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Isometry groups of six-dimensional nilmanifolds
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Abstract. We determine the 6-dimensional nilpotent metric Lie algebras such that the Lie
algebra n has a descending series of ideals invariant under all automorphisms of n and the
dimension of the consecutive members of the series decreases by one. We call them metric
Lie algebras having a framing determined by ideals. We classify the isometry equivalence
classes and determine the isometry groups of connected and simply connected Riemannian
nilmanifolds on 6-dimensional nilpotent Lie groups having a Lie algebra n as their Lie
algebra.
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1. Introduction

Let n be a real nilpotent Lie algebra and N be the connected simply con-
nected Lie group having Lie algebra n. We call (n, 〈., .〉) a metric nilpotent Lie
algebra if it is given an Euclidean inner product 〈., .〉 on n. An inner product
〈., .〉 on n determines a left-invariant metric 〈., .〉N on N and conversely. Hence
(N, 〈., .〉N ) becomes a Riemannian manifold. We denote by OA(n) the group
of orthogonal automorphisms of the Lie algebra n consisting of the automor-
phisms of n which preserve the inner product on n. A connected Riemannian
manifold M which admits a transitive nilpotent Lie group of isometries is
called a Riemannian nilmanifold. It is pointed out in [10, Theorem 2(4)], that
every Riemannian nilmanifold M can be identified with the unique nilpotent
Lie subgroup N of the group I(M) of isometries of M acting simply transi-
tively on M , equipped with a left-invariant metric. Furthermore, I(N), the
group of isometries of (N, 〈., .〉N ), is the semi-direct product N � OA(n) of
the group OA(n) and the group N itself. From this observation it follows
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that the determination of the isometry equivalence classes of connected sim-
ply connected nilmanifolds and their isometry groups can be carried out by
the investigation of the classes of isometrically isomorphic metric nilpotent
Lie algebras. Applying this procedure the isometry equivalence classes and the
isometry groups of connected simply connected nilmanifolds of dimension at
most 5 are established in [5,7,9]. In the classes of 6-dimensional nilmanifolds
the isometry equivalence classes and the isometry groups on two-step nilpo-
tent Lie groups, respectively on five-step nilpotent Lie groups, this means on
filiform Lie groups, are accomplished in [3], respectively in [6].

In this paper we deal with 6-dimensional metric Lie algebras having nilpo-
tency class three or four. In [5, Sect. 3], the metric Lie algebras (n, 〈., .〉) having
a decomposition into an orthogonal direct sum of 1-dimensional subspaces such
that each orthogonal automorphism of (n, 〈., .〉) preserves this decomposition
play an essential role. We say that these metric Lie algebras have a framing. It
turns out in [5] that there is a strong connection between a special class C of
framed metric Lie algebras and their ideal structures. Namely the framing of a
metric Lie algebra in C can be constructed in a natural way using a descending
series of ideals n = n(0) ⊃ n(1) ⊃ · · · ⊃ n(n−1) ⊃ n(n) = {0} invariant under all
automorphisms of n with dim(n(i)) − dim(n(i+1)) = 1, i = 0, . . . , n − 1. This
type of framings we call framing determined by ideals. Every filiform metric
Lie algebra of dimension at least four allows a framing determined by ideals
(see [5, Theorem 4]).

Applying the classification of 6-dimensional nilpotent Lie algebras given in
[4], Sect. 3 is devoted to the thorough study of the ideal structures of these Lie
algebras and to the determination of the 6-dimensional nilpotent metric Lie
algebras having a framing determined by ideals. We obtain that 6-dimensional
indecomposable nilpotent Lie algebras with the exception of six classes possess
a suitable series of ideals (cf. Proposition 3.1).

In Sect. 4 we systematically apply the method of classification of the classes
of isometrically isomorphic metric Lie algebras given in [5]. We describe the
isometry equivalence classes and determine the group of isometries of con-
nected simply connected nilmanifolds on 6-dimensional indecomposable Lie
groups such that their Lie algebras have a framing determined by ideals.

Among the classes of nilmanifolds having nilpotency class n > 2, the geo-
metric properties of filiform nilmanifolds have been considerably improved.
In particular the characterization of totally geodesic subalgebras is given in
[1,2,8]. Our results can be utilized for the enquiry of the totally geodesic sub-
algebras of 6-dimensional nilmanifolds having nilpotency class n ∈ {3, 4}.

2. Preliminaries

The lower central series of a nilpotent Lie algebra � is � = S0� ⊃ S1� ⊃
· · · ⊃ Sj� ⊃ Sj+1� ⊃ · · · ⊃ {0} such that Sj+1� = [�, Sj�], j ∈ N. A Lie
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algebra � is called k-step nilpotent if Sk� = {0}, but Sk−1� �= {0} for some
k ∈ N. If an n-dimensional Lie algebra � is (n − 1)-step nilpotent then it is
called filiform. The metric Lie algebra is a Lie algebra equipped with an inner
product, the automorphisms preserving the inner product are called orthogonal
automorphisms.

Definition 2.1. An orthogonal direct sum decomposition n = V1 ⊕ · · · ⊕ Vn

on one-dimensional subspaces V1, . . . , Vn of a metric Lie algebra (n, 〈., .〉) is
called a framing, if any orthogonal automorphism of (n, 〈., .〉) preserves this
decomposition. An orthonormal basis {G1, G2, . . . , Gn} of (n, 〈., .〉) is adapted
to the framing n = V1 ⊕ · · · ⊕ Vn if Vi = R Gi for i = 1, . . . , n. The metric Lie
algebra (n, 〈., .〉) is called framed, if it has a framing.

The following concept originates from the assertion in Lemma 3 in [5].

