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Continuous dependence of the weak limit of iterates of some
random-valued vector functions

Dawid Komorek

Abstract. Given a probability space (Ω, A,P), a complete separable Banach space X with
the σ-algebra B(X) of all its Borel subsets, an operator Λ: Ω → L(X, X) and ξ : Ω → X we
consider the B(X)⊗A-measurable function f : X ×Ω → X given by f(x, ω) = Λ(ω)x+ ξ(ω)
and investigate the continuous dependence of a weak limit πf of the sequence of iterates
(fn(x, ·))n∈N of f , defined by f0(x, ω) = x, fn+1(x, ω) = f(fn(x, ω), ωn+1) for x ∈ X
and ω = (ω1, ω2, . . . ). Moreover for X taken as a Hilbert space we characterize πf via the
functional equation

ϕf (u) =

∫
Ω

ϕf (Λ(ω)u)ϕξ(u)P(dω)

with the aid of its characteristic function ϕf . We also indicate the continuous dependence
of a solution of that equation.
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1. Introduction

Fix a probability space (Ω,A,P) and a separable Banach space X. By B(X) we
denote the family of all Borel subsets of X. A map f : X ×Ω → X measurable
with respect to the product algebra B(X)⊗A (shortly: B(X)⊗A-measurable)
is called a random-valued function or an rv-function. By fn we denote the n-th
iterate of f , given by

f0(x, ω) = x and fn(x, ω1, . . . ωn) = f(fn−1(x, ω1, . . . , ωn−1), ωn)
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for n ∈ N, x ∈ X and ω = (ω1, ω2, . . . ) from Ω∞ defined as ΩN. Note that
the map fn : X × Ω∞ → X is B(X) ⊗ An-measurable, where An denotes the
σ-algebra of all the sets {(ω1, ω2 . . .) : (ω1, . . . , ωn) ∈ A} and A belongs to the
product σ-algebra An. Since fn depends only on the first n coordinates of ω,
we can identify fn(·, ω1, . . . , ωn) with fn(·, ω). So fn is an rv-function on the
probability space (Ω∞,An,P∞) and also on (Ωn,An,Pn). These iterates were
defined by K. Baron and M. Kuczma [2], and independently by Ph. Diamond
[7] to solve iterative functional equations. In particular they form forward
type iterations and are the prototype of random dynamical systems. A result
on almost sure (a.s., for short) convergence of (fn(x, ·))n∈N for X = [0, 1]
can be found in [17, Sec. 1.4 B]. A simple and useful criterion for a weak
convergence of distributions of fn(x, ·), n ∈ N to a probability Borel measure
πf independent of x ∈ X for X being a Polish space was proved in [1] and
applied to some linear inhomogeneous functional equation.

One of the most important cases of rv-functions is the so called random
affine map (see e.g. [11]), which is given by

(x, ω) �−→ η(ω)x + ξ(ω), (1.1)

where η : Ω → R, ξ : Ω → X are A-measurable. These maps are related to
perpetuities, see for instance [11,12,16]); they are also applied to refinement
type equations [15]. Substituting a random vector η into a random operator,
we will consider rv-functions of the form

(x, ω) �−→ Λ(ω)x + ξ(ω), (1.2)

where Λ(ω) : X → X is a continuous and bounded operator for ω ∈ Ω. A
function (1.2) will be called a generalized random affine map or GRAM, for
short. However, the main motivation to study such rv-functions is the work of
K. Baron [5], where a special case of map (1.2) with the same operator Λ(ω)
for any ω was examined.

The first aim of the present paper is to give some natural conditions under
which the sequence of iterates of GRAM’s f converges in law to πf , and to
establish the continuity of the operator f �−→ πf by showing how πf change if
Λ and ξ do. This extends the main result of [3] as well as [4, Theorem 1] and
[14, Theorem 5.2].

In the case when X is a real Hilbert space a characterization of a limit
distribution πf by its characteristic function ϕf via the linear functional equa-
tion ϕf (u) = ϕf (Λ∗(u)) · ϕξ(u) was established in [5]. Referring to that paper
we will show that the function ϕf for GRAM’s f is only one solution of the
equation

ϕf (u) = ϕξ(u)
∫

Ω

ϕf (Λ∗(ω)u)P(dω)

in a class of characteristic functions. Moreover, we will indicate continuous
dependence in such a characterisation of the limit distribution.
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2. Notions and basic facts

Throughout the paper (X, ‖ · ‖) is a separable Banach space and (Ω,A,P) is a
given probability space. We write B(X) for a space of all Borel and bounded
functions endowed with the supremum norm ‖ · ‖∞ and C(X) for its subspace
containing all continuous (and bounded) functions. A space of all linear and
continuous operators Λ: X → X will be denoted by L(X,X). We use the
symbol M1(X) to denote the space of all probability measures defined on
B(X). For short, we will write

∫
ϕdμ instead of

∫
X

ϕ(x)μ(dx) for Bochner
integrable ϕ and μ ∈ M1(X) if there is no confusion. We also consider a
family of all measures with finite first moment given by

M1
1(X) =

{
μ ∈ M1(X) :

∫
ρ(x, x0)μ(dx) < ∞

}

for some x0 ∈ X. (Clearly M1
1(X) does not depend on x0.) Recall that a

measure μ ∗ ν is a convolution of measures μ and ν if

μ ∗ ν(B) =
∫

μ(B − x)ν(dx) for every B ∈ B(X).

We write μχ to denote a probability distribution of the random variable χ.
Random variables χ : Ω → X, ζ : Ω → Y are called independent if

μ(χ,ζ) = μχ ⊗ μζ ,

where μ(χ,ζ) is their joint probability distribution. We say that a sequence (μn)
of measures from M1(X) converges weakly to μ if

∫
fdμn −−−−→

n→∞
∫

fdμ for

every f ∈ C(X). We introduce the symbol dFM to denote the Fortet–Mourier
metric (also known as the bounded Lipschitz distance) given by

dFM (μ, ν) = sup
{∣∣∣∣

∫
fdμ −

∫
fdν

∣∣∣∣ : f ∈ Lip1(X), ‖f‖∞ ≤ 1
}

,

and additionally dH to denote the Huthinson metric given by

dH(μ, ν) = sup
{∣∣∣∣

∫
fdμ −

∫
fdν

∣∣∣∣ : f ∈ Lip1(X)
}

,

where

Lip1(X) = {f ∈ B(X) : |f(x) − f(y)| ≤ ‖x − y‖ for x, y ∈ X} .

Note that the distance between some measures in the Huthinson metric may
be infinite. It is known (see [9, Theorem 11.3.3]) that weak convergence is
metrizable by the Fortet–Mourier norm.

