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Abstract. In this paper we consider generalized monomial functions f, g : F → C (of possibly
different degree) that also fulfill

f(P (x)) = Q(g(x)) (x ∈ F) ,

where P ∈ F[x] and Q ∈ C[x] are given (classical) polynomials.
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1. Introduction and preliminaries

Perhaps G. Ancochea was the first who studied additive mappings from a ring
into another ring which also fulfill a ‘polynomial equation’. More concretely
in [2] he described those additive functions that preserve squares. Later, these
results were strengthened by (among others) Kaplansky [14] and Jacobson–
Rickart [13].

Recall that if R,R′ are rings, then the mapping ϕ : R → R′ is called a
homomorphism if

ϕ(a + b) = ϕ(a) + ϕ(b) (a, b ∈ R)
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and

ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ R) .

Furthermore, the function ϕ : R → R′ is an anti-homomorphism if

ϕ(a + b) = ϕ(a) + ϕ(b) (a, b ∈ R)

and

ϕ(ab) = ϕ(b)ϕ(a) (a, b ∈ R) .

Henceforth, N will denote the set of positive integers. Let n ∈ N, n ≥ 2 be
fixed. The function ϕ : R → R′ is called an n-Jordan homomorphism if

ϕ(a + b) = ϕ(a) + ϕ(b) (a, b ∈ R)

and

ϕ(an) = ϕ(a)n (a ∈ R) .

In case n = 2 we speak about homomorphisms and Jordan homomorphisms,
respectively. It was G. Ancochea who first dealt with the connection of Jordan
homomorphisms and homomorphisms, see [2]. These results were generalized
and extended in several ways, see for instance [13,14,23]. In [12] I.N. Herstein
showed that if ϕ is a Jordan homomorphism of a ring R onto a prime ring R′

of characteristic different from 2 and 3, then either ϕ is a homomorphism or
an anti-homomorphism.

Besides homomorphisms, derivations also play a key role in the theory of
rings and fields. Concerning this notion, we will follow [15, Chapter 14].

Let Q be a ring and let P be a subring of Q. A function d : P → Q is called
a derivation if it is additive, i.e.

d(x + y) = d(x) + d(y) (x, y ∈ P )

and also satisfies the so-called Leibniz rule, i.e. equation

d(xy) = d(x)y + xd(y) (x, y ∈ P ) .

It is well-known that in case of additive functions, Hamel bases play an
important role. As [15, Theorem 14.2.1] shows in case of derivations, algebraic
bases are fundamental.

Theorem 1.1. Let (K,+, ·) be a field of characteristic zero, let (F,+, ·) be a
subfield of (K,+, ·), let S be an algebraic base of K over F, if it exists, and
let S = ∅ otherwise. Let f : F → K be a derivation. Then, for every function
u : S → K, there exists a unique derivation g : K → K such that g|F = f and
g|S = u.
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1.1. Generalized polynomial functions

While proving our results, the so-called Polarization formula for multi-additive
functions will play a key role. In this Sect. 1.1 the most important notations
and statements are summarized. Here we follow the monograph [21].

Definition 1.1. Let G,S be commutative semigroups (written additively), n ∈
N and let A : Gn → S be a function. We say that A is n-additive if it is a
homomorphism of G into S in each variable. If n = 1 or n = 2 then the
function A is simply termed to be additive or bi-additive, respectively.

The diagonalization or trace of an n-additive function A : Gn → S is defined
as

A∗(x) = A (x, . . . , x) (x ∈ G) .

As a direct consequence of the definition, each n-additive function A : Gn → S
satisfies

A(x1, . . . , xi−1, kxi, xi+1, . . . , xn)
= kA(x1, . . . , xi−1, xi, xi+1, . . . , xn)
(x1, . . . , xn ∈ G)

for all i = 1, . . . , n, where k ∈ N is arbitrary. The same identity holds for any
k ∈ Z provided that G and S are groups, and for k ∈ Q, provided that G and
S are linear spaces over the rationals. For the diagonalization of A we have

A∗(kx) = knA∗(x) (x ∈ G) .

The above notion can also be extended to the case n = 0 by letting G0 = G
and by calling any constant function from G to S, 0-additive.

One of the most important theoretical results concerning multi-additive
functions is the so-called Polarization formula, that briefly expresses that every
n-additive symmetric function is uniquely determined by its diagonalization
under some conditions on the domain as well as on the range. Suppose that G
is a commutative semigroup and S is a commutative group. The action of the
difference operator Δ on a function f : G → S is defined by the formula

Δyf(x) = f(x + y) − f(x) (x, y ∈ G) .

Note that the addition in the argument of the function is the operation of the
semigroup G and the subtraction means the inverse of the operation of the
group S.

Theorem 1.2. (Polarization formula) Suppose that G is a commutative semi-
group, S is a commutative group, n ∈ N. If A : Gn → S is a symmetric,
n-additive function, then for all x, y1, . . . , ym ∈ G we have

Δy1,...,ym
A∗(x) =

{
0 if m > n

n!A(y1, . . . , ym) if m = n.
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Corollary 1.1. Suppose that G is a commutative semigroup, S is a commutative
group, n ∈ N. If A : Gn → S is a symmetric, n-additive function, then for all
x, y ∈ G

Δn
yA∗(x) = n!A∗(y).

Lemma 1.1. Let n ∈ N and suppose that the multiplication by n! is surjective in
the commutative semigroup G or injective in the commutative group S. Then
for any symmetric, n-additive function A : Gn → S, A∗ ≡ 0 implies that A is
identically zero, as well.

