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On monohedral tilings of a regular polygon

Bushra Basit and Zsolt Lángi

Abstract. A tiling of a topological disc by topological discs is called monohedral if all tiles
are congruent. Maltby (J Comb Theory Ser A 66:40–52, 1994) characterized the monohedral
tilings of a square by three topological discs. Kurusa et al. (Mediterr J Math 17:156, 2020)
characterized the monohedral tilings of a circular disc by three topological discs. The aim
of this note is to connect these two results by characterizing the monohedral tilings of any
regular n-gon with at most three tiles for any n ≥ 5.
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1. Introduction

Subsets of the Euclidean plane �2 homeomorphic to the Euclidean closed
circular unit disc B2 centered at the origin o are usually called topological
discs or Jordan regions.1 A family of topological discs {D1,D2, . . . , Dk} whose
union is a topological disc D and whose elements are mutually nonoverlapping
(i.e. their interiors are mutually disjoint), is called a tiling, decomposition, or
dissection of D, and the elements of the family are called tiles. A tiling is called
monohedral, if all tiles are congruent to a given topological disc, which is often
called prototile [3].

Partially supported by the BME Water Sciences & Disaster Prevention TKP2020 Insti-
tution Excellence Subprogram, Grant No. TKP2020 BME-IKA-VIZ, the NKFIH Grant
K134199, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences,
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1The set B2 is the set of points in the plane whose Euclidean distance from o is at most
one. To distinguish them from topological dics, we call the sets similar to B2 circular discs,
or Euclidean circular discs.
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Figure 1. A rotationally generated tiling of a regular 9-gon
P with three tiles

The history of the investigation of tilings goes back to ancient times and well
beyond the boundary of mathematics (see e.g. [6,19]). The aim of this paper
is to examine one such problem. A result of Maltby [14] in 1994 states that
a square cannot be dissected into three non-rectangular congruent topological
discs. Along the same line, Yuan et al. [20] proved, answering a question of
Danzer, that in any monohedral tiling of a square by five convex tiles, the
prototile is a rectangle, and conjectured that the same holds if the number
of tiles is an odd prime. This question has been recently answered in [17] in
the special case that the prototile is a q-gon with q ≥ 6 or it is a right-angled
trapezoid, and a computer-assisted proof has been given in [15] for seven or
nine tiles.

We intend to investigate a similar question, also based on the result of
Maltby in [14]. To state our main result, we call a monohedral tiling of a
regular n-gon P , centered at the origin o, by tiles D1,D2, . . . , Dk rotationally
generated if the rotation around o and with angle 2π

k leaves P invariant, and
permutes the tiles (cf. Fig. 1).

Theorem 1. Let P be a regular n-gon with n ≥ 5, and let F be a monohedral
tiling of P by k topological discs, where 2 ≤ k ≤ 3. Then either k = 2, n is
odd and F contains the two halves of P dissected by a line of symmetry of P ,
or n is divisible by k and F is rotationally generated.

We note that the same theorem with the Euclidean circular disc in place of
P was proved in [13], and monohedral tilings, with at most 3 tiles, of a convex
disc with strictly convex and smooth boundary were partially characterized
in [16]. Theorem 1 can be regarded as a result connecting the one in [14] for
squares and the one in [13] for circular discs. The proof of Theorem 1 is based
on (geometric, combinatorial and topological) tools from both [13] and [14],
and also on some new ideas.
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Finally, we remark that in the past few years a ‘dual version’ of this prob-
lem, namely the investigation of dissecting the Euclidean plane into mutually
incongruent tiles with equal area under various constraints has also gained
significant interest. For related results the interested reader is referred to [2–
5,10,11]. The number of dissections of a square into equal area rectangles was
estimated in [1,7]. For the investigation of monohedral dissections of geometric
figures using a different notion of dissection, see e.g. [8,9].

The structure of our paper is as follows. In Sect. 2 we introduce the nec-
essary notation and tools to prove our main result. In Sect. 3 we present the
proof of Theorem 1. Finally, in Sect. 4 we collect some additional remarks.

2. Preliminaries

In the paper, for any set X ⊂ �2, we denote the interior, the boundary, the
closure and the convex hull of X by int(X), ∂X, cl(X) and conv(X), respec-
tively. Furthermore, if X is bounded and nonempty, then diam(X) denotes
its diameter. For any x, y ∈ �2, by [x, y] we denote the closed segment with
endpoints x, y. By a simple curve we mean a continuous curve which does not
cross itself, and a simple, closed curve is a simple curve whose two endpoints
coincide. With a little abuse of notation, we call the points of a simple, not
closed curve, different from its endpoints, interior points of the curve. Finally,
for brevity, we call a topological disc simply a disc.

In the proof, n ≥ 5 and P denotes a regular n-gon with unit side-length
centered at o, and vertices p1, p2, . . . , pn in counterclockwise order. We set
F = {D1,D2, . . . , Dk} with k ≥ 2, where all the Di are congruent to a disc D,
and for i = 1, 2, . . . , k let Si = Di ∩ ∂P . For any value of i �= 1, we choose an
isometry g1i : �2 → �2 satisfying g1i(D1) = Di, and set gi1 = g−1

1i , and define
gij by gij(·) = g1j(g−1

1i (·)) for all i, j.
We remark that every disc is compact, and thus, it is Lebesgue measurable.

On the other hand, the boundary of a disc is not necessarily rectifiable; as an
example we may choose e.g. the Koch snowflake (for more ‘esoteric’ examples,
see [18]). In the proof, for any disc D we use the notation area(D) and perim(D)
for the area and the perimeter of D, respectively, and we use the latter one
only if ∂D is clearly rectifiable. If Γ is a rectifiable curve, then by l(Γ) we mean
the length of Γ. In particular, this yields that if ∂D is rectifiable for some disc
D, then we have l(∂D) = perim(D).

We start with some preliminary lemmas and remarks.

Remark 1. Since any Di is a disc, any two points of Di can be connected by
a continuous curve which contains only interior points of Di, apart from its
endpoints. In the paper, we call such a curve an in-curve of Di.
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Remark 2. We note that if some isometry gij is a reflection about a line L,
then L separates Di and Dj . Indeed, suppose for contradiction that there are
points x, y ∈ Di in different open half planes bounded by L, and let Γ be an
in-curve of Di connecting x and y. Then there is a point z of Γ on L. Thus,
gij(z) = z, implying that int(Di) ∩ int(Dj) �= ∅; a contradiction.