With an rv-function f : X × Ω → X we may associate a linear operator
P : M1(X) → M1(X) by the formula

Pμ(A) =
∫

X

∫
Ω

1A(f(x, ω))P(dω)μ(dx), (2.1)
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which will be used in this paper. It can be shown that P is the Markovian
transition operator for the distribution πn of fn given by

πn(x,A) = P
∞({ω ∈ Ω∞ : fn(x, ω) ∈ A}),

i.e.

Pπn(x,A) = πn+1(x,A) for x ∈ X, A ∈ B(X).

By the convergence in distribution or in law of the sequence of iterates
(fn(x, ·))n∈N we mean that the sequence (πn(x, ·))n∈N converges weakly to
a probability distribution.

Following [1] and [13] we consider a family of rv-functions f : X × Ω → X
which satisfy:
(Hf ) There exists λf ∈ (0, 1) such that∫

Ω

‖f(x, ω) − f(y, ω)‖P(dω) ≤ λf‖x − y‖ for x, y ∈ X

and ∫
Ω

‖f(x, ω) − x‖P(dω) < ∞ for some (thus all) x ∈ X.

A simple criterion [13, Corollary 5.6], cf. [1, Theorem 3.1], for the conver-
gence in distribution of iterates of rv-functions reads as follows:

Proposition 2.1. Assume that an rv-function f : X × Ω → X satisfies (Hf ).
Then for every x ∈ X the sequence of iterates (fn(x, ·))n∈N converges in dis-
tribution and the limit πf does not depend on x. Moreover πf ∈ M1

1(X) and

dH(πn(x, ·), πf ) ≤ λf
n

1 − λf

∫
Ω

‖f(x, ω) − x‖P(dω)

for n ∈ N and x ∈ X.

The geometric rate of convergence allows us to formulate a result concerning
the continuity of f �−→ πf . We cite a part of [14, Theorem 4.1] that will be
useful in the next section.

Proposition 2.2. Assume that rv-functions f, g satisfy (Hf ) and (Hg), respec-
tively. Then for limit distributions πf and πg, occurring in Proposition 2.1,
we have

dH(πf , πg) ≤ min
{

1
1 − λf

inf
x∈X

αg(x),
1

1 − λg
inf

x∈X
αf (x)

}
, (2.2)

where

αh(x) = sup
n∈N0

∫
Ω∞

∫
Ω

‖f(hn(x, ω),�) − g(hn(x, ω),�)‖P(d�)P∞(dω)(2.3)

for h ∈ {f, g}.
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Remark 2.3. By condition (Hg) we mean (Hf ) in which all functions f ’s are
replaced by g’s. A similar convention will be used considering condition (Ug)
in the next section.

3. Continuous dependence of the limit distribution of generalized
random affine maps

Fix Λ: Ω → L(X,X) and A-measurable ξ : Ω → X. Since X is separable, we
may consider equivalently the weak, strong (in Bochner’s sense), and Borel
measurability of the random variable ξ. To get some results concerning the
convergence in law of GRAM’s (1.2) we need to show that (1.2) is an rv-
function. To do this we will introduce the following:

Definition 3.1. We call a map Λ: Ω → L(X,X) a random operator, if it is
A-measurable, i.e. Λ−1(B) ∈ A for every Borel subset B of L(X,X).

Proposition 3.2. If Λ: Ω → L(X,X) is a random operator, then a function
Λ(·)x : Ω → X is A-measurable for every x ∈ X.

Proof. Fix x ∈ X and define ϕx : L(X,X) → X by ϕx(T ) = Tx. It is obvious
that ϕx is linear, and since

‖ϕx(T )‖ = ‖Tx‖ ≤ ‖x‖ · ‖T‖
it is bounded (thus continuous). Now fix B ∈ B(X) then we have

{ω ∈ Ω : Λ(ω)x ∈ B} = {ω ∈ Ω : ϕx(Λ(ω)) ∈ B}
=

{
ω ∈ Ω : Λ(ω) ∈ ϕ−1

x (B)
} ∈ A.

�

Remark 3.3. One can show that for a separable space X if Λ(·)x : Ω → X is A-
measurable for every x ∈ X and Λ(ω) : X → X is continuous for every ω ∈ Ω
then a map Λ: Ω × X → X with Λ(x, ω) = Λ(ω)x is A ⊗ B(X)-measurable.
Moreover, ξ extended to ξ : X × Ω → X by ξ(x, ω) = ξ(ω) is A ⊗ B(X)-
measurable. Since the sum of A ⊗ B(X)-measurable functions on separable
values is also A ⊗ B(X)-measurable it follows that f : Ω × X → X given by
(1.2) is an rv-function.

The main result of this section concerns the continuous dependence of the
limit of iterates of GRAM’s. We will formulate it for a family of rv-functions
f : X × Ω → X which satisfy:
(Uf ) The function f : X × Ω → X has the form f(x, ω) = Λf (ω)x + ξf (ω),

where ξf : Ω → X is A-measurable,

E‖ξf‖ =
∫

Ω

‖ξf (ω)‖P(dω) < ∞,
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and Λf : Ω → L(X,X) is a random operator satisfying

E‖Λf (·)‖ =
∫

Ω

‖Λf (ω)‖P(dω) < 1,

where ‖Λf (ω)‖ is the operator norm of Λf (ω).

Theorem 3.4. Assume that rv-functions f, g satisfy (Uf ) and (Ug), respec-
tively. Then the sequences of iterates (fn(x, ·))n∈N, (gn(x, ·))n∈N are conver-
gent in law to the probability distributions πf , πg ∈ M1

1(X), respectively, the
limits do not depend on x ∈ X, and

dH(πf , πg) ≤ min
{

1
1 − E‖Λf (·)‖

(
E‖ξg‖

1 − E‖Λg(·)‖α + β

)
,

1
1 − E‖Λg(·)‖

(
E‖ξf‖

1 − E‖Λf (·)‖α + β

)}
,

where α = E‖Λf (·) − Λg(·)‖, β = E‖ξf − ξg‖.

Proof. At the beginning let us observe that (Uf ) implies (Hf ). Indeed,∫
Ω

‖f(x, ω) − f(y, ω)‖P(dω) ≤ ‖x − y‖
∫

Ω

‖Λf (ω)‖P(dω) for x, y ∈ X

and ∫
Ω

‖f(0, ω)‖P(dω) =
∫

Ω

‖ξf (ω)‖P(dω) < ∞.