Definition 1.2. Let G and S be commutative semigroups, a function p : G → S
is called a generalized polynomial from G to S if it has a representation as the
sum of diagonalizations of symmetric multi-additive functions from G to S. In
other words, a function p : G → S is a generalized polynomial if and only if, it
has a representation

p =
n∑

k=0

A∗
k,

where n is a nonnegative integer and Ak : Gk → S is a symmetric, k-additive
function for each k = 0, 1, . . . , n. In this case we also say that p is a generalized
polynomial of degree at most n.

Let n be a nonnegative integer, functions pn : G → S of the form

pn = A∗
n,

where An : Gn → S are the so-called generalized monomials of degree n.

Remark 1.1. Obviously, generalized monomials of degree 0 are constant func-
tions and generalized monomials of degree 1 are additive functions.

Furthermore, generalized monomials of degree 2 will be termed quadratic
functions.

Definition 1.3. Let G be a commutative semigroup. We say that the nonzero
function m : G → C is an exponential if

m(x + y) = m(x)m(y)

holds for all x, y ∈ G.

Remark 1.2. Recall that on any commutative semigroup, the identically 1
function is always an exponential.

Definition 1.4. Let G be a commutative group, n be a positive integer and
m : G → C be an exponential. The function f : G → C is called a generalized
exponential monomial of degree at most n corresponding to the exponential
m, if there exists a generalized polynomial p : G → C such that

f(x) = p(x)m(x) (x ∈ G) .
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Finite sums of generalized exponential monomials are called generalized expo-
nential polynomials.

1.2. Polynomial functions

As Laczkovich [16] highlights, on groups there are several polynomial notions.
One of them is what we introduced in Sect. 1.1, that is the notion of generalized
polynomials. As we will see in the forthcoming sections, not only this notion,
but also that of (normal) polynomials will be important. The definitions and
results recalled here can be found in [21].

Throughout this subsection G is assumed to be a commutative group (writ-
ten additively).

Definition 1.5. Polynomials are elements of the algebra generated by additive
functions over G. Namely, if n is a positive integer, P : Cn → C is a (classical)
complex polynomial in n variables and ak : G → C (k = 1, . . . , n) are additive
functions, then the function

x �−→ P (a1(x), . . . , an(x))

is a polynomial and, also conversely, every polynomial can be represented in
such a form.

Remark 1.3. For the sake of easier distinction, at some places polynomials will
be called normal polynomials.

Remark 1.4. We recall that the elements of N
n for any positive integer n

are called (n-dimensional) multi-indices. Addition, multiplication and inequal-
ities between multi-indices of the same dimension are defined component-
wise. Further, we define xα for any n-dimensional multi-index α and for any
x = (x1, . . . , xn) in C

n by

xα =
n∏

i=1

xαi
i

where we always adopt the convention 00 = 1. We also use the notation |α| =
α1 + · · · + αn. With these notations any polynomial of degree at most N on
the commutative semigroup G has the form

p(x) =
∑

|α|≤N

cαa(x)α (x ∈ G) ,

where cα ∈ C and a = (a1, . . . , an) : G → C
n is an additive function. Further-

more, the homogeneous term of degree k of p is∑
|α|=k

cαa(x)α.
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It is easy to see that each polynomial, that is, any function of the form

x �−→ P (a1(x), . . . , an(x)),

where n is a positive integer, P : Cn → C is a (classical) complex polynomial in
n variables and ak : G → C (k = 1, . . . , n) are additive functions, is a general-
ized polynomial. The converse however is in general not true. A complex-valued
generalized polynomial p defined on a commutative group G is a polynomial if
and only if its variety (the linear space spanned by its translates) is of finite
dimension. To make the situation more clear, here we also recall Theorem 13.4
from Székelyhidi [22].

Theorem 1.3. The torsion free rank of a commutative group is finite if and
only if every generalized polynomial on the group is a polynomial.

Definition 1.6. Let G be a commutative group, n be a positive integer and
m : G → C be an exponential. The function f : G → C is called an exponential
monomial of degree at most n corresponding to the exponential m, if there
exists a polynomial p : G → C such that

f(x) = p(x)m(x) (x ∈ G) .

Finite sums of exponential monomials are called exponential polynomials.

In the next section the lemma below will be used, see [9, Lemma 6], too.

Lemma 1.2. Let k and n be positive integers and f : F → C be a generalized
monomial of degree n, where F is assumed to be a field with char(F) = 0. Then
the mapping

F � x �−→ f(xk)

is a generalized monomial of degree n · k.

Henceforth, not only the notion of (exponential) polynomials, but also that
of decomposable functions will be used. The basics of this concept are due to
Shulman [20].

Definition 1.7. Let G be a group and n ∈ N, n ≥ 2. A function F : Gn → C

is said to be decomposable if it can be written as a finite sum of products
F1 · · · Fk, where all Fi depend on disjoint sets of variables.

Remark 1.5. Without loss of generality we can suppose that k = 2 in the
above definition, that is, decomposable functions are those mappings that can
be written in the form

F (x1, . . . , xn) =
∑
E

∑
j

AE
j BE

j

where E runs through all non-void proper subsets of {1, . . . , n} and for each
E and j the function AE

j depends only on the variables xi with i ∈ E, while
BE

j depends only on the variables xi with i /∈ E.
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The connection between decomposable functions and generalized exponen-
tial polynomials was described in Laczkovich [18].

Theorem 1.4. Let G be a commutative topological semigroup with unit. A con-
tinuous function f : G → C is a generalized exponential polynomial if and only
if there is a positive integer n ≥ 2 such that the mapping

Gn � (x1, . . . , xn) �−→ f(x1 + · · · + xn)

is decomposable.