Definition 2.2. An n-dimensional metric Lie algebra (n, 〈., .〉) has a framing
determined by ideals, if the Lie algebra n = span(G1, . . . , Gn) has a descending
series of ideals ni = span(Gi, . . . , Gn), i = 1, . . . , n, which is left invariant
under all automorphisms of n.

In this paper we consider 6-dimensional metric nilpotent Lie algebras hav-
ing a framing determined by ideals.

It is proved in Section 3.1 in [5] that the group OA(n) of orthogonal au-
tomorphisms of a framed metric nilpotent Lie algebra (n, 〈., .〉) is a subgroup
of the group Z2 × · · · × Z2, where the number of factors is less than or equal
to dim n. Hence the connected component of the isometry group I(N) of the
connected simply connected Riemannian nilmanifold (N, 〈., .〉) is isomorphic
to the Lie group N .

We often use the following (see [5, Lemma 1]).

Lemma 2.3. Let (n, 〈., .〉) and (n∗, 〈., .〉∗) be isometrically isomorphic framed
metric Lie algebras of dimension n with framings n = R G1 ⊕ · · · ⊕ R Gn and
n∗ = R G∗

1 ⊕ · · · ⊕ R G∗
n, where (G1, . . . , Gn), respectively (G∗

1, . . . , G
∗
n) are

orthonormal bases. If the commutators [., .] of n and [., .]∗ of n∗ are of the
form

[Gi, Gj ] =
n∑

k=1

ak
i,jGk and [G∗

i , G
∗
j ]

∗ =
n∑

k=1

a∗k
i,jG

∗
k, i, j, k = 1, . . . , n,

then ak
i,j = ±a∗k

i,j for all i, j, k = 1, . . . , n. Particularly, if ak
i,j , a∗k

i,j ≥ 0 then
ak

i,j = a∗k
i,j.

We denote by E
6 a 6-dimensional Euclidean vector space with a distin-

guished orthonormal basis E = {E1, E2, E3, E4, E5, E6}. The classification of
metric Lie algebras up to isometric isomorphisms proceeds in the following way
given by [5, pp. 371–372]: we apply the Gram–Schmidt process to the ordered
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basis {G6, G5, G4, G3, G2, G1} in the metric Lie algebra (l, 〈., .〉) to get an or-
thonormal basis {F1, F2, F3, F4, F5, F6} expressed by Fi =

∑n
k=i aikGk, aik ∈

R, such that aii ≥ 0. After this, we define a Lie bracket on E
6 with the same

structure coefficients with respect to its distinguished basis E as that of the
metric Lie algebra (l, 〈., .〉) with respect to its basis F . The obtained metric
Lie algebra (n, 〈., .〉) on E

6 is isometrically isomorphic to (l, 〈., .〉). Finally, we
examine under which conditions on the real parameters of metric Lie alge-
bras on E

6 we receive a one-to-one correspondence between the equivalence
classes of isometrically isomorphic metric Lie algebras and a family of metric
Lie algebras on E

6.

3. Framed metric Lie algebras of dimension 6

In this section we investigate nilpotent Lie algebras of dimension 6 and we wish
to determine which Lie algebras in this class have a framing determined by
ideals. We deal with Lie algebras which are not direct products of Lie algebras
of lower dimensions. According to [4, pp. 646–647], the non-isomorphic Lie
algebras in this class are the Lie algebras L6,i, i = 10, . . . , 26, with respect
to a basis {x1, x2, . . . , x6}. The 6-dimensional filiform nilpotent Lie algebras
L6,14, · · · , L6,18 are treated in [6], hence we omit these Lie algebras in our
consideration. The 6-dimensional 2-step Lie algebras are the Lie algebras Lε

6,22

and L6,26. The corresponding Lie algebras do not have a framing determined
by ideals, because their characteristic ideal is only the centre. The set of their
isometric isomorphism classes are studied in [3]. Therefore our list (3.1) doesn’t
include these two Lie algebra classes.

For the remaining cases we use the following basis changes: for L6,11,
L6,12: x1 	→ G1, x2 	→ G2, x3 	→ G4, x4 	→ G5, x5 	→ G3, x6 	→ G6, for
L6,13: x1 	→ G1, x2 	→ G3, x3 	→ G4, x4 	→ G2, x5 	→ G5, x6 	→ G6, for
Lε
6,19: x1 	→ G2, x2 	→ G1, x3 	→ G3, x4 	→ G4, x5 	→ G5, x6 	→ G6, for

L6,23, L6,25: x1 	→ G1, x2 	→ G2, x3 	→ G4, x4 	→ G3, x5 	→ G6, x6 	→ G5,
for all other Lie algebras: xi 	→ Gi, i = 1, . . . 6, to obtain the ordered bases
(G6, G5, G4, G3, G2, G1) as orthonormal basis adapted to the framing of the
corresponding metric Lie algebras. After applying the basis changes we obtain
Lie algebras l6,i, i = 10, . . . , 13, 19, 20, 21, 23, 24, 25, given by the following
non-vanishing commutators:

l6,10 : [G1, G2] = G3, [G1, G3] = G6, [G4, G5] = G6;

l6,11 : [G1, G2] = G4, [G1, G4] = G5, [G1, G5] = G6, [G2, G4] = G6,

[G2, G3] = G6;

l6,12 : [G1, G2] = G4, [G1, G4] = G5, [G1, G5] = G6, [G2, G3] = G6;

l6,13 : [G1, G3] = G4, [G1, G4] = G5, [G1, G5] = G6, [G3, G2] = G5,

[G4, G2] = G6;

(3.1)
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lε6,19 : [G2, G1] = G4, [G2, G3] = G5, [G1, G4] = G6, [G3, G5] = εG6;

l6,20 : [G1, G2] = G4, [G1, G3] = G5, [G1, G5] = G6, [G2, G4] = G6;

lε6,21 : [G1, G2] = G3, [G1, G3] = G4, [G1, G4] = G6, [G2, G3] = G5,

[G2, G5] = εG6;

l6,23 : [G1, G2] = G4, [G1, G3] = G5, [G1, G4] = G6, [G2, G3] = G6;

lε6,24 : [G1, G2] = G3, [G1, G3] = G5, [G1, G4] = εG6, [G2, G3] = G6,

[G2, G4] = G5;

l6,25 : [G1, G2] = G4, [G1, G4] = G6, [G1, G3] = G5

such that ε ∈ {−1, 0, 1}.