By Proposition 2.1 we infer that there exist probability distributions πf , πg ∈
M1

1(X) such that for every x ∈ X the sequences (fn(x, ·))n∈N, (gn(x, ·))n∈N

are convergent in law to πf , πg, respectively.
The rest of the proof runs similarly to the proof of [14, Theorem 5.2] which

concerns (1.1). For the convenience of the reader we repeat the relevant compu-
tations after appropriate changes for the case of GRAM’s, thus making our ex-
position self-contained. So fix k ∈ N and let us define Λk : Ω∞ → L(X,X) and
ξk : Ω∞ → X by Λk(ω) = Λf (ωk), ξk(ω) = ξf (ωk), where ω = (ω1, ω2 . . .) ∈
Ω∞, and observe that for ω ∈ Ω∞ and x ∈ X

fn(x, ω) =
n−1⊙
i=0

Λn−i(ω)x +
n−2⊙
i=0

Λn−i(ω)ξ1(ω)+

+
n−3⊙
i=0

Λn−i(ω)ξ2(ω) + . . . + Λn(ω)ξn−1(ω) + ξn(ω),

where
n−k⊙
i=0

Λn−i(ω) = Λn(ω) ◦ Λn−1(ω) ◦ Λn−2(ω) ◦ . . . ◦ Λk(ω)
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and ◦ is a composition. From that

fn(0, ω) =
n∑

k=2

n−k⊙
i=0

Λn−i(ω)ξk−1(ω) + ξn(ω).

Then

‖g(fn(0, ω), ω) − f(fn(0, ω), ω)‖

≤ ‖Λg(ω) − Λf (ω)‖ ×
(

n∑
k=2

∥∥∥∥∥
n−k⊙
i=0

Λn−i(ω)ξk−1(ω)

∥∥∥∥∥ + ‖ξn(ω)‖
)

+ ‖ξg(ω) − ξf (ω)‖
and from the inequality∥∥∥∥∥

n−k⊙
i=0

Λn−i(ω)ξk−1(ω)

∥∥∥∥∥ ≤ ‖ξk−1(ω)‖
n∏

i=k

‖Λi(ω)‖

we have

‖g(fn(0, ω), ω) − f(fn(0, ω), ω)‖ ≤ ‖Λg(ω) − Λf (ω)‖

×
(

n∑
k=2

‖ξk−1(ω)‖
n∏

i=k

‖Λi(ω)‖ + ‖ξn(ω)‖
)

+ ‖ξg(ω) − ξf (ω)‖.

Since ‖ξk−1‖, ‖Λk(·)‖, . . . , ‖Λn(·)‖ are independent it follows that

∫
Ω∞

∫
Ω

‖g(fn(0, ω), ω) − f(fn(0, ω), ω)‖P∞(dω)P(dω)

≤
∫

Ω

‖Λg(ω) − Λf (ω)‖P(dω)
∫

Ω∞

(
n∑

k=2

‖ξk−1(ω)‖

×
n∏

i=k

‖Λi(ω)‖ + ‖ξn(ω)‖
)
P

∞(dω) +
∫

Ω

‖ξg(ω) − ξf (ω)‖P(dω)

= α

n∑
k=2

E‖ξk−1‖
n∏

i=k

E‖Λi(·)‖ + E‖ξn‖ + β

= α
n+1∑
k=2

E‖ξf‖ · (E‖Λf (·)‖)n−k+1 + β

= αE‖ξf‖1 − (E‖Λf (·)‖)n

1 − E‖Λf (·)‖ + β.

Therefore for the function αf (x) given by (2.3) we obtain

inf
x∈X

αf (x) ≤ αf (0) ≤ α
E‖ξf‖

1 − E‖Λf (·)‖ + β for x ∈ X.
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A similar inequality holds for αg(x). Taking λf = E‖Λf (·)‖, λg = E‖Λg(·)‖
and applying Proposition 2.2 we finish the proof. �

Corollary 3.5. Assume that rv-functions f, g have the form

f(x, ω) = Λfx + ξf (ω), g(x, ω) = Λgx + ξg(ω)

with Λf ,Λg ∈ L(X,X) such that ‖Λf‖ < 1, ‖Λg‖ < 1 and ξf , ξg : Ω → X such
that E‖ξf‖ < ∞, E‖ξg‖ < ∞. Then the sequences of iterates (fn(x, ·))n∈N,
(gn(x, ·))n∈N are convergent in law to the probability distributions πf , πg ∈
M1

1(X), respectively, the limits do not depend on x ∈ X, and

dH(πf , πg) ≤ min
{

1
1 − ‖Λf‖

(
E‖ξg‖

1 − ‖Λg‖α + β

)
,

1
1 − ‖Λg‖

(
E‖ξf‖

1 − ‖Λf‖α + β

)}
,

where α = ‖Λf − Λg‖, β = E‖ξf − ξg‖.

Corollary 3.5 given above extends the main result of [3] as well as [4, The-
orem 1]. Due to this result we can generalize [4, Theorem 3] and [5, Theorem
3.1]; see Theorems 4.10, 4.22.

4. Characterisation of the limit distribution

Let (Ω,A,P) be a probability space. In this section X is a separable real Hilbert
space with the inner product (·|·). However in cases when it is not needed we
will emphasize it. We define a characteristic function ϕf of the rv-function f ,
assuming that the iterates (fn(x, ·))n∈N converge in law and the limit does not
depend on x; in such a case we denote by πf the distribution of the limit, i.e.

πf
n(x, ·) w−−−−→

n→∞ πf .

Definition 4.1. A function ϕχ : X → C given by

ϕχ(u) =
∫

X

ei(u|z)μχ(dz)

is called a characteristic function of the X-valued random variable χ with
distribution μχ.

Definition 4.2. A function ϕf : X → C given by

ϕf (u) =
∫

X

ei(u|z)πf (dz)

is called a characteristic function of the rv-function f .
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The problem of characterization of the limit distribution πf via a functional
equation for its characteristic function ϕf was considered in [5]. The author
showed that for the rv-function f given by

f(x, ω) = Λx + ξ(ω)

with Λ ∈ L(X,X) such that ‖Λ‖ < 1 and a random variable ξ : Ω → X
such that E‖ξ‖ < ∞ its characteristic function ϕf is the only solution of the
equation

ϕf (u) = ϕf (Λ∗(u)) · ϕξ(u),

where Λ∗ stand for the adjoint operator to Λ, which satisfies (Λ∗u|z) = (u|Λz)
for every u, z ∈ X. Our goal is to generalize this result to GRAM’s. First we
give some preceding facts, which will be needed in the general setting.

Lemma 4.3. Let X be a Banach space. Assume that a random operator Λ: Ω →
L(X,X) and a random variable ξ : Ω → X are independent. If x ∈ X, then
Λ(·)x : Ω → X and ξ : Ω → X are independent.

Proof. Fix x ∈ X. Let us define τx : L(X,X) × X → X2 by

τx(T, y) = (Tx, y).