The notion of derivations can be extended in several ways. We will employ
the concept of higher order derivations according to Reich [19] and Unger–
Reich [24]. For further results on characterization theorems on higher order
derivations consult e.g. [6–8,10].

Definition 1.8. Let F ⊂ C be a field. The identically zero map is the only
derivation of order zero. For each n ∈ N, an additive mapping f : F → C is
termed to be a derivation of order n, if there exists B : F × F → C such that
B is a bi-derivation of order n − 1 (that is, B is a derivation of order n − 1 in
each variable) and

f(xy) − xf(y) − f(x)y = B(x, y) (x, y ∈ F) .

The set of derivations of order n of the field F will be denoted by Dn(F).

Remark 1.6. Since D0(F) = {0}, the only bi-derivation of order zero is the
identically zero function, thus f ∈ D1(F) if and only if

f(xy) = xf(y) + f(x)y (x, y ∈ F) ,

that is, the notions of first order derivations and derivations coincide. On
the other hand for any n ∈ N the set Dn(F)\Dn−1(F) is nonempty because
d1 ◦ · · · ◦ dn ∈ Dn(F), but d1 ◦ · · · ◦ dn /∈ Dn−1(F), where d1, . . . , dn ∈ D1(F)
are non-identically zero derivations.

The main result of [17] is Theorem 1.1 that reads in our settings as follows.

Theorem 1.5. Let F ⊂ C be a field and let n be a positive integer. Then,
for every function D : F → C, D ∈ Dn(F) if and only if D is additive on

F, D(1) = 0, and
D

id
, as a map from the group F

× to C, is a generalized
polynomial of degree at most n. Here id stands for the identity map defined on
F.

Remark 1.7. Recall that the notions of generalized polynomials, polynomials,
generalized exponential polynomials and exponential polynomials, resp. were
introduced on commutative groups (i.e., on an algebraic structure where we
have one binary operation, the addition). Note however that in Definition 1.8
and in Theorem 1.5 we considered functions that are defined on a field F ⊂
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C, where we have two binary operations. On fields two commutative groups
arise naturally. Namely, the additive group (F,+), but also the multiplicative
group (F×, ·), where F

× = {x ∈ F |x �= 0}. The previous theorem says in an
illustrative way that these functions are well-connected to both the additive
and the multiplicative structures. The same holds for field homomorphisms,
since the assumption that the function ϕ : F → C is a field homomorphism can
be expressed (using the previous notions) as ϕ is a additive function on the
additive group (F,+), while it is an exponential on the multiplicative group
(F×, ·).

This observation will play a very important role in the next section. Our
goal will be to show that if a monomial function satisfies the conditions pre-
sented there, then this function is necessarily a generalized polynomial on the
multiplicative structure. This is why homomorphisms and higher order deriva-
tions appear in these theorems.

2. Results

2.1. Preliminary results

Henceforth let F ⊂ C be a field, n be a positive integer and P ∈ F[x] be a
polynomial. In what follows we will study generalized monomials f : F → C of
degree n under the condition that the mapping

F � x �−→ f(P (x))

is a (normal) polynomial.
At first we show that instead of polynomials P , we may always restrict

ourselves to (classical) monomials. For this we need the following statement
which is in some sense an extension of Lemma 1.2.

Lemma 2.1. Let F ⊂ C be a field, n ∈ N, α1, . . . , αn be non-negative integers
and F : F → C be a symmetric and n-additive function. Then the function
g : F → C defined by

g(x) = F (xα1 , . . . , xαn) (x ∈ F)

is a generalized monomial of degree (α1 + · · · + αn).

Proof. Let F ⊂ C be a field, n ∈ N, α1, . . . , αn be non-negative integers and
F : F → C be a symmetric and n-additive function and consider the function
g : F → C defined by

g(x) = F (xα1 , . . . , xαn) (x ∈ F) .



Vol. 97 (2023) Monomial functions, normal polynomials 1067

Let N = α1 + · · · + αn and define the mapping F : FN → C through

F (x1, . . . , xN )

=
1

N !

∑
σ∈Sn

F (xσ(1) · · · xσ(α1), . . . , xσ(N−αn+1) · · · xσ(N))

(x1, . . . , xN ∈ F) .

Since F is a symmetric and n-additive function, F is also symmetric and
N -additive, further we have

F (x, . . . , x) = F (xα1 , . . . , xαn) = g(x) (x ∈ F) .

Thus g can be represented as the trace of a symmetric and (α1 + · · · + αn)-
additive mapping, showing that the function g is indeed a generalized mono-
mial of degree (α1 + · · · + αn). �

Lemma 2.2. Let k, n ∈ N, k ≥ 2, F ⊂ C be a field, P ∈ F[x] be a (classical)
polynomial of degree k with leading coefficient 1 and f : F → C be a generalized
monomial of degree n. If the mapping

F � x �−→ f(P (x))

is a normal polynomial, then the mapping

F � x �−→ f(xk)

is a normal polynomial as well.