Proposition 3.1. Among the 6-dimensional indecomposable metric Lie alge-
bras the metric Lie algebras (l6,j , 〈., .〉), j = 11, . . . , 18, 20, 23, 25, (lε=0

6,19, 〈., .〉),
(lε=0
6,21, 〈., .〉) have a framing determined by ideals.

Proof. According to Theorem 1 in [5, p. 5], the filiform metric Lie algebras
L6,k for k = 14, . . . , 18 have a framing determined by ideals.

In the Lie algebras l6,k, k = 11, 12, 13 the center is Z(l6,k) = span(G6), the
commutator subalgebra is S1(l6,k) = span(G4, G5, G6), the second member of
the lower central series is S2(l6,k) = span(G5, G6). In the Lie algebras l6,l,
l = 11, 13 the centralizer C(S1(l6,l)) is span(G3, G4, G5, G6), the centralizer
C(S2(l6,l)) is span(G2, G3, G4, G5, G6). For the Lie algebra l6,12 the preim-
age π−1(Z(l6,12/S2(l6,12))) of the center of the factor algebra l6,12/S2(l6,12)
in l6,12 is span(G3, G4, G5, G6) and the centralizer C(S1(l6,12)) is
span(G2, G3, G4, G5, G6).

In the Lie algebra lε=0
6,19 the center is Z(lε=0

6,19) = span(G5, G6), the com-
mutator subalgebra is S1(lε=0

6,19) = span(G4, G5, G6), the second member of
the lower central series is S2(lε=0

6,19) = span(G6), the centralizer C(S1(lε=0
6,19))

is span(G2, G3, G4, G5, G6). The preimage of the center of the factor algebra
lε=0
6,19/Z(lε=0

6,19) in lε=0
6,19 is π−1(Z(lε=0

6,19/Z(lε=0
6,19))) = span(G3, G4, G5, G6).

In the Lie algebra l6,20 the centre is Z(l6,20) = span(G6), the commuta-
tor subalgebra is S1(l6,20) = span(G4, G5, G6), the centralizer C(S1(l6,20)) is
span(G3, G4, G5, G6), the commutator [l6,20, C(S1(l6,20))] is span(G5, G6). We
denote by l6,20 the factor Lie algebra l6,20/Z(l6,20) = span(G1, G2, G3, G4, G5)
with the Lie brackets [G1, G2] = G4, [G1, G3] = G5. The factor Lie algebra
C(S1(l6,20)) = C(S1(l6,20))/Z(l6,20) is the Lie algebra span(G3, G4, G5). The
centralizer C(C(S1(l6,20))) of C(S1(l6,20)) in l6,20 is span(G2, G3, G4, G5). The
preimage π−1(C(C(S1(l6,20))) in l6,20 is span(G2, G3, G4, G5, G6).

In the Lie algebra lε=0
6,21 the centre is Z(lε=0

6,21) = span(G5, G6), the commu-
tator subalgebra is S1(lε=0

6,21) = span(G3, G4, G5, G6), the second member of
the lower central series is S2(lε=0

6,21) = span(G4, G5, G6), the third member of
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the lower central series is S3(lε=0
6,21) = span(G6), the centralizer C(S2(lε=0

6,21)) is
span(G2, G3, G4, G5, G6).

In the Lie algebras l6,k, k = 23, 25 the center is Z(l6,k) = span(G5, G6), the
commutator subalgebra is S1(l6,k) = span(G4, G5, G6), the second member of
the lower central series is S2(l6,k) = span(G6) and the centralizer C(S1(l6,k))
is span(G2, G3, G4, G5, G6). The preimage π−1(Z(l6,k/Z(l6,k))) of the center
of the factor algebra l6,k/Z(l6,k) in l6,k is span(G3, G4, G5, G6).

Hence the subspaces span(Gi, · · · , G6), i = 1, . . . , 6, of the Lie algebras
l6,11, l6,12, l6,13, lε=0

6,19, l6,20, lε=0
6,21, l6,23, l6,25 form a descending series of charac-

teristic ideals. Therefore the metric Lie algebras listed in the proposition have
a framing determined by ideals (see Lemma 3 in [5]).

The metric Lie algebra belonging to l6,10 does not have a framing deter-
mined by ideals, since the characteristic ideals of l6,10 are the centre Z(l6,10) =
span(G6), the commutator subalgebra S1(l6,10) = span(G3, G6), the
centralizer C(S1(l6,10)) = span(G2, G3, G4, G5, G6) and the preimage
π−1(Z(l6,10/Z(l6,10))) = span(G3, G4, G5, G6) of the centre of the factor Lie
algebra l6,10/Z(l6,10) in l6,10.

A framing determined by ideals does not exist for the metric Lie alge-
bra belonging to lε6,19, ε ∈ {−1, 1}, because the characteristic ideals of lε6,19

are the centre Z(lε6,19) = span(G6), the commutator subalgebra S1(lε6,19) =
span(G4, G5, G6), the centralizer C(S1(lε6,19)) = span(G2, G4, G5, G6).