Observe that τx is well defined, continuous in product topology (by the conti-
nuity of T ) and thus B(L(X,X)) ⊗ B(X)-measurable. Denote the distribution
of Λ(·)x by μΛx. We claim that μ(Λx,ξ)(B) = μ(Λ,ξ)(τ−1

x (B)) for B ∈ B(X2).
Indeed we have

μ(Λx,ξ)(B) = P({ω : (Λ(ω)x, ξ(ω)) ∈ B}) = P({ω : τx(Λ(ω), ξ(ω)) ∈ B})

= P(
{
ω : (Λ(ω), ξ(ω)) ∈ τ−1

x (B)
}
) = μ(Λ,ξ)(τ−1

x (B)).

It remains to show that μΛx⊗μξ(B) = μΛ⊗μξ(τ−1
x (B)) for B ∈ B(X2). Define

By = {x : (x, y) ∈ B} and now we have the following

μΛx ⊗ μξ(B) =
∫

X

μΛx(By)μξ(dy) =
∫

X

μΛx({x : (x, y) ∈ B})μξ(dy)

=
∫

X

P({ω : (Λ(ω)x, y) ∈ B})μξ(dy)

=
∫

X

P(
{
ω : (Λ(ω), y) ∈ τ−1

x (B)
}
)μξ(dy) = μΛ ⊗ μξ(τ−1

x (B)).

Finally by the assumption of independence we obtain

μ(Λx,ξ)(B) = μ(Λ,ξ)(τ−1
x (B)) = μΛ ⊗ μξ(τ−1

x (B)) = μΛx ⊗ μξ(B),

which ends the proof. �
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Lemma 4.4. Let X be a Banach space and n ∈ N. Assume that Λ: Ω →
L(X,X) is a random operator and ψ : Ωn → X, ξ : Ω → X are random vari-
ables. Define ψn : Ω∞ → X, Λn+1 : Ω∞ → L(X,X), ξn+1 : Ω∞ → X by

ψn(ω) = ψ(ω1, . . . , ωn), Λn+1(ω) = Λ(ωn+1), ξn+1(ω) = ξ(ωn+1)

and Λψn+1 : Ω∞ → X by

Λψn+1(ω) = Λn+1(ω)ψn(ω) = Λ(ωn+1)ψ(ω1, . . . , ωn),

where ω = (ω1, ω2, . . .) ∈ Ω∞. If Λn+1 and ξn+1 are independent, then Λψn+1

and ξn+1 are also independent.

Proof. Fix B ∈ B(X2). Put

η(ω1, . . . , ωn+1) = Λ(ωn+1)ψ(ω1, . . . , ωn)

and

ζ(ω1, . . . , ωn+1) = (η(ω1, . . . , ωn+1), ξ(ωn+1))

for ω1, . . . , ωn+1 ∈ Ω. Then

μ(Λψn+1,ξn+1)(B) = P
∞

({
(ω1, ω2 . . .) : ζ(ω1, . . . , ωn+1) ∈ B)

})

= P
n+1

({
(ω1, . . . , ωn+1) : ζ(ω1, . . . , ωn+1) ∈ B)

})

= P
n ⊗ P

({
(ω1, . . . , ωn+1) : ζ(ω1, . . . , ωn+1) ∈ B

})

=
∫

Ωn

P

({
ωn+1 : ζ(ω1, . . . , ωn+1) ∈ B)

})
dPn(d(ω1, . . . , ωn))

=
∫

Ωn

μ(Λψ(ω1,...,ωn),ξ)(B)Pn(d(ω1, . . . , ωn))

=
∫

Ωn

μΛψ(ω1,...,ωn) ⊗ μξ(B)Pn(d(ω1, . . . , ωn)),

when the last equality holds due to Lemma 4.3. Therefore

μ(Λψn+1,ξn+1)(B) =

∫
Ωn

∫
X

μΛψ(ω1,...,ωn)(By)μξ(dy)Pn(ω1, . . . , ωn)

=

∫
X

∫
Ωn

μΛψ(ω1,...,ωn)(By)Pn(d(ω1, . . . , ωn))μξ(dy)

=

∫
X

P
n ⊗ P

({
(ω1, . . . , ωn+1) : η(ω1, . . . , ωn+1) ∈ By

})
μξ(dy)

=

∫
X

P
∞

({
(ω1, ω2 . . .) : η(ω1, . . . , ωn+1) ∈ By

})
μξ(dy)

=

∫
X

P
∞

({
ω : Λψn+1(ω) ∈ By

})
μξ(dy) = μΛψn+1 ⊗ μξn+1(B),

which ends the proof. �
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Corollary 4.5. Let X be a separable Banach space. Assume that an rv-function
f : X ×Ω → X is given by (1.2), where Λ: Ω → L(X,X) is a random operator
and ξ : Ω → X is a random variable. If Λ and ξ are independent, x ∈ X and
n ∈ N, then Λn+1(·)fn(x, ·) : Ω∞ → X with

Λn+1(ω)fn(x, ω) = Λ(ωn+1)fn(x, ω1, . . . , ωn)

and ξn+1 : Ω∞ → X with ξn+1(ω) = ξ(ωn+1) are independent.

Having proved independence we also have to characterise the probability
distribution of the sum of independent random variables. It is well known that
such a distribution can be described as the convolution of each random variable
distributions. More precisely, we have:

Theorem 4.6. Let X be a separable Banach space. If η : Ω → X, ξ : Ω → X
are independent random variables, then

μη+ξ = μη ∗ μξ.

Definition 4.7. If Λ: Ω → L(X,X) is a random operator, then a map Λ∗ : Ω →
L(X,X) satisfying

(Λ∗(ω)x|y) = (x|Λ(ω)y) for every ω ∈ Ω, x, y ∈ X

is called an adjoint random operator to Λ.

Lemma 4.8. A function Λ∗ : X×Ω → X given by Λ∗(x, ω) = Λ∗(ω)x is B(X)⊗
A-measurable.

Proof. According to Remark 3.3 it is enough to show that Λ∗(·)x : Ω → X is
A-measurable for every x ∈ X. Fix x ∈ X and observe that (x|Λ(ω)y) : Ω → R

is A-measurable for every y ∈ X. By the Riesz Representation Theorem for
every linear functional y∗ : X → R there exists y such that

y∗(Λ∗(ω)x
)

= (Λ∗(ω)x|y) for every ω ∈ Ω.

Therefore from the A-measurability of (x|Λ(·)y) : Ω → X we conclude that
Λ∗(·)x is weak measurable. Since X is separable, we may conclude that Λ∗(·)x
is strong measurable and consequently A-measurable. �

Remark 4.9. Note that ‖Λ∗(·)‖ : Ω → [0,∞) is A-measurable due to the equal-
ity

‖Λ(ω)‖ = ‖Λ∗(ω)‖ for every ω ∈ Ω.