Lemma 1. If diam(D) = diam(P ), then k = 2. Furthermore, either n is odd
and F contains the two halves of P dissected by a line of symmetry of P , or
n is divisible by 2 and F is rotationally generated.

Proof. Under our conditions, each Di contains a diametrically opposite pair
of points of P , or in other words, the two endpoints of a longest diagonal of
P . First, observe that if pi1 , pi2 ∈ Di and pj1 , pj2 ∈ Dj are mutually distinct
diametrically opposite points of P where pi1 , pj1 , pi2 , pj2 are in this cyclic order
in ∂P , then any in-curve of Di connecting pi1 and pi2 would cross any in-curve
of Dj connecting pj1 and pj2 , leading to a contradiction. Thus, there is a vertex
of P contained in any diameter of any Di. Without loss of generality, let us
assume that p1 is such a vertex.

First, consider the case that n = 2m for some integer m ≥ 3. Since
[p1, pm+1] is the unique diameter of P containing p1, it follows that pm+1 ∈ Di

for all values of i. Furthermore, any isometry mapping a longest diagonal of
P into a longest diagonal of P is a symmetry of P , implying that gij is a
symmetry of P for all i, j. Thus, gij is the reflection about the line L through
[p1, pm+1], or about the bisector L′ of [p1, pm+1], or about o. On the other
hand, if gij is the reflection about L′, the fact that p1 and pm+1 are in dif-
ferent open half planes bounded by L′ contradicts Remark 2. Thus, gij is the
reflection about L or about o for any i �= j. Since gil(·) = gjl(gij(·)) for all
i, j, l by definition, the fact that there are only two possible isometries as gij

implies that k ≤ 2. If g12 is the reflection about o, then we are done. If g12 is
the reflection about L, then from Remark 2 it follows that L separates D1 and
D2, and the tiling is rotationally generated.

Finally, consider the case that n = 2m + 1 for some integer m ≥ 2, and
let L denote the line through [o, p1]. By our conditions, any tile Di contains
pm+1 or pm+2. Suppose for contradiction that a tile contains both pm+1 and
pm+2. Then any tile contains either p1, pm+1 and pm+2, or p1, p2 and pm+2,
or p1, pn and pm+1. However, this would give points pi1 , pj1 , pi2 , pj2 as in the
first paragraph of the proof, which was shown to be impossible. Thus, any tile
contains either pm+1 or pm+2.

Assume that there are at least two tiles containing one of them, say pm+1 ∈
D1,D2. Then g12 is the reflection about either the line L′ through [p1, pm+1],
or the bisector of [p1, pm+1], or the midpoint of [p1, pm+1]. Here the second
case contradicts Remark 2. In the first and the third cases we have that
D1,D2 ⊂ P ∩ P ′, where P ′ = g12(P ) (cf. Fig. 2). Thus, P ′ ∩ P � P yields
that k ≥ 3. If k = 3, then P\P ′ ⊆ D3, and the compactness of D3 implies that
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Figure 2. An illustration for the proof of Lemma 1

pm+1, pm+2 ∈ D3; a contradiction, as in the previous paragraph. If k > 3, then
there are at least two tiles containing pm+2, which, by the previous argument,
are contained in P ∩ P ′′, where P ′′ is the reflected copy of P about the line
through [p1, pm+2]. Thus, in this case the midpoint of [pm+1, pm+2] does not
belong to any tile; a contradiction.

We have shown that k = 2, and there is a unique tile containing pm+1

and a unique tile containing pm+2. Let these tiles be D1 and D2, respectively.
Let q be the midpoint of [pm+1, pm+2] and assume, without loss of generality,
that q ∈ D1. Then the only congruent copy of P containing p1, pm+1, q is P ,
implying that g12(P ) = P . Since we also have g12([p1, pm+1]) = [p1, pm+2], this
yields that g12 is the reflection about the line L through [o, p1], from which
the assertion readily follows. �

Next, we recall Lemma 2.3 from [13].

Lemma 2. Let {D̄1, D̄2, D̄3} be a tiling of the disc D̄ where, for i = 1, 2, 3, D̄i

is a disc such that S̄i = D̄i ∩ ∂D̄ is a nondegenerate simple continuous curve.
Then D̄1 ∩ D̄2 ∩ D̄3 is a singleton {q}, and for any i �= j, D̄i ∩ D̄j is a simple
continuous curve connecting q and a point in ∂D̄.

Our next lemma is a generalization of Lemma 2.

Lemma 3. Let the disc D̄ be decomposed into three discs D̄1, D̄2 and D̄3. For
i = 1, 2, 3, set S̄i = D̄i ∩ ∂D̄. Then, with a suitable choice of indices, exactly
one of the following holds (cf. Fig. 3).
(1) S̄3 contains at most two points, and S̄1 and S̄2 are connected arcs whose

union covers ∂D̄.
(2) S̄1 is the union of two disjoint, connected, nondegenerate arcs, the sets

S̄2, S̄3, D̄1 ∩ D̄2, D̄1 ∩ D̄3 are connected arcs, and D̄2 ∩ D̄3 = ∅.
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Figure 3. The topological types described in Lemma 3 with
a Euclidean disc as D̄. We note that the points q1 and q2 in
the left panel, and q in the right panel may lie on ∂D̄

(3) S̄2, S̄3, D̄1 ∩ D̄2, D̄1 ∩ D̄3, D̄2 ∩ D̄3 are connected arcs, D̄1 ∩ D̄2 ∩ D̄3

is a singleton {q}, and S̄1 is either a connected arc, or the union of a
connected arc and {q}.

Proof. Assume that one of the S̄i, say S̄1, has more than one component,
and let q1, q2, . . . , qm be points of S̄1, in this cyclic order, contained in dif-
ferent components of S̄1. Let r1, r2, . . . , rm be points in ∂D̄\S̄1 such that
q1, r1, q2, . . . , qm, rm are in this cyclic order in ∂D̄. Note that every rj be-
longs to S̄2 or S̄3, and no two of them belongs to the same set. Indeed, if, say,
rj1 and rj2 belong to S̄2, where j1 �= j2, then any in-curve in D̄2 connecting
them, and any in-curve in S̄1 connecting qj1 and qj2 would cross, which is a
contradiction. Thus, we have m = 2, which also yields, by the same argument,
that S̄2 and S̄3 are connected. If neither component of S̄1 is a singleton, then
the closure of (∂D̄1)\S̄1 contains two disjoint, simple curves which, apart from
their endpoints, are contained in int(D̄). Since in this case D̄2 and D̄3 can be
separated by an in-curve of D̄1 disjoint from D̄2∪D̄3, it follows by compactness
that the two components of cl((∂D̄1)\S̄1) coincide with D̄1 ∩ D̄2 and D̄1 ∩ D̄3,
implying (2). If exactly one component of S̄1 is a singleton, a similar argument
can be applied, implying (3). Finally, if both components of S̄1 are singletons,
the conditions in (1) are satisfied with a suitable relabeling of the tiles.