The characteristic ideals of lε6,21, ε ∈ {−1, 1} are the centre Z(lε6,21) =
span(G6), the commutator subalgebra S1(lε6,21) = span(G3, G4, G5, G6), the
second member of the lower central series S2(lε6,21) = span(G4, G5, G6). Hence
the metric Lie algebra corresponding to lε6,21, ε ∈ {−1, 1} does not allow a
framing determined by ideals.

The metric Lie algebra belonging to lε6,24, ε ∈ {−1, 0, 1} does not have
a framing determined by ideals, because the characteristic ideals of lε6,24 are
the centre Z(lε6,24) = span(G5, G6), the commutator subalgebra S1(lε6,24) =
span(G3, G5, G6), the centralizer C(S1(lε6,24)) = span(G3, G4, G5, G6). �

4. Isometry classes of metric Lie algebras

Firstly, we consider the 6-dimensional Lie algebras l6,11 and l6,12.

Definition 4.1. Let {E1, E2, E3, E4, E5, E6} be an orthonormal basis in the
Euclidean vector space E

6. We denote by n6,11(αi, βj), αi, βj ∈ R, i = 1, .., 4,
j = 1, ..., 6 with αi �= 0 the metric Lie algebra defined on E

6 given by the
non-vanishing commutators

[E1, E2] = α1E4 + β1E5 + β2E6, [E1, E4] = α2E5 + β5E6, [E2, E3] = β6E6,

[E1, E3] = β3E5 + β4E6, [E1, E5] = α3E6, [E2, E4] = α4E6.

(4.1)
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Let n6,12(αi, βj), αi, βj ∈ R, i = 1, . . . , 4, j = 1, . . . , 5 with αi �= 0 be the metric
Lie algebra defined on E

6 given by the non-vanishing commutators

[E1, E2] = α1E4 + β1E5 + β2E6, [E1, E4] = α2E5 + β5E6, [E2, E3] = α4E6,

[E1, E3] = β3E5 + β4E6, [E1, E5] = α3E6. (4.2)

The bracket operations (4.1) and (4.2) satisfy the Jacobi identity.

Theorem 4.2. Let 〈., .〉 be an inner product on the 6-dimensional Lie algebra
l6,11, respectively l6,12.

1. There is a unique metric Lie algebra (n6,11(αi, βj), 〈., .〉) which is iso-
metrically isomorphic to the metric Lie algebra (l6,11, 〈., .〉) with αi > 0,
i = 1, . . . , 4, and such that one of the following cases is satisfied

1. at least two of the elements of the set {β1, β3, β4, β5, β6} are positive
with the exception of the pairs {β1, β5} and {β3, β6},

2. β1 > 0 or β5 > 0, β3 = β4 = β6 = 0,
3. β3 > 0 or β6 > 0, β1 = β4 = β5 = 0,
4. β4 > 0, β1 = β3 = β5 = β6 = 0,
5. β1 = β3 = β4 = β5 = β6 = 0.

There is a unique metric Lie algebra (n6,12(αi, βj), 〈., .〉) which is iso-
metrically isomorphic to the metric Lie algebra (l6,12, 〈., .〉) with αi > 0,
i = 1, . . . , 4 and such that one of the above cases 1.−5. holds with β6 = 0.

2. The group OA(n6,11(αi, βj)) of orthogonal automorphisms of the metric
Lie algebra (n6,11(αi, βj), 〈., .〉) is the following group:
(a) in case 1. the group OA(n6,11(αi, βj)) is trivial,
(b) in case 2. one has OA(n6,11(αi, βj)) = {TEi = Ei, i = 1, 2, 4, 5, 6,

TE3 = εE3, ε = ±1} � Z2,
(c) in case 3. one has OA(n6,11(αi, βj)) = {TE2 = E2, TE5 = E5,

TEi = εEi, i = 1, 3, 4, 6, ε = ±1} � Z2,
(d) in case 4. one has OA(n6,11(αi, βj)) = {TE2 = E2, TE3 = E3,

TE5 = E5, TEi = εEi, i = 1, 4, 6, ε = ±1} � Z2,
(e) in case 5. one has OA(n6,11(αi, βj)) = {TE2 = E2, TE5 = E5,

TEi = ε1Ei, i = 1, 4, 6, TE3 = ε3E3, ε1, ε3 = ±1} � Z2 × Z2.
3. The group OA(n6,12(αi, βj)) of orthogonal automorphisms of the metric

Lie algebra (n6,12(αi, βj), 〈., .〉) is the following group:
(a) in case 1. the group OA(n6,12(αi, βj)) is trivial,
(b) in case 2. one has OA(n6,12(αi, βj))={TE1 =E1, TE3 =E3, TEi =

εEi, i = 2, 4, 5, 6, ε = ±1} � Z2,
(c) in case 3. one has OA(n6,12(αi, βj))={TE2 =E2, TE5 =E5, TEi =

εEi, i = 1, 3, 4, 6, ε = ±1} � Z2,
(d) in case 4. one has OA(n6,12(αi, βj)) = {TE4=E4, TE6=E6, TEi =

εEi, i = 1, 2, 3, 5, ε = ±1} � Z2,
(e) in case 5. one has OA(n6,12(αi, βj)) = {TEi = ε1Ei, i = 1, 3, TEj =

ε2Ej , j = 2, 5, TEk = ε1ε2Ek, k = 4, 6, ε1, ε2 = ±1} � Z2 × Z2.
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Proof. According to Proposition 3.1 we apply the Gram–Schmidt process to
the ordered basis {G6, G5, G4, G3, G2, G1} and we obtain an orthonormal basis
{F1, F2, F3, F4, F5, F6} of l6,11 and l6,12 such that the vector Fi is a positive
multiple of Gi modulo the subspace span (Gj ; j > i) and orthogonal to span
(Gj ; j > i). Hence the orthogonal direct sum RF1 ⊕ · · · ⊕ RF6 is a framing
of (l6,11, 〈., .〉) and (l6,12, 〈., .〉). Expressing the vectors of the new basis in the
form Fi =