The following theorem characterizes the limit distribution of GRAM’s and
it generalizes [5, Theorem 3.1] (see Remark 4.12).

Theorem 4.10. Assume that an rv-function f has the form (1.2) with a ran-
dom operator Λ: Ω → L(X,X) and a random variable ξ : Ω → X such that
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E‖Λ(·)‖ < 1, E‖ξ‖ < ∞. Moreover, assume that Λ and ξ are independent.
Then the characteristic function ϕf of f is the only solution of the equation

ϕf (u) = ϕξ(u)
∫

Ω

ϕf (Λ∗(ω)u)P(dω), (4.1)

which is continuous at zero, bounded and fulfills ϕf (0) = 1.

Lemma 4.11. Let (Ω,A,P) be an arbitrary probability space. Suppose that the
independent and identically distributed random variables ζi : Ω → R, i ∈ N

fulfil the following properties

1. ζi ≥ 0
2. 0 < Eζi < 1.

Then the sequence (
∏n

i=1 ζi)n∈N converges a.s. to zero.

Proof. To show convergence we will consider three cases:
I. If Eζi = 0 =

∫
Ω

ζi(ω)P(dω), then ζi = 0 a.s., so is
∏n

i=1 ζi.
II. Assume that 0 < Eζi < 1 and P(ζi = 0) = p > 0. Then

P

({
ω ∈ Ω :

n∏
i=1

ζi(ω) �= 0

})

= P

({
ω ∈ Ω : ζi(ω) �= 0, for every i ∈ {1, . . . , n}

})

=
n∏

i=1

P

({
ω ∈ Ω : ζi(ω) �= 0

})
= (1 − p)n.

Define a set An = {ω ∈ Ω :
∏n

i=1 ζi(ω) �= 0} and observe that An+1 ⊂ An,
and

A =
∞⋂

n=1

An ⊃
{

ω ∈ Ω :
∞∏

i=1

ζi(ω) �= 0

}
.

By the continuity of the measure it follows that

P

({
ω ∈ Ω :

∞∏
i=1

ζi(ω) �= 0

})
= 0.

III. Now assume that 0 < Eζi < 1, and P(ζi = 0) = 0. From Jensen’s inequality
we have E log ζi ≤ logEζi < 0. Observe that

n∏
i=1

ζi = elog
∏n

i=1 ζi =
(
e

1
n

∑n
i=1 log ζi

)n

.

If −∞ < E log ζ1 then by the independence of ζ ′
is we can apply the Strong

Law of Large Numbers, hence for 0 < ε < |E log ζ1| there exists Nε ∈ N such
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that

1
n

n∑
i=1

log ζi < E log ζ1 + ε for every n > Nε.

Therefore for the same n > Nε it holds that(
e

1
n

∑n
i=1 log ζi

)n

< en(E log ζ1+ε).

Passing with n to the limit we obtain
n∏

n=1

ζi
n→∞−−−−→ 0 a.s. (4.2)

If E log ζ1 = −∞, then we can apply theorem [10, Theorem 2.4.5], from
which we conclude that

1
n

n∑
i=1

log ζi
n→∞−−−−→ −∞ a.s.

Hence (
n∏

n=1

ζi

) 1
n

= e
1
n

∑n
i=1 log ζi n→∞−−−−→ 0 a.s.

Summarizing we get convergence in all cases. �

Proof of Theorem 4.10. A random operator Λ: Ω → L(X,X) can be consid-
ered as an rv-function Λ: X × Ω → X due to its measurability (see Sect. 3)
and consequently we can associate it with a linear operator Q given by

Qμ(B) =
∫

X

∫
Ω

1B(Λ(ω)x)P(dω)μ(dx), for B ∈ B(X).

Now let us define πΛf
n : X × B(X) → [0, 1] by

πΛf
n (x,B) = P

∞({(ω1, ω2 . . .) : Λ(ωn+1)fn(x, ω1, . . . , ωn) ∈ B})

and observe that

πΛf
n (x, ·) = Qπf

n(x, ·) for every x ∈ X.

Indeed, for fixed x ∈ X, B ∈ B(X) it holds that

πΛf
n (x,B) = P

∞({(ω1, ω2 . . .) : Λ(ωn+1)fn(x, ω1, . . . , ωn) ∈ B})

=
∫

Ω∞
1B(Λ(ωn+1)fn(x, ω1, . . . , ωn))P∞(d(ω1, ω2 . . .))

=
∫

Ω

∫
Ω∞

1B(Λ(ω)fn(x, ω1, . . . , ωn))P(dω)P∞(d(ω1, ω2 . . .))

=
∫

Ω

∫
X

1B(Λ(ω)y)πf
n(x, dy)P(dω) = Qπf

n(x,B).
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So now, by Corollary 4.5 and Theorem 4.6 we see that

πf
n+1(x, ·) = πΛf

n (x, ·) ∗ μξ = Qπf
n(x, ·) ∗ μξ.

It can be easily shown that the Markov operator Q has the Feller property. To
do this let us see at first that

Q∗ψ(x) =
∫

Ω

ψ(Λ(ω)x)P(dω).

For a fixed ψ ∈ C(X) take an arbitrary x0 ∈ X and note that for every
(xn)n∈N such that xn

n→∞−−−−→ x0 we have ψ(Λ(ω)xn) n→∞−−−−→ ψ(Λ(ω)x0) for
every ω ∈ Ω. Let us define ϕn(ω) = ψ(Λ(ω)xn) and ϕ0(ω) = ψ(Λ(ω)x0). Since
|ϕn(ω)| ≤ ‖ψ‖∞ for ω ∈ Ω, n ∈ N we can apply the Lebesgue Dominated
Convergence theorem and hence

Q∗ψ(xn) =
∫

Ω

ϕn(ω)P(dω) n→∞−−−−→
∫

Ω

ϕ0(ω)P(dω) = Q∗ψ(x0).

Because x0, (xn)n∈N and ψ are arbitrary, we have Q∗(C(X)) ⊂ C(X). From
that and [18, Theorem 1.1, Ch. III] we can pass n to the limit and we obtain

πf = Qπf ∗ μξ.

