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1. Introduction

Does every operator on a Banach space have an invariant subspace? This is the
“invariant subspace problem”. The problem which we consider in this paper is
similar, but not equivalent to the “invariant subspace problem”. We introduce
and study the modified version of the Invariant Subspace Problem: whether a
given operator on a Banach space has a closed invariant affine subspace. We
solve this problem for a large class of operators which includes isometries and
the shift operators on �2 and �1. We apply this to the problem of reflexivity
of Banach spaces. Moreover, we prove that every linear mapping preserving
trace of matrices has a nonzero eigenvector with an eigenvalue which equals 1.

Let X be a Banach space over the field R. The Banach space of all bounded
linear operators from X to X is denoted by B(X). By X∗ we denote all the
continuous linear functionals on X. Now, we consider an operator A ∈ B(X). If
x∗ ∈X∗, then x∗◦A : X → R is easily seen to be a continuous linear functional
on X. That is, x∗◦A ∈ X∗. This defines a bounded linear operator A∗ ∈ B(X∗)
by A∗(x∗) := x∗ ◦ A. It is well known that ‖A‖ = ‖A∗‖.
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Let M be a subspace of X and let b∈X. The set b+M := {b+m : m ∈ M}
is called an affine subspace. The dimension of b+M is defined by dim(b+M) :=
dim M . Similarly, the codimension of b+M is defined by codim(b+M) :=
codim M . We say that an affine subspace b+M is nontrivial, if dimM � 1 and
b /∈ M or, equivalently, dimM � 1 and 0 /∈ b+M . It means that b + M is not
a linear subspace. It is easy to verify that

b + M ⊆ c + K ⇔ b − c ∈ K and M ⊆ K. (1.1)

It is clear that b + M is closed if and only if M is closed. Moreover, b + M =
b + M . It is a well-known property of real vector spaces that a non-empty
subset E ⊆ X is an affine subspace if and only if {tx + (1 − t)y : t∈R} ⊆ E
for all x, y ∈ E.

Let x∗ ∈ X∗ be a fixed nonzero linear functional and let α ∈ R \ {0} be
a fixed real number. Then, the set K := {x ∈ X : x∗(x) = α} is a nontrivial
affine subspace. Indeed, there is a vector p ∈ X such that x∗(p) �= 0. We
can calculate that K = α

x∗(p)p + ker x∗. The set ker x∗ is a subspace and
α

x∗(p)p /∈ ker x∗. Therefore K is a nontrivial affine subspace and codimK = 1.
If B ⊆ X, the affine hull of B, denoted by Aff(B), is the intersection of

all the affine subspaces that contain B. The closed affine hull of B is the
intersection of all closed affine subspaces of X that contain B; it is denoted by
Aff(B). Clearly Aff(B) ⊆ Lin(B) and Aff(B) ⊆ Lin(B). Moreover, an affine
hull of B is an affine subspace. It is known that

Aff(B) =

{
n∑

k=1

λkbk n∈N, b1, . . . , bn ∈B, λ1, . . . , λn ∈R,
n∑

k=1

λk = 1

}
.

If X,Y are Banach spaces, a function ϕ :X×Y →R is a bilinear form if
(i) ϕ(x1 + x2, y) = ϕ(x1, y) + ϕ(x2, y) for x1, x2 ∈ X and y ∈ Y ,
(ii) ϕ(x, y1 + y2) = ϕ(x, y1) + ϕ(x, y2) for x ∈ X and y1, y2 ∈ Y ,
(iii) ϕ(αx, y) = α·ϕ(x, y) and ϕ(x, βy) = β ·ϕ(x, y) for α, β ∈ R.

A bilinear form is bounded if there is a constant η such that
(iv) |ϕ(x, y)| � η‖x‖·‖y‖ for all x, y ∈ X.

The constant η is called a bound for ϕ.
Consider a Banach space X. Define 〈·, ·〉 : X×X∗ →R by 〈x, y∗〉 := y∗(x).

It is clear that 〈·, ·〉 is a bounded bilinear form with bound 1. The next two
theorems are known (see [2, pp. 18, 19, 20] and [3, pp. 58, 59, 60]).

Theorem 1.1. If ϕ : X × X∗ → R is a bounded bilinear form with bound η,
then there is a unique operator U ∈ B(X∗) such that ϕ(x, y∗) = 〈x,U(y∗)〉 for
all x in X and y∗ in X∗ and ‖U‖ � η.