Proof. Let k, n ∈ N, F ⊂ C be a field, P ∈ F[x] be a (classical) polynomial
of degree k and f : F → C be a generalized monomial of degree n. Suppose
further that the mapping

F � x �−→ f(P (x))

is a normal polynomial.
Since P ∈ F[x] is a (classical) polynomial of degree k, we have

P (x) =
k∑

l=0

αlx
l (x ∈ F) ,

with some constants αl ∈ F, l = 0, 1, . . . , k such that αk = 1. Further, as
f : F → C is a monomial of degree n, there exists a uniquely determined
symmetric and n-additive function F : Fn → C such that

f(x) = F (x, . . . , x) (x ∈ F) .
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These together yield that there exists a positive integer m, linearly independent
additive functions a1, . . . , am and a complex polynomial Q ∈ C[x] such that

F

(
k∑

l=0

αlx
l, . . . ,

k∑
l=0

αlx
l

)

= Q(a1(x), . . . , am(x)) =
∑

β∈N
m

|β|≤kn

cβa(x)β (x ∈ F) .

Using that F is symmetric and additive in each of its variables, we get that

F (xk, . . . , xk) + λk−1,k,...,kF (αk−1x
k−1, αkxk, . . . , αkxk) +

· · · + λ0,...,0F (α0, . . . , α0) =
∑

β∈N
m

|β|≤kn

cβa(x)β

for all x ∈ F with some complex constants λγ , γ ∈ N
n, |γ| ≤ kn. Due to

Lemma 2.1, the left and also the right hand side of this identity are generalized
polynomials (being linear combinations of generalized monomials) and these
agree for all possible values. This can however happen only if the monomial
terms are the same on each side. From this we get especially that

F (xk, . . . , xk) =
∑

β∈N
m

|β|=kn

cβa(x)β ,

showing that the mapping

F � x �−→ f(xk)

is a normal polynomial as well. �

Remark 2.1. According to the previous lemma since f : F → C is a generalized
monomial of degree n such that the mapping

F � x �−→ f(P (x))

is a normal polynomial, the mapping

F � x �−→ f(xk)

is a normal polynomial as well. This enables us to restrict ourselves to consid-
ering generalized monomials for which the mapping

F � x �−→ f(xk)

is a normal polynomial for a fixed k ≥ 2. At the same time, we have to
emphasize that the assumption that the mapping

F � x �−→ f(P (x))
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is a normal polynomial for a fixed polynomial P ∈ F[x] is more restrictive than
the previous one. To illustrate this let us consider the following example. Let
f : F → C be a quadratic function and let

P (x) = x2 + α1x + α0 (x ∈ F) ,

where α1, α0 ∈ F are fixed. The assumption that the mapping

F � x �−→ f(P (x))

is a normal polynomial means that we have

F (x2 + α1x + α0, x
2 + α1x + α0) = Q(a1(x), . . . , am(x)) (x ∈ F)

with appropriate linearly independent additive functions a1, . . . , am : F → C

and a complex polynomial Q ∈ C[x1, . . . , xm], where F : F2 → C denotes the
uniquely determined bi-additive mapping whose trace is the quadratic function
f . Using the symmetry and also the bi-additivity of F , we get that

F (x2, x2) + 2F (x2, α1x) + 2F (x2, α0) + F (α1x, α1x)
+2F (α1x, α0) + F (α0, α0) = Q(a1(x), . . . , am(x)) (x ∈ F) .

Due to Lemma 2.1, the mappings

F � x �−→ F (xi, xj)

are generalized monomials of degree (i+ j). Further, generalized monomials of
different degrees are linearly independent. Therefore, not only the mapping

F � x �−→ F (x2, x2)

is a normal polynomial, but also the mappings

F � x �−→ F (x2, α1x)
F � x �−→ 2F (x2, α0) + F (α1x, α1x)
F � x �−→ F (α1x, α0)
F � x �−→ F (α0, α0),

too. Obviously, this is always true for the last two functions. Nevertheless, the
fact that the first three functions have this property carries more information
than that only the first of them is a normal polynomial.

Our second lemma says that while considering this problem, we may restrict
ourselves to homogeneous (normal) polynomials.

Lemma 2.3. Let k, n ∈ N, k ≥ 2, F ⊂ C be a field and f : F → C be a
generalized monomial of degree n. If the mapping

F � x �−→ f(xk)

is a normal polynomial, then there exists a homogeneous complex polyno-
mial P̃ and there are linearly independent, complex valued additive functions
a1, . . . , am on F such that

f(xk) = P̃ (a1(x), . . . , am(x)) (x ∈ F) ,
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in other words, we have

f(xk) =
∑

α∈N
m

|α|=kn

λαaα(x) =
∑

α1,...,αm≥0
α1+···+αm=kn

λα1,...,αm
aα1
1 (x) · · · aαm

m (x)

for each x ∈ F.

Proof. Let k, n ∈ N, k ≥ 2, F be a field and f : F → C be a generalized
monomial of degree n. Assume further that the mapping

F � x �−→ f(xk)

is a normal polynomial. Then due to Lemma 1.2 this mapping is a generalized
monomial of degree kn and hence it is Q-homogeneous of degree kn.

If additionally, this mapping is a normal polynomial, there exists a complex
polynomial P and there are linearly independent, complex valued additive
functions a1, . . . , am on F such that

f(xk) = P (a1(x), . . . , am(x)) = P (a(x)) =
N∑

l=0

∑
α∈N

m

|α|=l

λαaα(x) (x ∈ F) .

Let r ∈ Q be arbitrary and let us substitute rx in place of x in the above
identity. Using the Q-homogeneity of the involved functions, we deduce

rknf(xk) −
N∑

l=0

rl
∑

α∈N
m

|α|=l

λαaα(x) = 0 (r ∈ Q, x ∈ F) .