Now from the definition of the characteristic function we make the following
computations

ϕf (u) =
∫

X

ei(u|z)πf (dz) =
∫

X

ei(u|z)Qπf ∗ μξ(dz)

=
∫

X

∫
X

ei(u|x+y)Qπf (dx)μξ(dy)

=
∫

X

∫
X

ei(u|x) · ei(u|y)Qπf (dx)μξ(dy)

=
∫

X

∫
X

Q∗ei(u|x) · ei(u|y)πf (dx)μξ(dy)

=
∫

X

∫
X

[∫
Ω

ei(u|Λ(ω)x)
P(dω)

]
· ei(u|y)πf (dx)μξ(dy)

=
∫

X

ei(u|y)μξ(dy) ·
∫

Ω

∫
X

ei(u|Λ(ω)x)πf (dx)P(dω)

= ϕξ(u)
∫

Ω

∫
X

ei(Λ∗(ω)u|x)πf (dx)P(dω) = ϕξ(u)
∫

Ω

ϕf (Λ∗(ω)u)P(dω).

This shows that ϕf satisfies (4.1).
It remains to show the uniqueness of the solution of (4.1). To do this, let us

assume that ϕ is a bounded, continuous at zero solution of (4.1) and ϕ(0) = 1.
Then observe that
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ϕ(u) =
∫

Ω

. . .

∫
Ω

ϕξ(u)
n∏

i=2

ϕξ((Λ∗)i−1(ω1, . . . , ωi−1)u)×

× ϕ((Λ∗)n(ω1, . . . , ωn)u)P(dω1) . . .P(dωn),

where

(Λ∗)i(ω1, . . . , ωi)u = Λ∗(ωi) ◦ . . . ◦ Λ∗(ω1)u.

It follows that for every n ∈ N we can write

ϕ(u) =
∫

Ω∞

n∏
i=1

ϕξ((Λ∗)i−1(ω)u)ϕ((Λ∗)n(ω)u)P∞(dω). (4.3)

Since ‖Λ∗(ω)‖ = ‖Λ(ω)‖ for every ω ∈ Ω, we have E‖Λ∗(·)‖ = E‖Λ(·)‖ < 1.
Taking ζi(ω) = ‖Λ∗(ωi)‖ for ω = (ω1, ω2, . . .) ∈ Ω∞ we see that

‖(Λ∗)n(ω)u‖ ≤ ‖u‖
n∏

i=1

ζi(ω).

By Lemma 4.11 we conclude that the sequence
(‖(Λ∗)n(·)(u)‖)

n∈N
converges

a.s. to zero.
Fix n ∈ N and let us define random variables ηn, θn : Ω∞ → C, respectively,

by

ηn(ω) =
n∏

i=1

ϕξ((Λ∗)i−1(ω)u) and θn(ω) = ϕ((Λ∗)n(ω)u).

Hence we can rewrite (4.3) as

ϕ(u) =
∫

Ω∞
θn(ω)ηn(ω)P∞(dω), n ∈ N, u ∈ X

and thus we obtain∣∣∣∣∣
∫

Ω∞
θn(ω)ηn(ω)P∞(dω) −

∫
Ω∞

ηn(ω)P∞(dω)

∣∣∣∣∣
≤

∫
Ω∞

|θn(ω) − 1| · |ηn(ω)|P∞(dω)

≤
∫

Ω∞
|θn(ω) − 1|P∞(dω).

Observe that |θn(ω) − 1| ≤ ‖ϕ‖∞ + 1 and (θn)n∈N converges a.s. to 1, by the
continuity of ϕ at zero. Therefore, from the Lebesgue dominated convergence
theorem it can be concluded that∫

Ω∞
|θn(ω) − 1|P∞(dω) n→∞−−−−→ 0.
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Hence passing with n to the limit we obtain

ϕ(u) = lim
n→∞

∫
Ω∞

n∏
i=1

ϕξ((Λ∗)i−1(ω)u)P∞(dω), (4.4)

which completes the proof. �

Remark 4.12. Note that under the assumptions of Theorem 4.10 the following
statements hold:

(i) The characteristic function ϕf is the only solution of the equation (4.1),
which is Lipschitz, continuous at zero and ϕ(0) = 1.

(ii) If Λ does not depend on ω, i.e. Λ(ω) is the same as ω changes, then ϕf is
the only solution of the equation (4.1), which is continuous at zero and
ϕ(0) = 1.

To show assertion (i) observe that for a function ϕ which is a solution of (4.1)
and M > 0, a Lipschitz constant of ϕ, the following inequalities hold,∫

Ω∞
|ϕ((Λ∗)n(ω)u) − 1|P∞(dω) ≤

∫
Ω∞

M‖(Λ∗)n(ω)u)‖P∞(dω)

≤ ‖u‖M(E‖Λ∗(·)‖)n,

which yields (4.4).
When (ii) holds, the formula (4.3) reduces to

ϕ(u) =
n∏

i=1

ϕξ((Λ∗)i−1u)ϕ((Λ∗)nu)

for any n ∈ N. Passing with n to the limit we obtain

ϕ(u) =
∞∏

i=1

ϕξ((Λ∗)i−1u)ϕ((Λ∗)nu). (4.5)

�

Remark 4.13. Note that the expression (4.4) is in fact the formula of the unique
solution ϕ of (4.1). In particular, when Λ is independent of ω, this solution
takes the form (4.5) and it can also be found in [5, Theorem 3.1].

We now give an example of a GRAM which satisfies the assumptions of
Theorem 4.10.

Example 4.14. Let us consider random variables ξ : Ω → X and κ : Ω → N.
Take a countable family of linear bounded operators Ti : X → X, i ∈ N. We
define Λ: Ω → L(X,X) as

Λ(ω) = Tκ(ω), for ω ∈ Ω.

Then the following statements hold:
(i) Λ is a random operator.
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(ii) If ξ and κ are independent, then so are ξ and Λ.
(iii) The expected value of Λ is equal to

E‖Λ(·)‖ =
∑
i∈N

μκ({i})‖Ti‖.

(iv) The adjoint random operator Λ∗ has the form

Λ∗(ω) = T ∗
κ(ω).

Assertion (i) follows from the fact that Λ can be rewritten in the form

Λ(ω) =
∑
i∈N

1κ−1({i})(ω)Ti, for ω ∈ Ω.

Hence it can be easily seen that Λ is A-measurable. To show statement (ii)
assume that ξ and κ are independent and observe that μΛ has the form

μΛ(A) = P

(⋃
i∈N

{ω : κ(ω) = i} ∩ {ω : Ti ∈ A}
)

=
∑
i∈N

P({ω : κ(ω) = i} ∩ {ω : Ti ∈ A})

and

P({ω : κ(ω) = i} ∩ {ω : Ti ∈ A}) =

{
P({ω : κ(ω) = i}), Ti ∈ A

0, Ti /∈ A

= μκ({i})δTi
(A).

From that

μΛ(A) =
∑
i∈N

μκ({i})δTi
(A).

