥
s+1+k − r and i ≤ s− 1, we have that Hi = 0. For the same reason, for each
j such that j ≥ k − s + 1 and j ≤ r − s − 1, Gj = 0.

Now observe that it is not possible that k − r + s + 1 < 0 or k + 1 − s <
0, otherwise there would exist a variable Xi dividing H(X1,X2, . . . , Xr) or
G(X1,X2, . . . , Xr) (and hence dividing Vk,r).



340 D. Bartoli et al. AEM

Therefore, the only possibility left is k − r + s + 1 ≥ 0 and k + 1 − s ≥ 0,
which gives

Fk(X1,X2, . . . , Xr) = X1 . . . Xs · Gk−s(X1,X2, . . . , Xr) + Xs+1 . . . Xr

·Hk−r+s(X1,X2, . . . , Xr).

Still, this is not possible, since for X1 = 0 we would have

Fk(0,X2, . . . , Xr) =
r

∑

i=2

aqi−1

k Xk
i = Hk−r+s(0,X2, . . . , Xr)

r
∏

i=s+1

Xi.

Clearly, this is impossible by Proposition 3.4, as this would imply that
∑r

i=2 aqi−1

k Xk
i is divisible by Xs+1 · . . . · Xr. �

We recall that by the definition of Vk,r and S, these two varieties have the
same number of absolutely irreducible components. Therefore, as a byproduct
of the previous results, together with Theorem 3.2, we directly obtain the
following.

Proposition 3.9. Let d = max (k, r), and suppose that one of the following
cases holds:
1. k > r, p � k;
2. k = r ≥ 4;
3. 0 < k < r.

Then, S is absolutely irreducible and, if q > 2rd2, it contains at least qr−1 −
(d − 1)(d − 2)qr−3/2 + 5d13/3qr−2 points in A

r(Fq).

We finally point out that some results for the case (k, r) = (3, 3) and
(k, r) = (3, 2) can be found in [20] and [19]), respectively. Unfortunately, it does
not seem to be easy to say when V3,3 is irreducible, but when this happens
it is possible to give a good estimate on the number of planar intersections
between the Norm-Trace curve and rational curves of degree up to three. On
the other hand, it is possible to prove (see [19]) that V2,3 is always absolutely
irreducible.

4. On the weight spectrum of Norm-Trace codes

Since the codewords of Cq,r,k are all given by the evaluations of polynomials
of the form by = f(x) as in (1), their weights are then given by

w(ev(by − f)) = q2r−1 − |Nq,r ∩ X ∩ A
2(Fqr )|,

where X is the curve with affine equation by−f(x) = 0. Therefore, an estimate
on the maximum possible number of Fq-rational planar intersections between
Nq,r and the curves X provides a lower bound on the minimum weight of
Cq,r,k. The case when b = 0 was already investigated in [4], while the case
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b �= 0 and deg(f) ≤ 3 can be found in [19,20]. Therefore, from now on we will
focus on the case b �= 0 and deg(f) > 3.

Classical arguments relying on the Bézout theorem tell us that the number
of planar intersections between the two curves can be bounded by the product
of the degrees of Nq,r and X . Then, the maximum number of planar intersec-
tions is less than or equal to k qr−1

q−1 . Therefore the weight of the codewords of

Cq,r,k is at least q2r−1 − s qr−1
q−1 , where s ≤ k is the degree of the polynomial

whose evaluation defines the codeword.
Still, this result is not tight and, as a byproduct of the results obtained in

the previous section, we can give improvements on d(Cq,r,k).

Corollary 4.1. Consider the norm-trace curve Nq,r over the field Fqr , with q
large enough, and the code C = Cq,r,k. Suppose also that one of the following
conditions holds
(a) k > r and p � |k,
(b) k = r ≥ 4,
(c) 0 < k < r.
Let c = ev(by − f(x)) ∈ C, then:
(i) If b = 0 and f has s distinct roots over Fqr , then w(c) = q2r−1 − sqr−1.
(ii) If b �= 0 then w(c) ≥ q2r−1 − qr − 5d13/3qr−1 − (k − 1)(k − 2)q

r−1
2 .

Notice that the case k = r = 3 was investigated in [20].

5. Minimal codewords in Norm-Trace codes

First, we investigate the case k = r = 2, in which Nq,r coincides with the
Hermitian curve H of homogeneous equation

xq+1 = yq + y.

In this section we provide a complete classification of the minimal codewords
of the affine variety code C obtained by evaluating the polynomials of degree
2 with coefficients in Fq2 [x, y] at the points of H in A

2(Fq2), when q is odd.
Observe that such a code C contains in particular each codeword of Cq,2,2. In
order to describe the minimal codewords of C, we consider the possible planar
intersections in A

2(Fq2) between H and the algebraic curves C described by
polynomials of degree 2.

In the case C is irreducible, i.e. it is an irreducible conic, a complete list
of the possible planar intersections between H and C, which we report below,
was given for q odd in [34]. Here, by a subconic of a conic C we mean q + 1
points of C lying in a Baer subplane P

2(Fq) of P
2(Fq2).

Proposition 5.1. In P
2(Fq2), q odd, the intersection pattern of H and an irre-

ducible conic C is one of the following.
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(i) H ∩ C = ∅;
(ii) |H ∩ C| = 1;
(iii) |H ∩ C| = 2;
(iv) |H ∩ C| = q + 1. In particular, H ∩ C is a subconic of C;
(v) |H ∩ C| ∈ {2q, 2q + 1, 2q + 2}. In particular, H ∩ C is the union of two

subconics of C sharing either zero, one, or two points;
(vi) |H ∩ C| ∈ {q, q + 1, q + 2} and meets every subconic of C in at most four

points;
(vii) q − 2

√
q + 2 ≤ |H ∩ C| ≤ q + 2

√
q + 2 and meets every subconic of C in at

most six points.