Observe that the left hand side of this identity is a polynomial in r that is
identically zero. So all of its coefficients should vanish, yielding that

f(xk) =
∑

α∈N
m

|α|=kn

λαaα(x)

holds for all x ∈ F. �

2.2. Illustrative examples

At first glance the assumption of the lemma above, i.e., the mapping

F � x �−→ f(xk)

is a normal polynomial, seems a bit artificial. Nevertheless, the following ex-
amples show that this is not the case.
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Example 2.1. Let k be a positive integer, ϕ1, . . . , ϕk : F → C be linearly inde-
pendent homomorphisms and λi,j ∈ C for all i, j = 1, . . . , k. Then the mapping
f : F → C defined by

f(x) =
k∑

i,j=1

λi,jϕi(x)ϕj(x) (x ∈ F)

is a quadratic function. Further if n ∈ N, then we also have

f(xn) =
k∑

i,j=1

λi,jϕi(x)nϕj(x)n (x ∈ F) .

In other words, we have

f(xn) = P (ϕ1(x), . . . , ϕk(x)) (x ∈ F) ,

where the k-variable complex, homogeneous polynomial P is defined by

P (x1, . . . , xk) =
k∑

i,j=1

λi,jx
n
i xn

j (x1, . . . , xk ∈ C) .

Example 2.2. Suppose now that F is a subfield of C. Let k be a positive integer,
d1, . . . , dk : F → C be linearly independent derivations and λi,j ∈ C for all
i, j = 1, . . . , k. Then the mapping f : F → C defined by

f(x) =
n∑

i,j=1

λi,jdi(x)dj(x) (x ∈ F)

is a quadratic function. Further if n ∈ N, then we also have

f(xn) =
n∑

i,j=1

λi,jn
2x2n−2di(x)dj(x) (x ∈ F) .

In other words,

f(xn) = P (x, d1(x), . . . , dk(x)) (x ∈ F) ,

where the (k + 1)-variable complex polynomial P is defined by

P (x1, . . . , xk, z) =
n∑

i,j=1

λi,jn
2z2n−2xixj (x1, . . . , xk, z ∈ C) .

Example 2.3. Assume in this example that F is a subfield of C. Let k be
a positive integer and d : F → C be a derivation and define the quadratic
function f : F → C by

f(x) = dk(x2) = d ◦ · · · ◦ d︸ ︷︷ ︸
k times

(x2) (x ∈ C) .
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Further, if n is a positive integer, then we have

f(xn) = dk(x2n) =
∑

l1,...,l2n≥0
l1+···+l2n=k

(
k

l1, . . . , l2n

)
dl1(x) · · · dl2n(x)

for all x ∈ F. In other words, we have

f(xn) = P (x, d(x), d ◦ d(x), . . . , dk(x)) (x ∈ F) .

Remark 2.2. All of the above examples can easily be generalized from qua-
dratic functions to monomial functions. To get similar examples instead of
quadratic functions, for monomials of degree n, where n is fixed it is enough
to consider the mappings

f(x) =
k∑

i=1

∑
α∈N

n

|α|=n

λiΦi(x)α (x ∈ F) ,

f(x) =
k∑

i=1

∑
α∈N

n

|α|=n

λiDi(x)α (x ∈ F)

and

f(x) = dk(xn) = d ◦ · · · ◦ d︸ ︷︷ ︸
k times

(xn) (x ∈ F) ,

here

Φi(x) = (ϕ1,i(x), . . . , ϕn,i(x)) and Di(x) = (d1,i(x), . . . , dn,i(x)) (x ∈ F) ,

where the functions ϕl,i are homomorphisms, while d and dl,i are derivations
for all possible indices l and i.

2.3. Main results

Regarding ‘polynomial equations’ for generalized monomials, we note that in
the literature, there are several results for additive functions a : F → C that
also satisfy a polynomial equation. Based on the results presented above, the
following statement can be deduced.

Proposition 2.1. Let F ⊂ C be a field, k ∈ N, k ≥ 2 and P ∈ Q[x] be a
(classical) polynomial of degree k.
(i) If the additive function a : F → C fulfills

a(P (x)) = P (a(x)) (x ∈ F)

then there exists a homomorphism ϕ : F → C such that a(x) = a(1)ϕ(x)
for all x ∈ F. Further, we also have a(1) ∈ {0, 1}.
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(ii) If the additive function a : F → C fulfills

a(P (x)) = P ′(x)a(x) (x ∈ F) ,

then a is a derivation.

Proof. (i) Let F ⊂ C be a field, k ∈ N, k ≥ 2 and P ∈ Q[x] be a (classical)
polynomial of degree k. Suppose further that the additive function a : F →
C fulfills

a(P (x)) = P (a(x)) (x ∈ F) .

In other words, we have

a

(
k∑

i=0

αix
i

)
=

k∑
i=0

αia(x)i

for all x ∈ F with some rational numbers αk, . . . , α0. Observe that this
especially yields that the mapping

F � x �−→ a

(
k∑

i=0

αix
i

)

is a normal polynomial. Due to Lemma 2.2 we infer that then the map-
ping

F � x �−→ a(xk)

is also a normal polynomial, where the Q-homogeneity of a was used, too.
However, then necessarily

a(xk) = a(x)k (x ∈ F)

holds. From this, we deduce (e.g. using the results of [12]) that there
exists a homomorphism ϕ : F → C such that a(x) = a(1)ϕ(x) for all
x ∈ F. Substituting this back into our equation, we finally get that the
only possibility is that a(1) ∈ {0, 1}.

(ii) Using a similar reasoning as in case (i), here we deduce that the assump-
tions imply that necessarily

a(xk) = kxk−1a(x) (x ∈ F)

holds for the additive function a : F → C. Using some classical character-
ization theorems concerning derivations (for instance the results of [15,
Chapter 14]), we finally get that a is indeed a derivation.