∑6
k=i aikGk with aii > 0 we receive for (l6,11, 〈., .〉) and (l6,12, 〈., .〉)

[F1, F2] = α1F4 + β1F5 + β2F6, [F1, F4] = α2F5 + β5F6,

[F1, F3] = β3F5 + β4F6, [F1, F5] = α3F6, (4.3)

and for (l6,11, 〈., .〉)
[F2, F3] = β6F6, [F2, F4] = α4F6, (4.4)

for (l6,12, 〈., .〉)
[F2, F3] = α4F6, (4.5)

with αi > 0, i = 1, . . . , 4, and βj ∈ R, j = 1, . . . , 6. Changing the orthonormal
basis: F̃1 = −F1, F̃2 = F2, F̃3 = −F3, F̃4 = −F4, F̃5 = F5, F̃6 = −F6 we obtain
for (l6,11, 〈., .〉) and (l6,12, 〈., .〉)

[F̃1, F̃2] = α1F̃4 − β1F̃5 + β2F̃6, [F̃1, F̃4] = α2F̃5 − β5F̃6,

[F̃1, F̃3] = β3F̃5 − β4F̃6, [F̃1, F̃5] = α3F̃6,

and for (l6,11, 〈., .〉)
[F̃2, F̃3] = β6F̃6, [F̃2, F̃4] = α4F̃6,

for (l6,12, 〈., .〉)
[F̃2, F̃3] = α4F̃6.

Similarly, for (l6,11, 〈., .〉) the change of the basis: F̃1 = −F1, F̃2 = F2, F̃3 =
F3, F̃4 = −F4, F̃5 = F5, F̃6 = −F6 yields

[F̃1, F̃2] = α1F̃4 − β1F̃5 + β2F̃6, [F̃1, F̃4] = α2F̃5 − β5F̃6, [F̃1, F̃5] = α3F̃6,

[F̃1, F̃3] = −β3F̃5 + β4F̃6, [F̃2, F̃3] = −β6F̃6, [F̃2, F̃4] = α4F̃6,

and for (l6,12, 〈., .〉) the change of the basis: F̃1 = F1, F̃2 = −F2, F̃3 = F3, F̃4 =
−F4, F̃5 = −F5, F̃6 = −F6 gives

[F̃1, F̃2] = α1F̃4 + β1F̃5 + β2F̃6, [F̃1, F̃4] = α2F̃5 + β5F̃6, [F̃1, F̃5] = α3F̃6,

[F̃1, F̃3] = −β3F̃5 − β4F̃6, [F̃2, F̃3] = α4F̃6.

Hence there is an orthonormal basis such that in commutators (4.3) and (4.4)
as well as (4.3) and (4.5) we have αi > 0, i = 1, . . . , 4 and one of the cases
1. − 5. in assertion 1. is satisfied. This proves the existence of the metric Lie
algebras (l6,11, 〈., .〉) and (l6,12, 〈., .〉) having properties as in assertion 1.
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Let the linear map T : n6,k(αi, βj) → n6,k(α′
i, β

′
j), k = 11, 12, be an isomet-

ric isomorphism. The decomposition R E1 ⊕R E2 ⊕R E3 ⊕R E4 ⊕R E5 ⊕R E6

is a framing of both Lie algebras, where αi, α
′
i > 0, i = 1, . . . , 4. Hence by

Lemma 2.3 we have αi = α′
i, i = 1, . . . , 4 and |β′

j | = βj for j = 1, . . . , 6. Let
T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6. Using the commutation relations (4.3),
(4.4) and (4.5) we obtain from [TEi, TEj ]′ = T [Ei, Ej ], i, j = 1, . . . , 6, for
(l6,11, 〈., .〉) and (l6,12, 〈., .〉) the equations

ε1ε2 (α1E4 + β′
1E5 + β′

2E6) = α1ε4E4 + β1ε5E5 + β2ε6E6,

ε1ε3 (β′
3E5 + β′

4E6) = β3ε5E5 + β4ε6E6, ε1ε5 (α3E6) = α3ε6E6, (4.6)

ε1ε4 (α2E5 + β′
5E6) = α2ε5E5 + β5ε6E6,

and for (l6,11, 〈., .〉) the equations

ε2ε3 (β′
6E6) = β6ε6E6, ε2ε4 (α4E6) = α4ε6E6, (4.7)

and for (l6,12, 〈., .〉) the equation

ε2ε3 (α4E6) = α4ε6E6. (4.8)

From (4.6) and (4.7) it follows ε1ε2 = ε4, ε1ε4 = ε5, ε1ε5 = ε2ε4 = ε6.
Then one has ε2 = ε5 = 1, ε1 = ε4 = ε6. Using these relations we have
ε1ε2 = ε6. Therefore one has β′

2 = β2.
If β1 = β′

1 > 0 or β5 = β′
5 > 0, then we get additionally ε1ε2 = ε5 or ε1ε4 = ε6,

which yields that εi = 1, i = 1, 2, 4, 5, 6.
If β3 = β′

3 > 0 or β6 = β′
6 > 0, then we have additionally ε1ε3 = ε5 or

ε2ε3 = ε6. Hence one has ε2 = ε5 = 1 and ε1 = ε3 = ε4 = ε6.
If β4 = β′

4 > 0, then we get ε1ε3 = ε6, which gives that ε2 = ε3 = ε5 = 1 and
ε1 = ε4 = ε6.
Using these relations in assertion 1. of the Theorem
in case 1. we obtain εi = 1, i = 1, . . . , 6,
in case 2. we have εi = 1, i = 1, 2, 4, 5, 6,
in case 3. we get ε2 = ε5 = 1 and ε1 = ε3 = ε4 = ε6,
in case 4. we have ε2 = ε3 = ε5 = 1 and ε1 = ε4 = ε6,
in case 5. we obtain ε2 = ε5 = 1 and ε1 = ε4 = ε6.