Assume that all the S̄i are connected. Since S̄1 ∪ S̄2 ∪ S̄3 = ∂D̄ and every
S̄i is a simple connected arc properly contained in ∂D̄i, we have that at least
two of the S̄i contain more than one point. If one of them, say S̄3, contains at
most one point, then (1) follows. If S̄1, S̄2 and S̄3 are nondegenerate, simple
arcs, then the conditions of Lemma 2 are satisfied, implying (3). �
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Definition 1. Let {D̄1, D̄2, D̄3} be a tiling of the disc D̄. If the discs D̄1, D̄2, D̄3

satisfy the conditions in (k) of Lemma 3 with k = 1, k = 2 or k = 3, we say
that the tiling is a Type k decomposition of D̄.

Remark 3. Assume that D̄ is decomposed into two discs D̄1, D̄2, and for i =
1, 2, set S̄i = D̄i ∩ ∂D̄. Note that since the number of tiles is more than one,
we have that no S̄i coincides with ∂D̄. Furthermore, by the argument in the
proof of Lemma 3 we also have that S̄1 and S̄2 are connected. Motivated by
this property, we call any tiling of D̄ with two discs a Type 1 decomposition
of D̄.

Lemmas 4–6 and Definitions 2–3 are from [13].

Lemma 4. Let G and C be simple curves. Then G contains at most finitely
many congruent copies of C which are mutually disjoint, apart from possibly
their endpoints.

Definition 2. A multicurve (see also [12]) is a finite family of simple curves,
called the members of the multicurve, which are parameterized on nondegen-
erate closed finite intervals, and any point of the plane belongs to at most one
member, or it is the endpoint of exactly two members. If F and G are multi-
curves,

⋃ F =
⋃ G, and every member of F is the union of some members of

G, we say that G is a partition of F .

Definition 3. Let F and G be multicurves. If there are partitions F ′ and G′

of F and G, respectively, and a bijection f : F ′ → G′ such that f(C) ∈ G′ is
congruent to C for all C ∈ F ′, we say that F and G are equidecomposable.

Lemma 5. If F and G are multicurves with
⋃ F =

⋃ G, then F and G are
equidecomposable.

Lemma 6. If F and G are equidecomposable, and their subfamilies F ′ ⊆ F and
G′ ⊆ G are equidecomposable, then F\F ′ and G\G′ are equidecomposable.

We finish with a remark and a definition.

Remark 4. Let {D1,D2,D3} be a monohedral tiling of the regular n-gon P
with unit side-length and n ≥ 5. For i = 1, 2, 3, set Si = Di ∩ ∂P . Note
that for any i �= j, gij(Si) ⊂ (∂ conv(Dj)) ∩ (∂Dj). Furthermore, we have the
following:
(1) If S∗

i ⊆ Si and S∗
j ⊆ Sj are maximal nondegenerate segments in Si and

Sj , respectively, such that the interiors of S∗
i and gji(S∗

j ) intersect, then
S∗

i = gji(S∗
j ).

(2) If some vertex pt of P lies in the interiors of both Si and gji(Sj), then
Si = gji(Sj), and P = gji(P ).

(3) If Si ∩ gji(Sj) contains a segment of unit length, then Si = gji(Sj), and
P = gji(P ).
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Figure 4. An illustration for Remark 4. In the left panel S2

and g12(S1) do not overlap; in the right panel S2 and g12(S1)
slightly overlap. The endpoints of the arcs Si are denoted by
empty circles, and the endpoints of g12(S1) are denoted by
full circles

If the interiors of Si and gji(Sj) are disjoint, we say that Si and gji(Sj) are
nonoverlapping. Based on our above observations and Lemma 3, if Si and
gji(Sj) overlap but they do not coincide, then their intersection contains at
most two connected components, each of which is either a single point or a
nondegenerate segment of length strictly less than one. In this case we say
that Si and gji(Sj) are slightly overlapping (cf. Fig.Fig. 4). We observe that
Si and Sj = gij(Si) are nonoverlapping, slightly overlapping and equal if and
only if gil(Si) and gjl(Sj) are nonoverlapping, slightly overlapping and equal,
respectively, for an arbitrary value of l.

3. Proof of Theorem 1

By Lemma 3 and Remark 3, it is sufficient to prove the theorem for Type 1,
Type 2 and Type 3 decompositions of P . In the following, we present the proof
for each type in a separate subsection. Throughout the proof, we assume that
no Di contains diametrically opposite points of P , as otherwise the assertion
readily follows from Lemma 1.

3.1. Proof for Type 1 decompositions

We choose our notation in such a way that S1 and S2 are nondegenerate
connected arcs in ∂P whose union is P , and S3, if it exists, contains at most
two points. Observe that in this case n is even, as otherwise S1 or S2 contains
at least n+1

2 vertices of P , including a pair of diametrically opposite points of
P . Consider the sets S1 and S′

1 = g21(S2). By Remark 4, we distinguish three
cases.



Vol. 98 (2024) On monohedral tilings of a regular polygon 543

Case 1, S1 and S′
1 do not overlap. In this case they are nonoverlapping arcs

in the boundary of conv(D1) whose total length is perim(P ), which implies
that conv(D1) = P and ∂(conv D1) = S1 ∪ S′

1. On the other hand, since in
this case S1 ∪S′

1 is a simple, closed curve, we have D1 = conv(D1) = P , which
contradicts the assumption that k > 1.