�

Remark 2.3. We emphasize that the results of the previous statement are clas-
sical ones. Nevertheless, we would like to indicate that on the one hand the
problem we would like to consider in this paper has some prior results both in
algebra and the theory of functional equations. Further, with the help of the
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statements presented here, the proofs can be significantly simplified (at least
for mappings a : F → C).

In the papers [6–8,10,11] further results can be found concerning additive
functions that also fulfill certain polynomial equations.

Remark 2.4. We also note that related problems have already been considered
by Boros and Garda-Mátyás in [3,4], by Boros and Menzer in [5] and also
by Amou in [1]. In these papers the authors consider real monomial functions,
which satisfy certain conditional equations on a specified planar curve. Further,
in [9], the polynomial equation f(P (x)) = Q(f(x)) for monomial functions
f : F → C was considered.

The simplest special case of the problem we are interested in is when the
generalized monomial f : F → C is of degree 1, i.e., when f is an additive
function. In this regard, we have the following statement.

Theorem 2.1. Let k be a positive integer, F ⊂ C be a field and a : F → C be an
additive function. If the mapping

F � x �−→ a(xk)

is a (normal) polynomial, then a is a higher order derivation.

Proof. Let k be a positive integer, F ⊂ C be a field and a : F → C be an
additive function. Suppose further that the mapping

F � x �−→ a(xk)

is a (normal) polynomial. Due to Lemma 2.3, we can assume that this mapping
is a homogeneous (normal) polynomial, that is, we have

a(xk) =
∑

α1,...,αm≥0
α1+···+αm=k

λα1,...,αm
aα1
1 (x) · · · aαm

m (x)

for all x ∈ F. Observe that both sides of this identity are traces of symmet-
ric and k-additive mappings. Indeed, the left hand side is the trace of the
symmetric k-additive function

A(x1, . . . , xk) = a(x1 · · · xk) (x1, . . . , xk ∈ F)

while the right hand side is the trace of the symmetric k-additive mapping

Ã(x1, . . . , xk)

=
1
k!

∑
σ∈Sk

∑
α1,...,αm≥0

α1+···+αm=k

λα1,...,αm
a1(xσ(1)) · · · a1(xσ(α1)) ×

× · · · am(xσ(k−αm+1)) · · · am(xσ(k))
(x1, . . . , xk ∈ F) .
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Therefore we have

a(x1 · · · xk) =
1
k!

∑
σ∈Sk

∑
α1,...,αm≥0

α1+···+αm=k

λα1,...,αm
a1(xσ(1)) · · · a1(xσ(α1)) ×

× · · · am(xσ(k−αm+1)) · · · am(xσ(k))

for all x1, . . . , xk ∈ F.
In other words, the mapping

F
×k � (x1, . . . , xk) �−→ a(x1 · · · xk)

is decomposable. Thus from Theorem 1.4 we deduce that a : F× → C is a gen-
eralized exponential polynomial on the multiplicative group F

× corresponding
to the identity function, as exponential. Using Theorem 1.5, we finally obtain
that a is a higher order derivation. �

Now we turn to quadratic functions. During the proof of Theorem 2.2 we
will use [11, Theorem 4.5] in a rather special case that is the following lemma.

Lemma 2.4. Let n ∈ N and F be a field and α1, α2, α3 ∈ C. If the additive
function f : F → C satisfies

α1f(x2n) + α2f(xn)2 + α3f(x)2n = 0

for all x ∈ F, then there exists a complex constant α and a homomorphism
ϕ : F → C such that

f(x) = αϕ(x) (x ∈ F) .

Theorem 2.2. Let n ∈ N, n ≥ 2 and F ⊂ C be a field. Assume that f : F → C

is a quadratic function, while a : F → C is additive and we have

f(xn) = a(x)2n (x ∈ F) . (1)

Then there exists a complex constant α ∈ C and a homomorphism ϕ : F → C

such that

a(x) = αϕ(x) and f(x) = α2nϕ(x)2 (x ∈ F) .

And also conversely, if we define the functions a and f through the above
formula then they satisfy equation (1) for all x ∈ F.

Proof. Since f is quadratic, there exists a uniquely determined symmetric and
bi-additive mapping F : F2 → C such that

F (x, x) = f(x) (x ∈ F) .

Define the mapping E : F2n → C by

E(x1, . . . , x2n)

=
1

(2n)!

∑
σ∈S2n

F (xσ(1) · · · xσ(n), xσ(n+1) · · · xσ(2n))

−a(x1) · · · a(x2n) (x1, . . . , x2n ∈ F) ,
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where S2n denotes the symmetric group of order 2n. Since F is bi-additive
and a is additive, the mapping E is a symmetric and 2n-additive mapping.
Further its trace is

E(x, . . . , x) = F (xn, xn) − a(x)2n = f(xn) − a(x)2n = 0 (x ∈ F) ,

due to the above equation. At the same time, its trace uniquely determines E.
Thus the function E vanishes identically, that is,

1
(2n)!

∑
σ∈S2n

F (xσ(1) · · · xσ(n), xσ(n+1) · · · xσ(2n)) − a(x1) · · · a(x2n) = 0 (2)

holds for all x1, . . . , x2n ∈ F. With the substitution xi = 1 for i = 1, . . . , 2n we
get that

F (1, 1) − a(1)2n = f(1) − a(1)2n = 0.