From (4.6) and (4.8) it follows ε1ε2 = ε4, ε1ε4 = ε5, ε1ε5 = ε2ε3 = ε6.
Then one has ε1 = ε3, ε2 = ε5, ε1ε2 = ε4 = ε6. Using this we have ε1ε2 = ε6
and hence one has β′

2 = β2.
If β1 = β′

1 > 0 or β5 = β′
5 > 0, then we get additionally ε1ε2 = ε5 or

ε1ε4 = ε6, hence in both cases we obtain ε1 = ε3 = 1 and ε2 = ε4 = ε5 = ε6.
If β3 = β′

3 > 0, then we have in addition ε1ε3 = ε5, which gives ε2 = ε5 = 1,
ε1 = ε3 = ε4 = ε6.

If β4 = β′
4 > 0, then we get additionally ε1ε3 = ε6, which yields ε4 = ε6 = 1,

ε1 = ε2 = ε3 = ε5.
Applying these relations in assertion 1. of the Theorem

in case 1. we obtain εi = 1, i = 1, . . . , 6,
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in case 2. we get ε1 = ε3 = 1 and ε2 = ε4 = ε5 = ε6,
in case 3. we obtain ε2 = ε5 = 1 and ε1 = ε3 = ε4 = ε6,
in case 4. we have ε4 = ε6 = 1 and ε1 = ε2 = ε3 = ε5,
in case 5. we get ε1 = ε3, ε2 = ε5 and ε1ε2 = ε4 = ε6.

Hence the system of Eqs. (4.6) and (4.7) as well as (4.6) and (4.8) are
satisfied with β′

j = βj , j = 1, . . . , 6, in cases 1.−5. of the Theorem. This proves
the uniqueness of the Lie algebras n6,11(αi, βj) and n6,12(αi, βj) in cases 1.−5.
This yields assertion 1.

If the map T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6, is an orthogonal auto-
morphism of n6,11(αi, βj), respectively n6,12(αi, βj) then the system of equa-
tions given by (4.6) and (4.7), respectively (4.6) and (4.8) is satisfied with
αi > 0, i = 1, . . . , 4, β′

j = βj , j = 1, . . . , 6. Therefore the conditions for
εi, i = 1, . . . , 6, are the same as above. Taking this into account the group
of orthogonal automorphisms of n6,11(αi, βj) and n6,12(αi, βj) in case 1. is
trivial, in cases 2. − 5. is isomorphic to the group given by 2b–2e and 3b–3e.
This proves assertions 2 and 3. �
Corollary 4.3. Let (ℵ6,k(αi, βj), 〈., .〉), k = 11, 12, be the connected and sim-
ply connected Riemannian nilmanifold corresponding to the metric Lie algebra
(n6,k(αi, βj), 〈., .〉), k = 11, 12. The isometry group of (ℵ6,11(αi, βj), 〈., .〉) is
I(ℵ6,11(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 � ℵ6,11(αi, βj) if βj = 0, j = 1, 3, 4, 5, 6,

Z2 � ℵ6,11(αi, βj) if β1 > 0 or β5 > 0, β3 = β4 = β6 = 0,

or β3 > 0 or β6 > 0, β1 = β4 = β5 = 0,

or β4 > 0, βj = 0, j = 1, 3, 5, 6,

ℵ6,11(αi, βj) if β1 > 0, β3 > 0, or β1 > 0, β4 > 0,

or β1 > 0, β6 > 0, or β3 > 0, β4 > 0,

or β3 > 0, β5 > 0, or β4 > 0, β5 > 0,

or β4 > 0, β6 > 0, or β5 > 0, β6 > 0.

The isometry group of (ℵ6,12(αi, βj), 〈., .〉) is

I(ℵ6,12(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 � ℵ6,12(αi, βj) if β1 = β3 = β4 = β5 = 0,

Z2 � ℵ6,12(αi, βj) if β1 > 0 or β5 > 0, β3 = β4 = 0,

or β3 > 0, β1 = β4 = β5 = 0,

or β4 > 0, β1 = β3 = β5 = 0,

ℵ6,12(αi, βj) if β1 > 0, β3 > 0, or β1 > 0, β4 > 0,

or β3 > 0, β4 > 0, or β3 > 0, β5 > 0,

or β4 > 0, β5 > 0.

Secondly, we consider the 6-dimensional Lie algebra l6,13.
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Definition 4.4. Let {E1, E2, E3, E4, E5, E6} be an orthonormal basis in the
Euclidean vector space E

6. Denote by n6,13(αi, βj), αi, βj ∈ R, i = 1, . . . , 4,
j = 1, . . . , 7 with αi �= 0 the metric Lie algebra defined on E

6 given by the
non-vanishing commutators

[E1, E2] = β1E4 + β2E5 + β3E6, [E1, E3] =
α2α3

α4
E4 + β4E5 + β5E6,

[E1, E4] = α1E5 + β6E6, [E1, E5] = α2E6, (4.9)

[E3, E2] = α3E5 + β7E6, [E4, E2] = α4E6.

The bracket operation (4.9) satisfies the Jacobi identity.

Theorem 4.5. Let 〈., .〉 be an inner product on the 6-dimensional Lie algebra
l6,13.