If C is reducible, the following holds.

Proposition 5.2. In P
2(Fq2), q odd, the intersection pattern of H and a re-

ducible conic C is one of the following.
(viii) If C is a repeated line �, then either |H ∩ C| = 1 and � is a tangent to H,

or |H ∩ C| = q + 1 and � is a secant to H;
(ix) |H ∩ C| = 2 and C is the product of two distinct tangents to H;
(x) |H ∩ C| ∈ {q + 1, q + 2} and C is the product of a tangent to H and a

secant to H;
(xi) |H ∩ C| ∈ {2q + 1, 2q + 2} and C is the product of two distinct secants to

H.

We are now in position to prove the main result of this section. Its proof is
based on the observation that a codeword c ∈ C associated to the evaluation
of a degree 2 polynomial defining a conic C is minimal if and only if there does
not exist another conic C′ �= C such that H ∩ C ⊆ H ∩ C′.

Proposition 5.3. Let q > 7 be odd. With the notations of Propositions 5.1
and 5.2, the minimal codewords of the code C arise from conics whose inter-
section pattern with H is as in (iv), (v), (vi), (vii), (xi).

Proof. Among the reducible cases, minimal codewords can only arise from
conics that are the product of two distinct secants to H (case (xi)). Indeed,
the intersection patterns of cases (viii), (ix), (x) are strictly contained in the
intersection of H with two distinct (properly chosen) secant lines, and hence,
by the above mentioned observation, the corresponding codewords are not
minimal. To prove that a conic C as in (iv), (v), (vi), (vii) corresponds to a
minimal codeword, assume by way of contradiction that there exists a conic C′

such that H∩C ⊆ H∩C′. Then C ∩C′ contains H∩C. However, as |H∩C| > 4
holds in each of the cases (iv), (v), (vi), (vii) for q > 7, this is in contradiction
to Bézout’s Theorem stating that |C ∩ C′| ≤ 4. Finally, it is readily seen that
cases (i), (ii), (iii) don’t correspond to minimal codewords. �

From now on in this section we assume k > 3, and we give a description of
the minimal codewords of the code Cq,r,k.
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Proposition 5.4. Let k < #Nq,r(Fqr ). The minimal codewords of Cq,r,k are the
ones generated by the evaluations of polynomials of the shape

(i) y − f(x), deg(f) = k, with

qr−1 − (max{k, r} − 1)(max{k, r} − 2)qr−3/2 + 5max{k, r}13/3qr−2 > k,

and

k > r and p � k, or k = r ≥ 4, or 0 < k < r;

(ii) g(x), where g(x) is a polynomial of degree k having all distinct roots in
Fqr ;

(iii) y − α, with α ∈ Fqr .

Proof. Consider two codewords c, c′ ∈ Cq,r,k. Recall that the codewords of
Cq,r,k are the evaluations of polynomials in the span of the set {y, xi}i=0,...,k

at the Fqr -rational points of Nq,r. Let F (x, y) and F ′(x, y) be the polynomials
that correspond to c and c′, respectively. First, we assume F (x, y) = f(x) and
F ′(x, y) = y − g(x). Then, we claim that the support of c = ev(f(x)) doesn’t
contain the support of c′ = ev(y − g(x)). Indeed, write f(x) =

∏deg(f)
i=1 (x− ti),

with ti ∈ Fq. Then, the zeros of c correspond to all the affine points of Nq,r

with coordinates (ti, y
(j)
i ) such that ti ∈ Fqr and

NFqr

Fq
(ti) = TFqr

Fq
(y(j)

i ),

for j = 1, . . . , qr−1. Observe that if ti �∈ Fqr for every i ∈ {1, . . . ,deg(f)}, then
c is a full-weight codeword and hence it is not minimal. Also, for each ti ∈ Fqr ,
there exists at most a unique ȳi such that ȳi = g(ti) and (ti, ȳi) belongs to
Nq,r. Therefore, the support of c cannot contain the support of c′.

On the other hand, it is readily seen that if deg(g) = k̄ > 0, and k̄ is
as in (i), then the support of c cannot be contained in the support of c′.
Indeed, Proposition 3.9 together with the assumption qr−1 − (max{k, r} −
1)(max{k, r} − 2)qr−3/2 + 5max{k, r}13/3qr−2 > k, show that the zeros of c
cannot contain the zeros of c′.

Now, we deal with the case F (x, y) = y − f(x) and F ′(x, y) = y − g(x),
with f(x) �= g(x). Suppose that the zeros of c = ev(y − f(x)) are also zeros
of c′ = ev(y − g(x)), f(x) �= g(x). Thus, they are also zeros of ĉ = c − c′ =
ev(f(x) − g(x)). Then, the argument above applied to c and ĉ shows that this
case is not possible.

Assume now that F (x, y) = f(x) and F ′(x, y) = g(x), and denote by
{t1, . . . , th} and {u1, . . . , ul} the zeros of f and g in Fqr , respectively. Then,
it is readily seen that the support of c = ev(f(x)) contains the support of
c′ = ev(g(x)) if and only if {t1, . . . , th} ⊂ {u1, . . . , ul}. As a direct consequence,
the minimal codewords arising from a polynomial of type f(x) must be as in
Case (ii).
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Finally, let F (x, y) = y − α for a certain α ∈ Fqr . Then, by the above
mentioned arguments, together with the fact that the support of c cannot
contain the support of a codeword arising from a polynomial of type y − β,
with β �= α, we have that in this case c is minimal. �
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