Now fix B ∈ B(L(X,X)) ⊗ B(X), define BT ∈ B(N) ⊗ B(X) as

BT = {(i, y) ∈ N × X : (Ti, y) ∈ B}
and observe that

BTi = {y ∈ X : (Ti, y) ∈ B} = (BT )i,

where Bx = {y ∈ X : (x, y) ∈ B}, x ∈ L(X,X). An easy computation shows
that

μΛ ⊗ μξ(B) =
∫

L(X,X)

μξ(Bx)μΛ(dx) =
∑
i∈N

μξ(BTi) · μκ({i})

=
∫
N

μξ((BT )i)μκ(di) = μκ ⊗ μξ(BT ) = μ(κ,ξ)(BT )

= P(ω : (κ(ω), ξ(ω)) ∈ BT ) = P(ω : (Tκ(ω), ξ(ω)) ∈ B))

= μ(Λ,ξ)(B).
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Statement (iii) is obvious. Finally to show (iv) fix i ∈ N and observe that for
ω ∈ κ−1({i}) we have

(Λ∗(ω)x|y) = (x|Tiy) = (T ∗
i x|y) for every x, y ∈ X.

Therefore Λ∗(ω) = T ∗
i for ω ∈ κ−1({i}). From that we obtain

Λ∗(ω) =
∑
i∈N

1κ−1({i})(ω)T ∗
i = T ∗

κ(ω), for ω ∈ Ω.

By statements (i)–(iv) we can consider an rv-function f of the form

f(x, ω) = Tκ(ω)x + ξ(ω)

and if we assume additionally that∑
i∈N

μκ({i})‖Ti‖ < 1 and E‖ξ‖ < ∞,

then Theorem 4.2 allows us to claim that (provided that κ and ξ are indepen-
dent) the characteristic function ϕf is the only solution of the equation

ϕ(u) = ϕξ(u)
∑
i∈N

μκ({i})ϕ(T ∗
i u), u ∈ X, (4.6)

which is bounded, continuous at zero and ϕ(0) = 1. �

It is worth pointing out that if we consider the class of solutions ϕ of the
equation (4.1) (or in particular of (4.6)) which do not have to be either bounded
or Lipschitz, then such a class can contain more than one solution, which is
shown in the example given below.

Example 4.15. Fix a ∈ R such that |a| > 1 and p ∈
(
0, 1

1+|a|
)

and let X = R.
Let operators Ti : R → R, i ∈ {1, 2} be given, respectively, by

T1x = ax, T2x =
1
a
x.

Set a random variable κ : Ω → N with the following distribution

μκ({1}) = p, μκ({2}) = 1 − p.

It can be easily seen that for a random operator Λ given by

Λ(ω) = Tκ(ω) = 1κ−1({1})(ω)T1 + 1κ−1({2})(ω)T2

we have

E‖Λ(·)‖ = |a| · p +
∣∣∣∣1a

∣∣∣∣ (1 − p) <
|a|2 − 1
|a|2 + |a| +

1
|a| = 1.

Observe furthermore that Λ and Λ∗ have the same distribution.
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Now consider a random variable ξ : Ω → R, independent of κ, with μξ = δ0.
Then ϕξ ≡ 1. It is easy to check that ϕf ≡ 1 and it is a solution of the equation

ϕ(u) = pϕ(au) + (1 − p)ϕ
(u

a

)
. (4.7)

However it is not unique in a family of continuous at zero functions ϕ which
satisfy ϕ(0) = 1. To this end, take a function ϕ0 : R → R with

ϕ0(u) = |u|log|a|( 1−p
p ) + 1.

Let us see that ϕ0 is continuous on its domain, ϕ0(0) = 1 and

pϕ0(au) + (1 − p)ϕ0

(u

a

)
= p|u|log|a|( 1−p

p ) · |a|log|a|( 1−p
p )

+ (1 − p)|u|log|a|( 1−p
p ) · |a|− log|a|( 1−p

p ) + 1

= |u|log|a|( 1−p
p ) + 1 = ϕ0(u),

so ϕf is not the unique continuous solution of the equation (4.7) having value
1 at zero. �

For GRAM’s f given above, the natural question arises whether an operator
(Λ, ξ) �−→ ϕf is continuous and what kind of continuity it has. Before we
formulate an appropriate result, we present some additional facts in which
(X, ρ) is a metric space and

Lipα(X,Y ) = {ϕ ∈ B(X,Y ) : ‖ϕ(x) − ϕ(y)‖ ≤ αρ(x, y), x, y ∈ X}
for α ∈ (0,∞), and B(X,Y ) is a set of all bounded functions acting on X into
Y .

Definition 4.16. Let (X, ρ) be a separable and complete metric space and let
(Y, ‖ · ‖) be a Banach space. We denote a metric dX,Y

H on M1(X) by the
formula

dX,Y
H (μ, ν) = sup

{∥∥∥∥
∫

X

ϕ(x)μ(dx) −
∫

X

ϕ(x)ν(dx)
∥∥∥∥ : ϕ ∈ Lip1(X,Y )

}
.

Proposition 4.17. Assume that spaces X and Y are nontrivial. Then the metric
dX,Y

H is independent of the choise spaces X and Y , and moreover dX,Y
H (μ, ν) =

dH(μ, ν) for every μ, ν ∈ M1(X).

Proof. Fix u ∈ Lip1(X) and x0 ∈ Y such that ‖x0‖ = 1. Put ϕ0(x) = u(x) ·x0

for x ∈ X, then ϕ0 ∈ Lip1(X,Y ) and it is integrable in Bochner’s sense with
respect to any probability measure, so we have
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∣∣∣∣
∫

X

u(x)μ(dx) −
∫

X

u(x)ν(dx)
∣∣∣∣

=
1

‖x0‖ ·
∥∥∥∥x0

(∫
X

u(x)μ(dx) −
∫

X

u(x)ν(dx)
)∥∥∥∥

=
∥∥∥∥
∫

X

ϕ0(x)μ(dx) −
∫

X

ϕ0(x)ν(dx)
∥∥∥∥ ≤ dX,Y

H (μ, ν).