1. There is a unique metric Lie algebra (n6,13(αi, βj), 〈., .〉) which is iso-
metrically isomorphic to the metric Lie algebra (l6,13, 〈., .〉) with αi > 0,
i = 1, . . . , 4 and such that one of the following cases is satisfied

1. at least two of the elements of {β1, β2, β3, β4, β6, β7} are positive
with the exception of the pairs {β1, β3}, {β4, β6}, {β4, β7}, {β6, β7},

2. β1 > 0 or β3 > 0, β2 = β4 = β6 = β7 = 0,
3. β2 > 0, β1 = β3 = β4 = β6 = β7 = 0,
4. β4 > 0 or β6 > 0 or β7 > 0, β1 = β2 = β3 = 0,
5. β1 = β2 = β3 = β4 = β6 = β7 = 0.

2. The group OA(n6,13(αi, βj)) of orthogonal automorphisms of the metric
Lie algebra (n6,13(αi, βj), 〈., .〉) is the following group:
(a) in case 1. the group OA(n6,13(αi, βj)) is trivial,
(b) in case 2. one has OA(n6,13(αi, βj)) = {TE2=E2, TE3=E3, TE5=

E5, TEi =εEi, i = 1, 4, 6, ε = ±1} � Z2,
(c) in case 3. one has OA(n6,13(αi, βj))={TE2 =E2, TE4 =E4, TE6 =

E6, TEi =εEi, i = 1, 3, 5, ε = ±1} � Z2,
(d) in case 4. one has OA(n6,13(αi, βj))={TE1 = E1, TE2=E2, TEi =

εEi, i = 3, 4, 5, 6, ε=±1} � Z2,
(e) in case 5. one has OA(n6,13(αi, βj)) = {TE2 = E2, TE1 = ε1E1,

TEi = ε3Ei, i = 3, 5, TEj = ε1ε3Ej , j = 4, 6, ε1, ε3 = ±1} � Z2 ×
Z2.

Proof. According to Proposition 3.1 we utilize the Gram–Schmidt process to
the ordered basis {G6, G5, G4, G3, G2, G1} which yields an orthonormal basis
{F1, F2, F3, F4, F5, F6} of l6,13 such that the vector Fi is a positive multiple
of Gi modulo the subspace span (Gj ; j > i) and orthogonal to span (Gj ; j >
i). The orthogonal direct sum RF1 ⊕ · · · ⊕ RF6 is a framing of (l6,13, 〈., .〉).
Expressing the vectors of the new basis in the form Fi =

∑6
k=i aikGk with

aii > 0 we get

[F1, F2] = β1F4 + β2F5 + β3F6, [F1, F3] =
α2α3

α4
F4 + β4F5 + β5F6,
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[F1, F4] = α1F5 + β6F6, [F1, F5] = α2F6, (4.10)

[F3, F2] = α3F5 + β7F6, [F4, F2] = α4F6

with αi > 0, i = 1, . . . , 4 and βj ∈ R, j = 1, . . . , 7. Changing the orthonormal
basis: F̃1 = −F1, F̃2 = F2, F̃3 = −F3, F̃4 = F4, F̃5 = −F5, F̃6 = F6 we obtain

[F̃1, F̃2] = −β1F̃4 + β2F̃5 − β3F̃6, [F̃1, F̃3] =
α2α3

α4
F̃4 − β4F̃5 + β5F̃6,

[F̃1, F̃4] = α1F̃5 − β6F̃6, [F̃1, F̃5] = α2F̃6,

[F̃3, F̃2] = α3F̃5 − β7F̃6, [F̃4, F̃2] = α4F̃6.

Similarly, the change of the basis: F̃1 = F1, F̃2 = F2, F̃3 = −F3, F̃4 = −F4, F̃5 =
−F5, F̃6 = −F6 gives

[F̃1, F̃2] = −β1F̃4 − β2F̃5 − β3F̃6, [F̃1, F̃3] =
α2α3

α4
F̃4 + β4F̃5 + β5F̃6,

[F̃1, F̃4] = α1F̃5 + β6F̃6, [F̃1, F̃5] = α2F̃6,

[F̃3, F̃2] = α3F̃5 + β7F̃6, [F̃4, F̃2] = α4F̃6.

Hence there is an orthonormal basis such that in commutators (4.10) we have
αi > 0, i = 1, . . . , 4 and one of the cases in assertion 1. is satisfied. This proves
the existence of n6,13(αi, βj) with the properties in assertion 1.

Let the linear map T : n6,13(αi, βj) → n6,13(α′
i, β

′
j) be an isometric isomor-

phism. The decomposition R E1⊕R E2⊕R E3⊕R E4⊕R E5⊕R E6 is a framing
of both Lie algebras, where αi, α

′
i > 0, i = 1, . . . , 4. According to Lemma 2.3

we have αi = α′
i, i = 1, . . . , 4 and |β′

j | = βj , j = 1, . . . , 7. Let T (Ei) = εiEi,
εi = ±1, i = 1, . . . , 6. Using the commutation relations (4.10) we obtain from
[TEi, TEj ]′ = T [Ei, Ej ], i, j = 1, . . . , 6, the equations

ε1ε2 (β′
1E4 + β′

2E5 + β′
3E6) = β1ε4E4 + β2ε5E5 + β3ε6E6,

ε1ε3

(
α2α3

α4
E4 + β′

4E5 + β′
5E6

)
=

α2α3

α4
ε4E4 + β4ε5E5 + β5ε6E6, (4.11)

ε1ε4 (α1E5 + β′
6E6) = α1ε5E5 + β6ε6E6, ε1ε5 (α2E6) = α2ε6E6,

ε3ε2 (α3E5 + β′
7E6) = α3ε5E5 + β7ε6E6, ε4ε2 (α4E6) = α4ε6E6.