Theorem 1.2. Let X be a reflexive Banach space. If ϕ : X × X∗ → R is
a bounded bilinear form with bound η, then there is a unique operator T ∈ B(X)
such that
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ϕ(x, y∗) = 〈T (x), y∗〉 = 〈x, T ∗(y∗)〉
for all x in X and y∗ in X∗ and ‖T‖ � η.

2. Main results - part I

In this section, we introduce and study affine subspaces that are invariant. Let
A be the operator on X. We say that b+M is an invariant affine subspace for
A if A(b + M) ⊆ b + M . It is easy to see that

A(b + M) ⊆ b + M ⇔ b − A(b) ∈ M and A(M) ⊆ M. (2.1)

So, if A has a nontrivial closed invariant affine subspace, then A has a closed in-
variant subspace. But the converse is not true. Define T ∈ B(R2) by T (x, y) :=
1
2 (x, y). It follows that the space Lin{λ(1, 1) : λ ∈ R} is a closed invariant sub-
space for T . But there is no nontrivial closed invariant affine subspace for T .
Indeed, we have the following result.

Theorem 2.1. Let X be a Banach space. Let an operator A ∈ B(X) satisfy
‖A‖ < 1 and A �= 0. Then, there is no nontrivial closed invariant affine sub-
space for A.

Proof. Suppose that A(b + M) ⊆ b + M is true for some b,M such that
0 /∈ b + M . Assume that b + M is closed. Fix xo ∈ b + M . Then ‖Ak(xo)‖ �
‖A‖k ·‖xo‖ → 0, so Ak(xo) tends to 0. But, Ak(xo) ∈ b + M , so 0 ∈ b + M .
This is a contradiction. �

Now we will prove the finite-dimensional case.

Theorem 2.2. Let X be a finite-dimensional real vector space with dim X � 2
or more. If A is an operator on X such that rank A � 1, then it has a nontrivial
invariant affine closed subspace if and only if 1 is an eigenvalue for A.

Proof. For the proof of “⇒”, fix an arbitrary closed invariant affine subspace
b + M of A and assume that b /∈ M . First, we show that (I −A)(b +M) ⊆ M .
Fix m ∈ M . Using (1.1) and (2.1) we get m−Am ∈ M and b−Ab ∈ M . Thus,
(I − A)(b + m) = b − Ab + m − Am ∈ M .

Suppose, for a contradiction, that 1 is not an eigenvalue for A, i.e., Aw �= w
for all w ∈ X\{0}. Since dimX < ∞, the operator I−A is invertible. Therefore
dim(I − A)(b + M) = dim(b + M) = dimM . Since (I − A)(b + M) ⊆ M , we
obtain (I − A)(b + M) = M . Thus, there exists a vector mo ∈ M such that
(I − A)(b + mo) = 0. Hence A(b + mo) = b + mo. Since b /∈ M , we have
b + mo �= 0. This contradicts the fact that Aw �= w for all w ∈ X \ {0}.

Now, we prove “⇐”. Fix w ∈ X \ {0} such that Aw = w. This leads to two
cases. Possibility 1. Ax = x for all x ∈ X. In this case, we may consider any
closed affine subspace K ⊆ X with 0 /∈ K. Then A(K) ⊆ K.
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Possibility 2. Axo �= xo for some xo ∈ X. Then we get xo /∈ ker(I −A) � w.
Thus we have ker(I − A) � X and 1 � dim ker(I − A). Since dim X < ∞, we
obtain dim(I − A)(X) < dim X. Finally, it is easy to check that an inclusion
A

(
w + (I − A)(X)

) ⊆ w + (I − A)(X) holds, and we are done. �

In the next section we will prove a similar result. Namely, we will discuss
the infinite-dimensional case. And in the last section we will show that every
linear mapping preserving trace of matrices has some nonzero eigenvector.

3. Main results - part II

If �∞ denotes the normed space of all bounded real sequences then its norm
is defined by ‖x‖∞ := sup{|xn| : n = 1, 2, . . .} for any bounded real sequence
x = (x1, x2, . . .). One can restrict this norm to the subspace c of all conver-
gent real sequences. We need the following well-known theorem for further
investigations. The proof can be found, e.g., in [1].