Case 2, S1 and S′
1 slightly overlap. Let L be a sideline of P containing at

least an interior point of S′
1∩S1, and let L′ be the supporting line of P parallel

to L which is different from L. Let G1 and G2 denote the two components of
cl(∂P\(L∪L′)). Clearly, since L contains a common endpoint of S1 and S2, at
least one of G1 and G2 contains no endpoint of S1 and S2 in its interior, and
hence, we may assume that e.g. G2 ⊂ S2. Then the facts that S′

1 and S1 are
slightly overlapping and S′

1 ⊂ P yield that L′ also contains a point of S′
1, and

G1 ⊂ S1. Furthermore, since in this case S1 ∪ S′
1 form simple closed curve(s)

in ∂D1, we have that D1 = conv(S1 ∪ S′
1). Let q and q′ be the midpoints of

the sides of P on L and L′, respectively, and observe that the translate G′
2

of G2 whose endpoints are q and q′ is contained in D1. Thus, the area of D1

is greater than or equal to the area of conv(G1 ∪ G′
2), and the area of the

latter region is strictly greater than area(P )
2 . This contradicts the fact that the

examined tiling of P is monohedral.
Case 3, S1 = S′

1. In this case g21 is either the reflection about the line L
through the two endpoints of S1 and S2, or it is the reflection about o. This
implies Theorem 1 for k = 2. Furthermore, if k = 3, then D3 = cl(P\(D1∪D2))
is symmetric to L or o, respectively, and P has an even number of sides.

Assume that k = 3 and g21 is the reflection about o. Then, since D1, D2 and
D3 are all congruent, it follows that both D1 and D2 are centrally symmetric.
As D1,D2 ⊂ P we also have that the centers of D1 and D2 are contained on the
line through o parallel to the two sides of P containing the common endpoints
of S1 and S2. Let these two sides of P be E and E′, and let the centers of
symmetry of D1 and D2 be c1 and c2, respectively. From the properties of
central symmetry and the fact that S1 = S′

1, we have that for i = 1, 2, E ∩ Si

and E′ ∩ Si are segments of length 1/2. Furthermore, for i = 1, 2 the union of
Si and its reflection about ci is a simple closed convex curve in ∂Di, implying
that its convex hull is Di. Thus, D1 and D2 overlap; a contradiction.

Finally, assume that k = 3 and g21 is the reflection about the line L passing
through the common endpoints of S1 and S2. Since L is a symmetry line of P
and no Di contains diametrically opposite points of P , it follows that L passes
through the midpoints of two opposite sides E,E′ of P . Furthermore, since D3

is symmetric to the line L, we obtain that D1 and D2 have lines of symmetry,
which we denote by L1 and L2, respectively. Since both discs are contained in
the infinite strip bounded by the two sidelines of P through E and E′, L1 and
L2 are parallel to L, or coincide with the line L∗ through o perpendicular to
L.
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Assume that one of L1 and L2, say L1, is parallel to L, and let S′ denote
the reflection of S1 about L1. Since S1∪S′ is a simple, closed curve in ∂D1, we
have S1 ∪S′ = ∂D1, which yields that D1 = conv(S1 ∪S′). On the other hand,
as the endpoints of S1 are midpoints of two opposite sides of P , from this
an elementary computation shows that area(D1) > area(P )

3 , a contradiction.
Thus, we have L1 = L∗, and we remark that our argument shows that any
line of symmetry of D1 coincides with L∗, and, applying this argument, we
obtain the same statement for D2. On the other hand, if both D1 and D2 are
symmetric to L∗, then the same holds for D3. Hence, D3 is symmetric to both
L and L∗, which yields that D1 (resp., D2) has a line of symmetry different
from L∗, which contradicts our previous observation.

3.2. Proof for Type 2 decompositions

We assume that S1 is disconnected, and denote the two components of S1 by
S′
1 and S′′

1 . We distinguish three cases.
Case 1, both S′

1 and S′′
1 contain vertices of P . Without loss of generality, we

may assume that the vertices of P in S′
1 are p1, p2, . . . , pm for some 1 ≤ m ≤

n− 1. First, we show that n is even. Suppose for contradiction that n = 2t+1
for some t ≥ 2. Then, since S1 contains no diametrically opposite points of P ,
we have that pt+1, pt+2, . . . , pt+m+1 belong to the same set Si �= S1. Without
loss of generality, we may assume that they, and also pm+1, belong to S2. This
yields that pm+1, pm+2, . . . , pm+t+1 belong to S2, and thus, S2 contains at least
t+1 vertices of P , which contradicts our assumption that D2 does not contain
diametrically opposite points of P . Thus, we have that n is even.

Let n = 2t for some t ≥ 3. Similarly like in the previous paragraph, we
have that pt+1, . . . , pt+m are not points of S′′

1 , and thus, they all belong to S2

or all belong to S3. Without loss of generality, assume that they belong to S2.
Thus, pm+1, . . . , pm+t ∈ S2. Since no Si contains diametrically opposite points
of P , we also have m ≤ t and pm+t+1 ∈ S′′

1 . This implies that l(S3) < l(S2).
Since neither S1 nor S2 contains diametrically opposite vertices of P , we also
have that the endpoints of S2 are interior points of two sides of P . The facts
that S2 contains exactly t vertices of P and S1 is disconnected yield also
that S2 �= g12(S1) and S2 �= g32(S3). Furthermore, g32(S3) and S2 are not
slightly overlapping, since otherwise S3 and g23(S2) are slightly overlapping
(cf. Remark 4), which contradicts the fact that in this case the side of P
opposite the overlap is contained in S2. By a similar argument, S3 and g13(S1)
do not slightly overlap. Thus, we have that either S1, g21(S2) and g31(S3) are
mutually nonoverlapping, or S1 and g21(S2) slightly overlap.

If S1, g21(S2) and g31(S3) are mutually nonoverlapping, then their total
length is equal to perim(P ), implying that perim(conv(D1)) ≥ perim(P ). This
yields that D1 = conv(D1) = P , which contradicts our assumption that k = 3
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Figure 5. An illustration for Case 1 in sect. 3.2, where t = 4.
In the picture S′

1 and S′′
1 are drawn with solid, S2 and S3 with

dashed, and g21(S2) with dotted lines

for any Type 2 decomposition of P . Thus, the only possibility left is that S1

and g21(S2) slightly overlap. Since the endpoints of S2 are interior points of
two opposite sides of P , this yields that g21(S2) contains at least one endpoint
of S2. On the other hand, since apart from its endpoints, no point of S1 may
belong to D2, we also have that g21(S2) contains both endpoints of S2, and
also that it is a translate of S2. Let the endpoints of S2 on [pm, pm+1] and
[pm+t, pm+t+1] be q and q′, respectively. Then g21([pm+1, q]) is either [pm, q]
or [pm+t+1, q

′], which yields that q is the midpoint of [pm, pm+1] and q′ is the
midpoint of [pm+t, pm+t+1] (cf. Fig. 5). On the other hand, since g21(S2) ⊂
∂D1, it separates D2 from D1 ∪ D3. In other words, D2 is the region bounded
by the union of S2 and the part of g21(S2) connecting q and q′. But this and
the fact S3 is not empty yields that D1 is the translate of D2 by the vector
q − pm+1, and hence, D3 = cl(P\(D1 ∪ D2)) is not congruent to D1 and D2;
a contradiction.