Let now x ∈ F be arbitrary and let

x1 = x and xi = 1 for i = 2, . . . , 2n

to deduce that

μ1F (x, 1) − μ2a(x) = 0 (x ∈ F)

holds with some complex numbers μ1, μ2 such that μ1 �= 0 (in fact we have
μ1 = 1

(2n−1)! ). Thus we have

F (x, 1) = λa(x) (x ∈ F) (3)

with an appropriate complex constant λ.
Let again x ∈ F be arbitrary and let now

x1 = x, x2 = x and xi = 0 for i = 3, . . . , 2n

in (2) to obtain

ν1F (x, x) + ν2F (x2, 1) + ν3a(x)2 = 0 (x ∈ F) .

The latter identity together with (3) yields that there exist complex constants
α1, α2 such that

F (x, x) = α1a(x2) + α2a(x)2 (x ∈ F) ,

in other words, we have

f(x) = α1a(x2) + α2a(x)2 (x ∈ F) .

If we substitute this representation back into (1), we obtain that

α1a(x2n) + α2a(xn)2 = a(x)2n

for all x ∈ F. According to Lemma 2.4 there exists a complex constant α and
a homomorphism ϕ : F → C such that

a(x) = α · ϕ(x) (x ∈ F)
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and hence

f(x) = α2nϕ(x)2

is fulfilled for all x ∈ F.
The converse is an easy computation. �

Theorem 2.3. Let F ⊂ C be a field, f : F → C be a quadratic function, while
a1, a2 : F → C are additive functions. Then equation

f(x2) = a1(x)2a2(x)2

holds for all x ∈ F if and only if there exist homomorphisms ϕ1, ϕ2 : F → C

such that

f(x) = f(1) · ϕ1(x)ϕ2(x) and ai(x) = ai(1)ϕi(x) (x ∈ F, i = 1, 2) .

Proof. Let F ⊂ C be a field, f : F → C be a quadratic function, while a1, a2 : F →
C be additive function. Suppose further that for all x ∈ F, equation

f(x2) = a1(x)2a2(x)2

is fulfilled. Since f is quadratic, there exists a uniquely determined symmetric
and bi-additive mapping F such that

F (x, x) = f(x) (x ∈ F) .

Define the mapping Φ on F
4 by

Φ(x1, x2, x3, x4)

=
1
3

[F (x1 x4, x2 x3) + F (x1 x3, x2 x4) + F (x1 x2, x3 x4)]

−1
6

[a1(x1) a1(x2) a2(x3) a2(x4) + a1(x1) a2(x2) a1(x3) a2(x4)

+a2(x1) a1(x2) a1(x3) a2(x4)]

−1
6

[a1(x1) a2(x2) a2(x3) a1(x4) + a2(x1) a1(x2) a2(x3) a1(x4)

+a2(x1) a2(x2) a1(x3) a1(x4)]
(x1, x2, x3, x4 ∈ F) .

Since F is symmetric and bi-additive and a1 and a2 are additive, the function
Φ is a symmetric 4-additive mapping. Moreover its trace is

F
(
x2, x2

) − a1(x)2 a2(x)2 = 0 (x ∈ F) .

Thus Φ is identically zero on F
4. From this we especially get that

2F
(
x2, 1

) − a1(1)2 a2(1) a2(x2) − a1(1) a2(1)2 a1(x2) = 0 (x ∈ F)

and also

2F
(
x2, 1

)
+ 4F (x, x) − a1(1)2 a2(x)2

−4 a1(1) a2(1) a1(x) a2(x) − a2(1)2 a1(x)2 = 0 (x ∈ F) .



1078 E. Gselmann, M. Iqbal AEM

These identities together imply that

4F (x, x) + a1(1)2 a2(1) a2(x2) + a1(1) a2(1)2 a1(x2) − a1(1)2 a2(x)2

−4 a1(1) a2(1) a1(x) a2(x) − a2(1)2 a1(x)2 = 0
(x ∈ F) .

In other words, we have

4F (x, x) = −a1(1)2 a2(1) a2(x2) − a1(1) a2(1)2 a1(x2) + a1(1)2 a2(x)2

+4 a1(1) a2(1) a1(x) a2(x) + a2(1)2 a1(x)2

for all x ∈ F. Since F is a symmetric and bi-additive mapping, we have

4F (x, y) = −a1(1)2 a2(1) a2(x y) − a1(1) a2(1)2 a1(x y)
+2 (a1(1) a2(1) a1(x) a2(y) + a1(1) a2(1) a2(x) a1(y))
+a1(1)2 a2(x) a2(y) + a2(1)2 a1(x) a1(y)

for all x, y ∈ F. Combining this with our functional equation, we deduce

−a1(1)2 a2(1) a2(x4) − a1(1) a2(1)2 a1(x4) + a1(1)2 a2(x2)2

+4 a1(1) a2(1) a1(x2) a2(x2) + a2(1)2 a1(x2)2 − 4 a1(x)2 a2(x)2 = 0
(x ∈ F).

Observe that if a1(1) ·a2(1) = 0, then F and thus f are identically zero. So we
may assume a1(1) · a2(1) �= 0. Without loss of generality we can then suppose
that a1(1) = a1(1) = 1, otherwise we consider the mappings

f̃(x) =
f(x)

a1(1) · a2(1)
and ãi(x) =

ai(x)
ai(1)

(x ∈ F, i = 1, 2) .

Then this equation reduces to

a2(x4) + a1(x4)
= a2(x2)2 + a1(x2)2 + 4 a1(x2) a2(x2) − 4 a1(x)2 a2(x)2

(x ∈ F) .