Theorem 3.1. There is a linear functional L : �∞ → R such that
(BL1) ‖L‖ = 1.
(BL2) If x = (x1, x2, . . .) ∈ c, then L(x) = L(x1, x2, . . .) = lim xn.
(BL3) If x = (x1, x2, . . .) ∈ �∞, then L(x1, x2, x3 . . .) = L(x2, x3, x4 . . .).
(BL4) If xn �yn for all n∈N, then L(x1, x2, . . .)�L(y1, y2, . . .).

A linear functional of the type described in Theorem 3.1 is called a Banach
limit.

From now on we assume that the considered Banach spaces are real and
their dimensions are not less than 2. The following lemma will be useful in the
proof of the main result.

Lemma 3.2. Let X be a Banach space and let A ∈ B(X). Suppose that A �= 0.
If for some y∗ ∈ X, y∗ �= 0 and for all x ∈ X

〈Ax, y∗〉 = 〈x, y∗〉 , (3.1)

then there exists a nontrivial closed invariant affine subspace K for A such
that codim K=1, where K = {x ∈ X : 〈x, y∗〉 = 1}. Moreover, A∗(y∗) = y∗.

Proof. It is easy to see that 〈·, y∗〉 ∈ X∗ and 〈·, y∗〉 �= 0. We consider the
set K := {x ∈ X : 〈x, y∗〉 = 1}. As we have observed, the set K is a nontrivial
affine subspace and codim K=1. We can calculate that A(K) ⊆ K.

Note, that 〈Ax, y∗〉 = y∗(Ax) = (y∗ ◦ A)(x) = (A∗(y∗)) (x) = 〈x,A∗(y∗)〉.
Now, using (3.1) we can obtain ∀x∈X 〈x,A∗(y∗)〉 = 〈x, y∗〉 and then
∀x∈X (A∗(y∗)) (x) = y∗(x). Finally, we have A∗(y∗) = y∗. �

Bearing the above proof in mind, we see that the following Lemma can be
shown similarly.
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Lemma 3.3. Let D ∈ B(X∗). Suppose that D �= 0. If for some x ∈ X\{0} and
all y∗ ∈ X∗ we have that:

〈x,Dy∗〉 = 〈x, y∗〉 , (3.2)

then there exists a nontrivial closed invariant affine subspace K for D such
that codim K=1.

From now on we consider the operators A ∈ B(X) satisfying the following
property: there is α > 0 such that ‖An‖ � α for all n ∈ N. Then we say
that A is a power bounded operator. For example, if ‖S‖ � 1, then S satisfies
this property. In particular, every isometry U ∈ B(X) satisfies ‖Un‖ � 1.
Let us consider an operator W ∈ B(�2) such that W (x1, x2, x3, x4, . . .) :=
( 12x2, 2x1, x3, x4, . . .). It is easy to check that ‖W‖ > 1, but W is also power
bounded.

Now we can state and prove the main results of this paper.

Theorem 3.4. Let X be a Banach space and let A ∈ B(X) be a power bounded
operator. Suppose that there are u ∈ X, w∗ ∈ X∗ and β > 0 such that
w∗(An(u)) � β for all n ∈ N. Then there exists a nontrivial closed invariant
affine subspace K for A such that codim K=1. Moreover, there is d∗ ∈ X∗\{0}
such that A∗(d∗) = d∗.

Proof. Fix a Banach limit L on �∞. Define the mapping ϕ : X×X∗ →R by

ϕ(x, y∗) := L
(
y∗(x), y∗(Ax), y∗(A2x), y∗(A3x), . . .

)
for x ∈ X, y∗ ∈ X∗.

By assumption, there is α > 0 such that ‖An‖ � α for all n ∈ N. Fix x ∈ X
and y∗ ∈ X∗. Note, that |y∗(Anx)| � ‖y∗‖·‖An‖·‖x‖ � ‖y∗‖· α ·‖x‖ for all
n∈N. Thus

(
y∗(x), y∗(Ax), y∗(A2x), y∗(A3x), . . .

) ∈ �∞. So, ϕ is a well-defined
function. It is easy to check that the above mapping is a bounded bilinear form.
Furthermore, for all x ∈ X and y∗ ∈ X∗, we have

ϕ(x, y∗) = L
(
y∗(x), y∗(Ax), y∗(A2x), . . .