Case 2, exactly one of S′
1 and S′′

1 contains a vertex of P . Let the vertices
of P in S′

1 be p1, p2, . . . , pm for some 1 ≤ m < n+1
2 .

First, we consider the case that n is odd, namely that n = 2t + 1 for
some integer t ≥ 2. Observe that since the diameter graph of the vertex set
of P is an odd cycle, and hence, it cannot be colored with two colors, every
Si contains a vertex of P in its interior. We show that the side of P con-
taining S′′

1 is opposite a vertex in S′
1. Indeed, suppose for contradiction that

[pt+1, pt+2], . . . , [pt+m, pt+m+1] are disjoint from S′′
1 . Then they all belong to

the same Si, and thus, we may assume that pm+1, . . . , pt+m+1 belong to S2.
But then S2 contains diametrically opposite vertices of P , which contradicts
our assumption. Hence, we have that for some 1 ≤ i ≤ m, S′′

1 ⊂ [pi+t, pi+t+1].
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Figure 6. An illustration for Case 2 in Subsection 3.2, where
t = 4 and m = 2. In the picture S′

1 and S′′
1 are drawn with

dashed, and S2 and S3 are drawn with solid lines

Note the fact that S1 is disconnected implies that g1i(S1) does not coincide
with Si. Assume that, say, g12(S1) slightly overlaps S2. Then g12 is the compo-
sition of a symmetry of P and a (nondenegerate) translation parallel to a side
of P , which contradicts the fact that g12(S1) ⊂ P . Thus, we have that S1 does
not overlap g21(S2) and g31(S3). Without loss of generality, we may assume
that l(S2) ≥ l(S3). For i = 2, 3, let Ti denote the segment connecting the end-
points of Si, Ki = conv(Si) and Ci = conv(D1) ∩ Ki (cf. Fig. 6). Recall that
g21(S2) and g31(S3) are contained in ∂(conv(D1)) and they do not overlap S1.
Since S2 and S3 contain vertices of P , we also have that they do not overlap T2

and T3. Thus, in particular, C2 or C3 is a plane convex body with perimeter at
least l(T2) + l(S2) or l(T3) + l(S2), respectively. As perim(Ki) = l(Si) + l(Ti)
for i = 2, 3, this yields that g21(S2) coincides with S2 or S3, a contradiction.

In the remaining part of Case 2, we assume that n is even, i.e. n = 2t for
some t ≥ 3. Assume that S′

1, S2, S
′′
1 , S3 are in counterclockwise direction on

∂P . Note that at least one of S2 and S3 contains vertices of P . Furthermore,
similarly to the n odd case, the fact that neither S2 nor S3 contains diamet-
rically opposite points yields that there are points q′ ∈ S′

1 and q′′ ∈ S′′
1 on

opposite sides of P .
Clearly, g12(S1) �= S2 as S1 is disconnected. Assume that they are slightly

overlapping. Then g12(q′) and g12(q′′) lie on opposite sides of P , and hence,
they belong to S2. Thus, S2 contains t vertices of P , and q′, q′′ and their
images under g12 are on the same two sides of P . This yields that g12 is either
a translation parallel to these sides, or the composition of such a translation
with a reflection to a line parallel or perpendicular to these sides, or the origin.
Let these two sides be E′ and E′′ with q′ ∈ E′ and q′′ ∈ E′′. Then g12((E′ ∪
E′′)∩S1) = (E′ ∪E′′)∩S2. Since E′ ∩S1, E′ ∩S2, E′′ ∩S2 and E′′ ∩S1 are in
counterclockwise order on ∂P , we have that g12 is a translation parallel to E′,



Vol. 98 (2024) On monohedral tilings of a regular polygon 547

or its composition with the reflection about the line through o and parallel to
E′. But both cases contradict the fact that E′′ ∩ (S1 ∪ S2) is strictly shorter
than E′ ∩ (S1 ∪ S2) = E′.

We have obtained that g12(S1) and S2 do not overlap. It follows similarly
that g13(S1) and S3 do not overlap, or equivalently, that g21(S2) and g31(S3)
do not overlap S1. But in this case we may apply the argument used for n odd.

Case 3, neither S′
1 nor S′′

1 contains a vertex of P .
Recall that by the definition of Type 2 configuration (cf. Lemma 3), both S′

1

and S′′
1 are nondegenerate segments.

As we remarked in Case 2, if n is odd, then the diameter graph of the
vertex set of P is an odd cycle, which is not 2-colorable. But this contradicts
the assumptions that none of S1, S2, S3 contains diametrically opposite vertices
of P , and S1 does not contain a vertex of P . Thus, the condition of Case 3 is
satisfied only if n is even, and S′

1 and S′′
1 lie on opposite sides of P . Let these

sides of P be E′ and E′′ with S′
1 ⊂ E′.

Clearly, we have g21(S2) �= S1. Consider the case that g21(S2) slightly over-
laps S1. Then the endpoints of g21(S2) lie on E′ and E′′, which yields that
either D2 is the region bounded by S2 ∪ (g21(S2)\(E′ ∪ E′′)), or D3 is the re-
gion bounded by S3 ∪ (g21(S2)\g21(E′ ∪ E′′)). From these two cases we obtain
area(D2) < 1

3 area(P ) and area(D3) < 1
3 area(P ), respectively, which contra-

dicts the fact that the tiling is monohedral. Thus, we are left with the case
that g21(S2) and S1 do not overlap. Similarly, we obtain that g31(S3) and S1

do not overlap. But then S1, g21(S2) and g31(S3) are mutually nonoverlap-
ping arcs in ∂(conv(D1)) with total length equal to perim(P ), implying that
D1 = conv(D1) = P ; a contradiction.