Since u is arbitrary, we can take the supremum on the left hand side of the
inequality and as a consequence we obtain dH ≤ dX,Y

H .
Now fix ϕ ∈ Lip1(X,Y ) and μ, ν ∈ M1(X). Then there exists y∗ ∈ Y ∗

such that ‖y∗‖ = 1 and∥∥∥∥
∫

X

ϕ(x)μ(dx) −
∫

X

ϕ(x)ν(dx)
∥∥∥∥ =

∣∣∣∣y∗
(∫

X

ϕ(x)μ(dx) −
∫

X

ϕ(x)ν(dx)
)∣∣∣∣

by the Hahn–Banach theorem. Applying the Hille Theorem (see e.g. [8, The-
orem 6 Ch. II]) we deduce that∣∣∣∣y∗

(∫
X

ϕ(x)μ(dx) −
∫

X

ϕ(x)ν(dx)
)∣∣∣∣

=
∣∣∣∣
∫

X

y∗ ◦ ϕ(x)μ(dx) −
∫

X

y∗ ◦ ϕ(x)ν(dx)
∣∣∣∣ ≤ dH(μ, ν),

and since y∗ ◦ ϕ ∈ Lip1(X) we finally obtain dH ≥ dX,Y
H . �

Lemma 4.18. If u ∈ X \ {0} and a function ψ : X → C is given by ψ(z) =
ei(u|z), then ψ ∈ Lip‖u‖(X,C).

Proof. Since (u|z) ∈ R for every u, z ∈ X, it follows that

|ψ(z) − ψ(y)| =
∣∣∣ei(u|z) − ei(u|y)

∣∣∣ =
√

2 − 2 cos ((u|z) − (u|y))

= 2
∣∣∣∣sin (u|z − y)

2

∣∣∣∣ ≤
∣∣∣∣2 · (u|z − y)

2

∣∣∣∣ ≤ ‖u‖ · ‖z − y‖.

Then the proof is completed. �

Proposition 4.19. Let f, g : X × Ω → X be rv-functions. Assume that the it-
erates (fn(x, ·))n∈N, (fn(x, ·))n∈N converge in law to πf and πg, respectively,
and the limits πf , πg do not depend on x. Then the following inequality for the
characteristic functions ϕf and ϕg holds∣∣ϕf (u) − ϕg(u)

∣∣ ≤ ‖u‖ · dH(πf , πg), (4.8)

for every u ∈ X.

Proof. Fix u ∈ X \ {0} and define ψ : X → C as ψ(z) = ei(u|z). Then 1
‖u‖ψ ∈

Lip1(X,C), by Lemma 4.18. Using Proposition 4.17 we see that



Vol. 97 (2023) Continuous dependence of the weak limit of iterates 773

1
‖u‖

∣∣ϕf (u) − ϕg(u)
∣∣ =

∣∣∣∣
∫

1
‖u‖ei(u|z)πf (dz) −

∫
1

‖u‖ei(u|z)πg(dz)
∣∣∣∣

≤ dX,C
H (πf , πg) = dH(πf , πg).

This ends the proof. �

Remark 4.20. Inequality (4.8) can not be strengthened by
∥∥ϕf − ϕg

∥∥
∞ ≤ dH(πf , πg), (4.9)

which is shown in the example given below.

Example 4.21. Fix a ∈ R. For n ∈ N let ξn : Ω → X be a random variable with
uniform distribution on the interval

[
a, a + 1

n

]
. (Obviously, we assume such

ξn
′s can be constructed. It is possible for instance on the space (Ω,A,P) as a

unit interval with Lebesgue measure.) Define rv-functions fn, g : X × Ω → X
by

fn(x, ω) = ξn(ω), g(x, ω) = a.

Observe that the k-th iterate of fn satisfies fk
n(x, ω1, . . . , ωk) = ξn(ωk) and

gk(x, ω) = a. So we can write

πfn

k (A) = P
∞ ({

(ω1, ω2, . . .) ∈ Ω∞ : fk
n(x, ω1, . . . , ωk) ∈ A

})
= P

∞ ({(ω1, ω2, . . .) ∈ Ω∞ : ξn(ωk) ∈ A})

= P ({ωk ∈ Ω: ξn(ωk) ∈ A}) =
∫

A

n1[a,n+ 1
n ]dx = πfn(A).

Additionally let us see that

πg
k(A) = δa(A) = πg(A).

The characteristic functions of the above distributions have the following forms

ϕfn(u) =
∫
R

eiuxπfn(dx) =
n

iu
eiua

(
eiu 1

n − 1
)

,

ϕg(u) =
∫
R

eiuxπg(dx) = eiua.

For every c ∈ Lip1(R) we have the following computation
∣∣∣∣∣
∫
R

c(x)πfn(dx) −
∫
R

c(x)πg(dx)

∣∣∣∣∣
=

∣∣∣∣∣n
∫
R

c(x) · 1[a,a+ 1
n ]dx − c(a)

∣∣∣∣∣
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=

∣∣∣∣∣n
∫
R

c(x) · 1[a,a+ 1
n ]dx − n

∫
R

c(a) · 1[a,a+ 1
n ]dx

∣∣∣∣∣
≤ n

∫
R

|x − a|1[a,a+ 1
n ]dx =

1
2n

.

Taking supremum over all c ∈ Lip1(R) we obtain

dH(πfn , πg) ≤ 1
2n

n→∞−−−−→ 0.

It is easily seen that ϕfn(u) n→∞−−−−→ ϕg(u) for every u ∈ X, but
∣∣ϕfn(u) − ϕg(u)

∣∣ u→+∞−−−−−→ 1

for every n ∈ N. From that∥∥ϕfn − ϕg
∥∥

∞ ≥ 1 for every n ∈ N.

Therefore the sequence
(
ϕfn

)
n∈N

is not convergent to ϕg in the supremum
norm ‖ · ‖∞. �

Now we turn to formulating the second theorem of this section that ex-
tends [4, Theorem 3]. We note that in this theorem a real separable Hilbert
space X is considered and ϕf , ϕg denote the characteristic functions of πf , πf ,
which result from Theorem 3.4. The announced theorem is a straightforward
consequence of Theorem 3.4 and Lemma 4.19, and reads as follows.

Theorem 4.22. Assume that rv-functions f, g satisfy (Uf ) and (Ug), respec-
tively. Then

∣∣ϕf (u) − ϕg(u)
∣∣ ≤ ‖u‖ · min

{
1

1 − E‖Λf (·)‖
(

E‖ξg‖
1 − E‖Λg(·)‖α + β

)
,

1
1 − E‖Λg(·)‖

(
E‖ξf‖

1 − E‖Λf (·)‖α + β

)}
,

where α = E‖Λf (·) − Λg(·)‖, β = E‖ξf − ξg‖.

Remark 4.23. The main results of [4,5] concern rv-functions of the form f(x,
ω) = Λx + ξf (ω) with Λ ∈ L(X,X). In particular the author examines a kind
of continuity of the operator ξf �−→ ϕf . Note that this is one case in our
results, when α = 0. Under appropriate assumptions we have

dH(πf , πg) ≤ E‖ξf − ξg‖
1 − ‖Λ‖

as well as
∣∣ϕf (u) − ϕg(u)

∣∣ ≤ ‖u‖
1 − ‖Λ‖E‖ξf − ξg‖.
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