)
(BL3)
= L

(
y∗(Ax), y∗(A2x), y∗(A3x), . . .

)
(3.3)

= ϕ(Ax, y∗).

By Theorem 1.1 there is an operator U ∈ B(X∗) such that

ϕ(x, y∗) = 〈x,U(y∗)〉
for all x ∈ X and y∗ ∈ X∗. Now the condition (3.3) becomes

〈Ax,U(y∗)〉 = 〈x,U(y∗)〉 . (3.4)

Note that ϕ(u,w∗)=L(w∗(u),w∗(Au),w∗(A2u), . . .)
(BL4)

� L(β, β, . . .)
(BL2)
= β>0.

This proves that ϕ �= 0. Thus U �= 0; hence there is z∗ ∈ X∗ such that
U(z∗) �= 0. From (3.4) we get

∀x∈X 〈Ax,U(z∗)〉 = 〈x,U(z∗)〉 . (3.5)
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Applying Lemma 3.2 and (3.5) we obtain the assertion. �

We prove that the invariant affine subspace can be extended to the greatest
invariant affine subspace.

Theorem 3.5. Let X be a Banach space and let A ∈ B(X) be a power bounded
operator. Suppose that there exists a nontrivial closed invariant affine subspace
b + M . Then there exists a nontrivial closed invariant affine subspace K for A
such that b + M ⊆ K and codim K=1.

Proof. There exists z∗ ∈ X∗ \ {0} such that z∗(b) �= 0 and M ⊆ ker z∗. Let us
define β := z∗(b) �= 0. Therefore

b + M ⊆ b + ker z∗. (3.6)

Fix a Banach limit L on �∞. We define the mapping ϕ : X×X∗ →R by

ϕ(x, y∗) := L
(
y∗(x), y∗(Ax), y∗(A2x), y∗(A3x), . . .

)
for x ∈ X, y∗ ∈ X∗.

In a similar way as in the proof of Theorem 3.4 we get the continuity of ϕ.
Using again (BL3), we get

ϕ(Ax, z∗) = ϕ(x, z∗) for all x ∈ X. (3.7)

Let us now define the closed affine subspace K := {x ∈ X : ϕ(x, z∗) = β}. By
(3.7) we have A(K) ⊆ K. It is easy to see that codim K = 1. Moreover, it is
clear that 0 /∈ K; so K is nontrivial.

We show that b + M ⊆ K. Fix v ∈ b + M . Combining the inclusion (3.6)
and the inclusion A(b + M) ⊆ b + M we have

∀x∈b+M∀n=0,1,2,... An(x) ∈ b + ker z∗.

Therefore

∀x∈b+M∀n=0,1,2,... z∗(An(x))=β, (3.8)

whence

ϕ(v, z∗)=L
(
z∗(v), z∗(Av), z∗(A2v), . . .

) (3.8)
= L(β, β, β, . . .)

(BL2)
= β,

so v ∈ K. This means b + M ⊆ K. �

Theorem 3.6. Let X be a Banach space and let A ∈ B(X) be a power bounded
operator. Then the following conditions are equivalent:

(a) there exists a nontrivial closed invariant affine subspace for A;
(b) there exists a nontrivial closed invariant affine subspace K for A such

that co dim K =1.

Moreover, each of the above conditions implies

(c) there is d∗ ∈ X∗ \ {0} such that A∗(d∗) = d∗.
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Proof. Clearly (b)⇒(a). By Theorem 3.5 we have (a)⇒(b). For the proof of
(a)⇒(c) fix arbitrarily a nontrivial closed affine subspace b + M such that

A(b + M) ⊆ b + M. (3.9)

The set {0} is compact and convex. The set b + M is closed and convex.
Moreover, we have {0} ∩ b + M = ∅. From the Separation Theorem, there are
w∗ ∈ X∗ and β > 0 such that

w∗(b + M) ⊆ [β,+∞). (3.10)

Fix u∈ b+M . Using (3.9) and (3.10) we obtain w∗(An(u)) � β for all n ∈ N.
Now by Theorem 3.4 we obtain (c). �

In order to summarize our considerations, we formulate below theorem.