3.3. Proof for Type 3 decompositions

The proof presented in this subsection roughly follows the structure of the
proof in [13] with some of the arguments borrowed from there; in particular,
depending on the number of coinciding arcs among S1, g21(S2) and g31(S3),
we distinguish three cases.

Case 1, no two of S1, g21(S2) and g31(S3) coincide. If no two of these arcs
overlap, then the fact that their total length is equal to perim(P ) yields that
D1 = conv(D1) = P ; a contradiction. Thus, we have that at least one pair
among them overlaps. Before proceeding further, we use this observation to
show that all of S1, S2 and S3 contain at least one vertex of P different from
their endpoints. Indeed, suppose for contradiction that one of them, say S1,
contains no vertex of P in its interior. Then, since D1,D2 and D3 contain no
diametrically opposite points of P , we have that n is even, and that both S2

and S3 contain a vertex of the side of P that contains S1 and interior points of
the opposite side. Thus, if g21(S2) and S1 slightly overlap, then S1 intersects
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a pair of opposite edges of P in nondegenerate segments and the configuration
is not Type 3; a contradiction. The cases that g31(S3) slightly overlaps S1 or
g21(S2) can be eliminated by a similar argument. Thus, we obtain that S1,
g21(S2) and g31(S3) do not overlap; a contradiction. Hence, in the remaining
part of Case 1 we assume that all of S1, S2 and S3 contain vertices of P
different from their endpoints.

Consider the case that there are at least two overlapping pairs among
S1, g21(S2) and g31(S3); without loss of generality, we may assume that g21(S2)
and g31(S3) slightly overlap S1. Then, for i = 2, 3, g1i(S1) slightly overlaps Si,
which, combining it with the fact that the angles of P are obtuse, implies that
two of ∂D1, ∂D2 and ∂D3 cross; a contradiction.

We are left with the case that exactly one pair of S1, g21(S2) and g31(S3)
overlaps. Without loss of generality, we may assume that S1 and g21(S2)
overlap. Let us choose our notation such that the vertices of P on S1 are
p1, p2, . . . , pm, and S1, S2, S3 are in counterclockwise order around P . For
any i �= j, let qij be the common endpoint of Si and Sj . We assume that
q23 ∈ [pl, pl+1] with q23 �= pl+1. By our assumption, we have that g21(q12) or
g21(q23) lies in the interior of S1. Depending on which one of q12 and q23 lies
on which side of S1, we distinguish four cases.

If g21(q12) lies in the interior of S1 and g21(q12) ∈ [pm, pm+1], then q12 is
the midpoint of [pm, pm+1] and g21([q12, pm+1]) = [q12, pm]. This implies that
∂D1 and ∂D2 cross at q12; a contradiction.

Assume that g21(q12) lies in the interior of S1 and g21(q12) ∈ [pn, p1].
Then g21(q12) = p1, g21(pm+1) = q13 (or equivalently, g12(p1) = q12 and
g12(q13) = pm+1), and q12 and q13 are interior points of [pm, pm+1] and [pn, p1],
respectively. Note that conv(D2) ⊂ P implies that conv(D1) ⊂ g21(P ). On
the other hand, g21(P ) is the translate of P by the vector q13 − pn. Let
P0 = P ∩ (q12 − pn + P ) (cf. Fig. 7). Then P0 is a convex polygon such that
each one of its sides is parallel to some side of P . Let C = S1 ∪ g21(S2),
and observe that C and g31(S3) are non-overlapping curves in ∂(conv(D1)).
If q23 is not a vertex of P , then the total turning angle along the curves
C and g32(S3) is 2π, which implies that ∂(conv(D1)) is the union of C and
g31(S3) and possibly two segments such that the lines through them contain
segments from both C and g32(S3); this contradicts the fact that conv(D1)
is contained in P0. If q23 is a vertex of P , we may apply the same argu-
ment after observing that conv(C ∪ g31(S3)) is a convex polygon, and the fact
that conv(C ∪ g31(S3)) ⊂ conv(D1) ⊂ P0 implies that the turning angle of
conv(C ∪ g31(S3)) at g21(q23) is at least 2π

n .
Finally, in the remaining cases, if g21(q23) lies in the interior of S1 with

g21(q23) ∈ [pm, pm+1] or g21(q23) ∈ [pn, p1], we can apply the argument in the
previous case.

Case 2, exactly two of S1, g21(S2) and g31(S3) coincide. Without loss of
generality, we may assume that S1 = g21(S2). In the consideration in this
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Figure 7. An illustration for Case 1 in Subsection 3.3

case, for brevity, for any i �= j we let qij denote the intersection point of Si

and Sj , let q denote the unique point in D1∩D2∩D3, and set Cij = Di∩Dj . By
Lemma 3, we have that Cij is a simple (possibly degenerate) curve connecting
qij and q.

Note that since S3 cannot contain more than n
2 vertices of P , we have that

each of S1 and S2 contains at least n
4 and at most n

2 vertices of P . This and
n ≥ 5 implies that g21(P ) = P ; that is, g21 is an isometry of P . In particular,
g21 (and consequently g12) is either a reflection about a symmetry line of P ,
or a rotation around o with angle α = 2mπ

n for some integer 1 ≤ m ≤ n.
Depending on the type of g21, we distinguish two subcases.

Subcase 2.1, g21 is a rotation around o. Then the angle of rotation is α =
2mπ

n for some integer n
4 ≤ m < n

2 , which implies, in particular, that l(S1) =
l(S2) = m, and l(S3) = n − 2m.

Observe that since o is a fixed point of g21, we have either o ∈ D1 ∩ D2

or o ∈ int(D3). First, assume that o ∈ D1 ∩ D2. If o = q, then g21(q12) =
q13, g21(q23) = q12, and S1 and S3 are congruent, yielding that the tiling is
rotationally generated. If o �= q, then o has a closed circular neighborhood B
disjoint from D3. Let t 
→ C(t) be a continuous parametrization of the curve
C12 with C(0) = o, and let t+ = sup{t : C([0, t]) ⊂ B}, and t− = inf{t :
C([t, 0]) ⊂ B}. Then g21(C(t±)) = C(t∓), implying that g21 is a reflection
about o, which contradicts the condition that the configuration is Type 3.
Thus, we have o ∈ int(D3).