Observe that the functions

F � x �−→ a2(x4) + a1(x4)

and

F � x �−→ a2(x2)2 + a1(x2)2 + 4 a1(x2) a2(x2) − 4 a1(x)2 a2(x)2

are generalized monomials of degree 4 and the latter equation says that these
monomials are the same, thus the symmetric and 4-additive functions deter-
mined uniquely by these monomials, are also the same. In other words, we
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have

−a2(x1 x2 x3 x4) − a1(x1 x2 x3 x4)

+
1
3

[a2(x1 x2) a2(x3 x4) + a2(x1 x3) a2(x2 x4) + a2(x2 x3) a2(x1 x4)]

+
2
3

[a1(x1 x2) a2(x3 x4) + a2(x1 x2) a1(x3 x4) + a1(x1 x3) a2(x2 x4)

+a2(x1 x3) a1(x2 x4) + a1(x2 x3) a2(x1 x4) + a2(x2 x3) a1(x1 x4)]

+
1
3

[a1(x1 x2) a1(x3 x4) + a1(x1 x3) a1(x2 x4) + a1(x2 x3) a1(x1 x4)]

−2
3

[a1(x1) a1(x2) a2(x3) a2(x4) + a1(x1) a2(x2) a1(x3) a2(x4)

+a2(x1) a1(x2) a1(x3) a2(x4) + a1(x1) a2(x2) a2(x3) a1(x4)
+a2(x1) a1(x2) a2(x3) a1(x4) + a2(x1) a2(x2) a1(x3) a1(x4)] = 0
(x1, x2, x3, x4 ∈ F) .

Let now x, y, z ∈ F be arbitrary and substitute

x1 = x x2 = y x3 = z x4 = 1

to deduce that

3 a2(x y z) + 3 a1(x y z)
= a2(x) a2(y z) + 2 a1(x) a2(y z) + 2 a2(x) a1(y z)

+a1(x) a1(y z) + a2(y) a2(x z) + 2 a1(y) a2(x z)
+2 a2(y) a1(x z) + a1(y) a1(x z) + a2(x y) a2(z)
+2 a1(x y) a2(z) − 2 a1(x) a2(y) a2(z)
−2 a2(x) a1(y) a2(z) − 2 a1(x) a1(y) a2(z)
+2 a2(x y) a1(z) + a1(x y) a1(z)
−2 a2(x) a2(y) a1(z) − 2 a1(x) a2(y) a1(z)
−2 a2(x) a1(y) a1(z)

holds. For all z ∈ F, define the function Az by

Az(x) = 3a1(xz) − a1(x) [a1(z) + 2a2(x)]
+3a2(xz) − a2(x) [a2(z) + 2a1(x)] (x ∈ F) .

With this notation the above identity turns into

Az(xy) = a1(x)gz(y) + a2(x)hz(y) + kz(x)a1(y) + lz(x)a2(y) (x, y, z ∈ F) ,

with appropriately defined functions gz, hz, kz, lz, yielding that the mapping Az

is a (normal) exponential polynomial of degree at most 4 on the multiplicative
group F

×. Further,
(A) either the system a1, a2, kz, lz is linearly dependent
(B) or the system a1, a2, kz, lz is linearly independent.
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Alternative (A) holds only if the functions a1 and a2 are the same (note that
we assumed that a1(1) = a2(1) = 1), but then Theorem 2.2 applies and we
obtain that there exists a homomorphism ϕ : F → C such that

f(x) = f(1)ϕ(x)2 ai(x) = ai(1)ϕ(x) (x ∈ F) .

If alternative (B) holds, then we get that not only the mapping Az, but also
the functions a1, a2, kz, lz are (normal) exponential polynomials on the multi-
plicative group F

× of degree at most four. Especially, a1 and a2 are linearly
independent (normal) exponential polynomials of degree at most four. This
means that both a1 and a2 can be represented as one of the following func-
tions

(i)

ai(x) =
3∑

p,q,r=1

β(i)
p,q,rαp(x)αq(x)αr(x)m(x)

+
3∑

p,q=1

β(i)
p,qαp(x)αq(x)m(x) +

3∑
p=1

β(i)
p αp(x)m(x)

(ii)

ai(x) =
2∑

p,q=1

β(i)
p,qαp(x)αq(x)m1(x)

+
2∑

p=1

β(i)
p αp(x)m1(x) + β(i)m1(x) + γ(i)m2(x)

(iii)

ai(x) = (β(i)
1 α1(x) + βi

2)m1(x) + (β(i)
3 α2(x) + β

(i)
4 )m2(x)

(iv)

ai(x) = (β(i)
1 α(x) + β

(i)
2 )m1(x) + β

(i)
3 m2(x) + β

(i)
4 m3(x)

(v)

ai(x) = β
(i)
1 m1(x) + β

(i)
2 m2(x) + β

(i)
3 m3(x) + β

(i)
4 m4(x),

where m,mp : F× → C are exponentials, while α, αp, αp,q, αp,q,r : F× → C

are additive functions for all p, q, r = 1, 2, 3. Checking all the possibilities,
we finally get that this can happen only if a1 and a2 are exponentials on the
multiplicative group F

×. Since these functions were also assumed to be additive
on F, we get that they are homomorphisms on F.

Summing up, there exist homomorphisms ϕ1, ϕ2 : F → C such that

f(x) = f(1)ϕ1(x)ϕ2(x) ai(x) = ai(1)ϕi(x) (x ∈ F)
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where the above constants f(1), a1(1) and a2(1) also fulfill f(1) = a1(1)
a2(1). �
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