Theorem 3.7. Let X be a reflexive Banach space and let A ∈ B(X) be a power
bounded operator. Then the following conditions are equivalent:
(a1) there are u ∈ X, w∗ ∈ X∗ and β > 0 such that w∗(An(u)) � β for all

n ∈ N;
(a2) there are u ∈ X, w∗ ∈ X∗ and β > 0 such that (A∗n

w∗)(u) � β for all
n ∈ N;

(b1) there is a nontrivial closed invariant affine subspace for A;
(b2) there is a nontrivial closed invariant affine subspace K for A such that

codim K =1;
(b3) there is a nontrivial closed invariant affine subspace for A∗;
(b4) there is a nontrivial closed invariant affine subspace K for A∗ such that

codim K =1;
(c1) there is c ∈ X \ {0} such that Ac = c;
(c2) there is d∗ ∈ X∗ \ {0} such that A∗(d∗) = d∗.

Since all the equivalences are either obvious or proved before, we omit the
proof here. However, we will show that the reflexivity is necessary. So, as an
illustration of the applications of Theorem 3.7 we obtain the following result.

Theorem 3.8. Let X be a Banach space and let A ∈ B(X) be a bounded oper-
ator. Assume that there is a nontrivial closed invariant affine subspace for A.
Assume that Ax �= x for all x ∈ X\{0}. Then the space X is not reflexive.

Proof. Suppose that the space X is reflexive. Applying (b1)⇔(c1) (see Theo-
rem 3.7), we get Ac = c for some c ∈ X \ {0}. This contradiction shows that
X is not reflexive. �

We have obtained a new method: to show that a given space is not reflexive,
it suffices to define a suitable operator. As a corollary we prove here a well
known property of the space �1. The next result may be known to the reader,
but it is proved here in a new manner.

Remark 3.9. The space �1 is not reflexive.
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In order to prove this fact, we define an operator A : �1 → �1 by A(x1, x2, . . .)
:= (0, x1, x2, . . .). It is easy to check that A is linear isometry. Therefore,
we have ‖An‖ � 1 for all n ∈ N. Let us consider e1 := (1, 0, 0, . . .), e2 :=
(0, 1, 0, 0, . . .),. . .∈�1. Define E := {ek : k ∈ N}.

It is easy to prove that A(Aff(E)) ⊆ Aff(E). The continuity of A asserts that
A(Aff(E)) ⊆ Aff(E). We show that the affine subspace Aff(E) is nontrivial. Fix
an arbitrary vector x ∈ Aff(E). Then, x =

∑n
k=1 λkek for some λ1, . . . , λn ∈ R

such that
∑n

k=1 λk = 1. Thus we have

‖x‖1 =

∥∥∥∥∥
n∑

k=1

λkek

∥∥∥∥∥
1

=
n∑

k=1

|λk| �
n∑

k=1

λk = 1,

and hence dist(0,Aff(E)) � 1. It follows that dist(0,Aff(E)) � 1. Since 0 /∈
Aff(E), the invariant affine subspace Aff(E) is nontrivial.

Moreover, it is easy to check that A(u) �= u for any u ∈ �1\{0}. Applying
Theorem 3.8, �1 is not reflexive.

Remark 3.10. It follows from Remark 3.9 that reflexivity of X is necessary
to obtain Theorem 3.7. Indeed, the implications (b1)⇒(c1) and (b2)⇒(c1) do
not hold for the operator A(x1, x2, . . .) := (0, x1, x2, . . .), where A : �1→�1.

4. Applications

We are interested in the applications of Theorems 2.2, 3.4, 3.6 and 3.7. Let
Mn(R) denote the space of all n × n matrices with real entries. Recall that

given an n × n matrix M = [aij ], its trace is a number trM :=
n∑

k=1

akk.

Linear maps of Mn(R) into itself, which preserve trace, are connected with
the known from the literature preservers problem. There are neither precise
nor useful characterizations of such maps. Perhaps, it can be explained, if we
see the three following examples.

Example 4.1. Let us define the first linear mapping A : M3(R) → M3(R) by
the following formula

A

⎛
⎝

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

⎞
⎠ :=

⎡
⎣2a33 0 a13 − a22

0 −a33 0
0 5a32 + a31 a11 + a22

⎤
⎦

for all M = [aij ] ∈ M3(R). Clearly, we get trM = trA(M) for all M ∈ Mn(R).