Let q2 = g12(q) and q1 = g21(q). Then q2 ∈ ∂D2, q1 ∈ ∂D1 and q1, q2 /∈
∂(P ). Let P0 ⊂ D3 be the homothetic copy of P of maximum homothety ratio
centered at o. Then P0 touches at least one of the curves C13 and C23, say, at
a point x2 ∈ C23. Let x1 = g21(x2). By the definition of P0, we have x1 ∈ D3,
and by x2 ∈ D2, we have x1 ∈ D1. From this it follows that x1 ∈ C13, implying
that C13 ∩ g21(C23) �= ∅. As C12 ∪ C13 is a connected curve from q12 to q13,
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Figure 8. An illustration for Subcase 2.1 in Subsection 3.3
with n = 11 and m = 4

and g21(C23) is a connected curve in C12 ∪ C13 from q12 to q1, the relation
C13 ∩ g21(C23) �= ∅ implies that q1 is an interior point of C13, from which
q2 ∈ int(C23) also follows. For i = 1, 2, let Cs

i3 and Cq
i3 denote the closed

arcs of Ci3 from qi3 to qi, and from qi to q, respectively (cf. Fig. 8). Then
g21(Cs

23) = C12 = g12(Cs
13) and g21(C

q
23) = Cq

13 yield that the corresponding
arcs are congruent. Thus, by Lemma 6, as ∂D1 = S1 ∪ Cq

13 ∪ Cs
13 ∪ C12 and

∂D3 = S3 ∪ Cq
13 ∪ Cs

13 ∪ Cq
23 ∪ Cs

23, the equidecomposability of ∂D1 and ∂D3

yields that S3∪Cq
13 and S1 are equidecomposable, implying that Cq

13 (and also
Cq

23) is a polygonal curve of length l(S1)−l(S3). This yields, in particular, that
l(S1) > l(S3), α = 2mπ

n > 2π
3 , m > n

3 , and that S1 contains at least one side
of P .

Note that as g21 is a rotation around o, either all the qij are interior points
of some edges of P , or all are vertices. Furthermore, l(S1) = l(S2) > l(S3),
and l(Cq

13) = l(Cq
23) are positive integers, and if the qij are vertices of P , then

l(S3) ≥ 2. We prove the assertion under the assumption that all the qij are
interior points of some edges of P , as in the opposite case a slight modification
of our argument can be applied.

Let us call a copy of Si in ∂Dj a subset S of ∂Dj congruent to Si such
that S is not a proper subset of some connected curve S′ ⊂ ∂Dj with the
property that the unique congruent copy of ∂P containing S also contains S′,
and observe that any two copies of Si are either nonoverlapping or slightly
overlapping. Recall that by Lemma 4, for any values of i and j, ∂Dj contains
finitely many copies of Si.

Consider the case that q is an interior point of a copy S of S1 in ∂D3. Let
S′ and S′′ denote the parts of S in Cs

13 and in Cs
23, respectively, and assume

that q1, q2 are not interior points of S. Then l(Cq
13) = l(S1) − l(S3) ≤ m − 1 =

l(S1) − 1 implies that S′ and g21(S′′) have a common vertex in their interiors.
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Thus, they belong to the boundary of the same congruent copy P ′ of P . On the
other hand, from this we obtain that g21 is a symmetry of P ′, and hence, P ′

is centered at o, a contradiction. If exactly one of q1 or q2, say q2 is an interior
point of S, then S′ ⊆ Cs

13 = g21(S′′), which yields that S′ contains a vertex or
it is a segment of length strictly less than one. In the first case we can apply
the previous consideration, and in the second case, since by the properties of
rotation S′′ contains a segment of length l(S′) that ends at q2, we reach a
contradiction with the fact that l(Cs

23) = l(S1) − l(S3) is a positive integer.
Finally, if both q1 and q2 are interior points of S, then, by the properties of
rotation, Cs

13 ∪ Cs
23 ⊂ S yields that the unique regular n-gon that contains S

in its boundary is P ; a contradiction. Thus, we have that q does not belong to
the interior of any copy of S1 in D3.

Note that the numbers of copies of S1 in ∂D1 and in ∂D3 are equal. Further-
more, the number of copies of S1 in ∂D1 in Cs

13∪C12 is equal to this number in
∂D3 in Cs

13 ∪Cs
23. On the other hand, since l(Cq

13) = l(Cq
23) < l(S1) and q does

not belong to the interior of a copy of S1 in ∂D3, it follows that the number of
the copies of S1 in ∂D1 containing an element of Q1 = {q12, q13, q, q1} in their
interiors is one less than the number of copies in ∂D3 containing an element
of Q3 = {q13, q23, q1, q2} in their interiors.

Observe that for i = 1, 3 and any element of Qi, there is at most one copy
of S1 in ∂Di containing it in its interior. Furthermore, if the interior of every
copy of S1 in ∂D3 contains at most one element of Q3, then the number of
copies of S1 in ∂D3 whose interiors intersect Q3 is not larger than the number
of copies of S1 in ∂D1 whose interiors intersect Q1. Thus, we may assume that
there is a copy S in ∂D3 containing both q13 and q1, or both q23 and q2. In
both cases, we have that S slightly overlaps S3. Since the internal angle of D3

at q13 or q23, respectively, is obtuse, this yields that both conditions cannot be
satisfied simultaneously. Hence, ∂D3 contains exactly one copy of S1, which
slightly overlaps S3. Then g13(S1) coincides with this copy of S1. Furthermore,
∂Di is a closed polygonal curve for every value of i.

Assume that q13 ∈ g13(S1), and let q′ denote the vertex of P in S1 closest
to q12. Since q is not an interior point of g13(S1) and l(Cq

13) = l(S1)− l(S3), we
have that l(C12) = l(Cs

13) ≥ l(S3)−|q′ −q12|. Thus, q is not an interior point of
g31(S3). On the other hand, since l(S1) − l(S3) ≥ 1 and by the definition of a
copy, the endpoint of g31(S3) in ∂D1, different from q′, is not an interior point
of C12. Thus, it follows that this endpoint of C12 is q. Thus, l(C12) = l(Cs

13) =
l(S3) − |q′ − q12|. This yields that l(Cs

13) + l(Cq
13) = l(S1) − |q′ − q12|, and q

is an endpoint of g13(S1). Now we have completely described the boundaries
of the Di, in particular each consists of segments of unit length and some
strictly shorter segments. A simple counting shows that ∂D1 contains exactly
4 segments of length strictly smaller than 1 (2 in S1, 1 in C12 and 1 in Cq

13),
and ∂D3 contains exactly 6 such segments (2 in S3, 1 in Cq

13, 2 in Cq
23 and 1

in Cs
23). This contradicts the fact that D1 and D3 are congruent.
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If q23 ∈ g13(S1), a similar consideration proves the assertion.
Subcase 2.2, g21 is a reflection about a symmetry line L of P . Without loss

of generality, we assume that L is the y-axis, and the common point of S1 and
S2 lies on the positive half of L. Note that g12 = g21, and D3 = cl(P\(D1∪D2))
is symmetric to L.

Clearly, by Remark 2, L separates D1 and D2, and from this it readily
follows that D1 ∩ D2 = [q12, q]. Furthermore, we have that D1 and D2 are
the closures of the subsets of P \ D3 contained in the two closed half planes
bounded by L.

Let Y = g13(S1). Assume that Y slightly overlaps S3. Then Y crosses L. By
the symmetry of D3, the reflected copy Y ′ of Y about L also belongs to ∂D3

and it also crosses L. Thus, Y and Y ′ overlap, and Y ∪Y ′ intersects L at a right
angle. From this we have that D3 = conv D3 is the convex region bounded by
S3 ∪ Y ∪ Y ′, and an elementary computation yields that area(D3) > area(P )

3 ;
a contradiction. Thus, we have that Y does not overlap S3.

Let Y ′ be the reflected copy of Y about L. If Y does not contain q in its
interior, then the facts that l(Y ) + l(Y ′) + l(S3) = l(P ) and that Y, Y ′, S3

are subsets of ∂(conv(D3)) yield that D3 = conv(D3) = P , which contradicts
our assumptions. Thus, Y and Y ′ overlap. If Y ∩ Y ′ contains a vertex in its
interior, then Y ∪Y ′ belongs to the boundary of a regular n-gon, implying that
g31(Y ∪ Y ′) ⊂ ∂P . Hence, Y and Y ′ either slightly overlap, or they coincide.

Consider the case that Y and Y ′ slightly overlap, and let E = Y ∩Y ′. Then
g31(E) ⊂ g31(Y ) = S1 lies on the edge containing q12, or the edge containing
q13. Since in the first case ∂D1 and ∂D2 cross, we have that g31(E) lies on
the edge containing q13; we remark the property that S1 and g31(Y ′) slightly
overlap with q13 ∈ S1 ∩ g31(Y ′) implies also that q13 is not a vertex of P .

Let L1 be the supporting line of P parallel to L such that the infinite strip
bounded by L and L1 contains S1. If L1∩P is disjoint from S1, then D3 contains
diametrically opposite points of P , contradicting our assumptions. Thus, either
q13 ∈ L1 ∩ P or L1 ∩ P belongs to the interior of S1. If q13 ∈ L1 ∩ P , then
L1∩P is a side of P , and both endpoints of g31(Y ∪Y ′) lie on L, implying that
D1 = conv(D1) = conv(g31(Y ∪ Y ′)), and thus, ∂D1 does not contain a part
congruent to S3; a contradiction. Hence, we are left with the case that L1 ∩ P
belongs to the interior of S1. Let q′ = g31(q) and let L′ be the line intersecting
∂P orthogonally at q′ (cf. Fig. 9). Then q12 is a unique point in D1 farthest
from q′. On the other hand, by symmetry, the distances of the two endpoints
of g31(Y ∪ Y ′) from q′ are the same. Since one of these endpoints is q12, it
follows that the two endpoints coincide, implying that g31(Y ∪Y ′) is a simple,
closed, convex curve in ∂D1. Thus, D1 = conv(g31(Y ∪ Y ′)), or equivalently,
D3 = conv(Y ∪ Y ′), which contradicts the assumption that S3 ⊂ ∂D3.

Finally, we consider the case that Y = Y ′. Then Y is symmetric to L,
yielding that S1 is symmetric to the line L′ = g31(L). Thus, L′ is the bisector
of either an edge or an angle of P , which implies that o ∈ L′. Since D3 is
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Figure 9. An illustration for Subcase 2.2 in Subsection 3.3

symmetric to L, we also have that D1 is symmetric to L′. Let g be the reflection
about L′, and consider the transformations g′

12, g
′
13, g

′
23 defined by g′

12(·) =
g12(g(·)); g′

13 = g13 and g′
23(·) = g′

13(g
′−1
12 (·)). Clearly, the transformation g′

ij

is an isometry mapping Di into Dj , and g′
12 is a rotation around o. Thus, in

this case we can apply the consideration in Subcase 2.1.
Case 3, all of S1, g21(S2) and g31(S3) coincide.
Since this yields that all of S1, g21(S2) and g31(S3) contain vertices of P ,

it follows that g12 and g13 are symmetries of P . This implies that o is a fixed
point of both g21 and g31, and thus, the unique common point of D1, D2 and
D3 is o. If both g21 and g31 are rotations about o, then the tiling is clearly
rotationally generated, and we are done. Assume that, e.g. g21 is a reflection
about a symmetry line L of P . Then Remark 2 implies that L separates D1

and D2, from which we obtain that the curve D1∩D2 is a straight line segment
connecting the common point of S1 and S2 to o. By the properties of rotations,
from this we also have that for any i �= j, Di ∩ Dj is a straight line segment
connecting the common point of Si and Sj to o. This, combined with the
fact that l(S1) = l(S2) = l(S3), readily yields that the tiling is rotationally
generated.

4. Concluding remarks and open questions

Remark 5. A simplified version of the proof of Theorem 1 can be applied to
prove the same statement for monohedral tilings of a regular triangle with at
most three tiles.

The authors have found no results about monohedral tilings of convex poly-
gons in spherical or hyperbolic planes. This is our motivation to state the
following problem. Before doing so, we note that the symmetry group of an
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equiangular convex quadrilateral in spherical or hyperbolic planes contains the
symmetry group of a Euclidean rectangle as a subgroup.

Problem 1. Let M2 denote the spherical plane S2 or the hyperbolic plane H2,
and let P ⊂ M2. Characterize the monohedral tilings of P with at most three
discs if P is a
(i) circular disc;
(ii) a regular polygon;
(iii) an equiangular convex quadrilateral.
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Department of Algebra and Geometry, Institute of Mathematics
Budapest University of Technology and Economics
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