Example 4.2. Let us consider the second linear mapping B : M3(R) → M3(R)
given by the following formula

B

⎛
⎝

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

⎞
⎠ :=

⎡
⎣ trM 0 a32 + 4a21

0 0 0
0 0 0

⎤
⎦ .
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It is easy to see that trM = trB(M) for all M ∈ Mn(R).

Example 4.3. Finally, let us define the third linear mapping C : M3(R) →
M3(R) by the following formula

C

⎛
⎝

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

⎞
⎠ :=

⎡
⎣ −2trM 0 0

0 4trM a33

a12 + trM 0 −trM

⎤
⎦ .

Similarly, it is obvious again that trM = trC(M) for all M ∈ Mn(R).

So, the above examples showed that it may be hard to find a convenient
characterization of such mappings. However, we prove in this section that every
linear mapping preserving trace of matrices has some eigenvector.

Theorem 4.4. Let A : Mn(R) → Mn(R) be linear. Suppose that A preserves
trace. Then there is a nonzero matrix [wij ] ∈ Mn(R) such that A

(
[wij ]

)
=

[wij ].

Proof. It is easy to see that a subset K :=
{
W ∈ Mn(R) : tr(W ) = 1

}
is

a closed affine subspace and [0] /∈ K. By assumption, we have trA
(
U) = trU .

From this we get A(K) ⊆ K. Now we can apply Theorem 2.2, and the proof is
complete. �

The next result is an easy observation. If N ∈ B(X) is a nilpotent operator,
then N may have a closed invariant subspace. But it has no closed nontrivial
affine subspace. Indeed, we have the following result.

Corollary 4.5. Let N ∈B(X) be nilpotent, i.e., Nk =0 for some k ∈ N. Then
there is no nontrivial invariant affine subspace for N .

Proof. Assume, contrary to our claim, that there is a nontrivial closed invariant
affine subspace for N . Then there is a d∗ ∈X∗\{0} such that N∗(d∗)=d∗ (see
Theorem 3.6). On the other hand it is easy to verify that (N∗)k = 0. Therefore,
0=(N∗)k(d∗)=d∗ �=0 and we obtain a contradiction. �

The next theorem shows that every orbit is close, in a certain sense, to the
zero vector.

Theorem 4.6. Let X be a reflexive Banach space and let A ∈ B(X) be a power
bounded operator. Assume that Ax �= x for all x ∈ X. Then, for an arbitrary
subset F ⊆ X we have 0 ∈ conv {An(F ) : n = 1, 2, . . .}.
Proof. Assume, contrary to our claim, that 0 /∈ conv {An(F ) : n = 1, 2, . . .} for
some F ⊆ X. Then there is some w∗ �= 0 and some β > 0 (using the Separation
Theorem) such that

conv {An(F ) : n = 1, 2, . . .} ⊆ {x ∈ X : w∗(x) � β}. (4.1)

Fix u∈F . Using (4.1) we obtain w∗(An(u)) � β for all n ∈ N. By again apply-
ing Theorem 3.7 we get Axo = xo for some xo �= 0, which is a
contradiction. �
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Let us consider the well known unilateral shift on �2. We show that this
operator does not have a closed nontrivial affine invariant subspace.

Theorem 4.7. If S : �2 → �2 is defined by S(y1, y2, . . .) := (0, y1, y2, . . .), then
there is no nontrivial closed invariant affine subspace for S.

Proof. We know that S is an isometry. Therefore, we have ‖Sn‖ � 1 for all
n ∈ N. It is easy to check that S(u) = u ⇔ u = 0. In particular, from
implication (b1)⇒(c1) we derive the result. �

Corollary 4.8. If V : �2 → �2 is defined by V (y1, y2, . . .) := (y2, y3, y4, . . .), then
there is no nontrivial closed invariant affine subspace for V .

Proof. We know that S∗ = V . Now by applying Theorems 3.7 and 4.7 we
arrive at the desired assertion. �

Remark 4.9. Let us consider the shifts S : �2 → �2 and A : �1 → �1. The op-
erators S and A seem to be similar. It is amazing that the first one does not
have a nontrivial closed invariant affine subspace but the second one has such
a subspace.
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Institute of Mathematics
Pedagogical University of Cracow
Podchorążych 2
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