From (4.11) it follows ε1ε3 = ε4, ε1ε4 = ε3ε2 = ε5, ε1ε5 = ε4ε2 = ε6. Hence
one has ε2 = 1, ε3 = ε5, ε1ε3 = ε4 = ε6. Using these relations we have
ε1ε3 = ε6. Therefore one has β′

5 = β5.
If β1 = β′

1 > 0 or β3 = β′
3 > 0, then we have additionally ε1ε2 = ε4 or

ε1ε2 = ε6. Hence one has ε2 = ε3 = ε5 = 1 and ε1 = ε4 = ε6.
If β2 = β′

2 > 0, then we get in addition ε1ε2 = ε5, which gives ε2 = ε4 = ε6 = 1,
ε1 = ε3 = ε5.
If β4 = β′

4 > 0 or β6 = β′
6 > 0 or β7 = β′

7 > 0, then we get additionally
ε1ε3 = ε5 or ε1ε4 = ε6 or ε3ε2 = ε6. Hence in these cases we obtain ε1 = ε2 = 1
and ε3 = ε4 = ε5 = ε6.
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Using these relations in assertion 1. of the Theorem
in case 1. we get εi = 1, i = 1, . . . , 6,
in case 2. we obtain ε2 = ε3 = ε5 = 1 and ε1 = ε4 = ε6,
in case 3. we have ε2 = ε4 = ε6 = 1 and ε1 = ε3 = ε5,
in case 4. we obtain ε1 = ε2 = 1 and ε3 = ε4 = ε5 = ε6,
in case 5. we get ε2 = 1, ε3 = ε5 and ε1ε3 = ε4 = ε6.
Hence the system of Eq. (4.11) is satisfied with β′

j = βj , j = 1, . . . , 7 in cases
1.−5. of the Theorem. Therefore the uniqueness of the Lie algebra n6,13(αi, βj)
in cases 1. − 5. is proved. This yields assertion 1.

If the map T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6, is an orthogonal automor-
phism of n6,13(αi, βj), then the system of equations given by (4.11) is satisfied
with αi > 0, i = 1, . . . , 4, β′

j = βj , j = 1, . . . , 7. Therefore in cases 1. − 5. the
conditions for εi, i = 1, . . . , 6, are given above. Taking this into consideration
the group of orthogonal automorphisms of n6,13(αi, βj) in case 1. is trivial, in
cases 2. − 5. is isomorphic to the group given by 2b–2e. This proves assertion
2. �
Corollary 4.6. Let (ℵ6,13(αi, βj), 〈., .〉) be the connected and simply connected
Riemannian nilmanifold belonging to (n6,13(αi, βj), 〈., .〉). The group of isome-
tries of (ℵ6,13(αi, βj), 〈., .〉) is

I(ℵ6,13(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 � ℵ6,13(αi, βj) if βj = 0, j = 1, 2, 3, 4, 6, 7,

Z2 � ℵ6,13(αi, βj) if β1 > 0 or β3 > 0, βj = 0, j = 2, 4, 6, 7,

or β2 > 0, βj = 0, j = 1, 3, 4, 6, 7,

or β4 > 0 or β6 > 0 or β7 > 0 and

β1 = β2 = β3 = 0,

ℵ6,13(αi, βj) if β1 > 0, β2 > 0, or β1 > 0, β4 > 0,

or β1 > 0, β6 > 0, or β1 > 0, β7 > 0,

or β2 > 0, β3 > 0, or β2 > 0, β4 > 0,

or β2 > 0, β6 > 0, or β2 > 0, β7 > 0,

or β3 > 0, β4 > 0, or β3 > 0, β6 > 0,

or β3 > 0, β7 > 0.

We treat the 6-dimensional Lie algebra lε=0
6,19.

Definition 4.7. Let {E1, E2, E3, E4, E5, E6} be an orthonormal basis in the
Euclidean vector space E

6. Denote by nε=0
6,19(αi, βj), αi, βj ∈ R, i = 1, 2, 3, j =

1, ..., 5 with αi �= 0 the metric Lie algebra defined on E
6 given by the non-

vanishing commutators

[E2, E1] = α1E4 + β1E5 + β2E6, [E1, E3] = β3E5 + β4E6, (4.12)

[E1, E4] = α2E6, [E2, E3] = α3E5 + β5E6.
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The bracket operation (4.12) satisfies the Jacobi identity.

Theorem 4.8. Let 〈., .〉 be an inner product on the 6-dimensional Lie algebra
lε=0
6,19.

1. There is a unique metric Lie algebra (nε=0
6,19(αi, βj), 〈., .〉) which is iso-

metrically isomorphic to the metric Lie algebra (lε=0
6,19, 〈., .〉) with αi > 0,

i = 1, 2, 3, and such that one of the following cases is satisfied
1. at least three of the elements of the set {β1, β2, β3, β4, β5} are posi-

tive with the exception of the triples {β1, β2, β5} and {β3, β4, β5},
2. at least two of the elements of the set {β1, β2, β5} are positive and

β3 = β4 = 0,
3. at least two of the elements of the set {β3, β4, β5} are positive and

β1 = β2 = 0,
4. β1 > 0, β3 > 0, β2 = β4 = β5 = 0,
5. β1 > 0, β4 > 0, β2 = β3 = β5 = 0,
6. β2 > 0, β3 > 0, β1 = β4 = β5 = 0,
7. β2 > 0, β4 > 0, β1 = β3 = β5 = 0,
8. β1 > 0, βj = 0, j = 2, 3, 4, 5,
9. β2 > 0, βj = 0, j = 1, 3, 4, 5,

10. β3 > 0, βj = 0, j = 1, 2, 4, 5,
11. β4 > 0, βj = 0, j = 1, 2, 3, 5,
12. β5 > 0, βj = 0, j = 1, 2, 3, 4,
13. βj = 0, j = 1, 2, 3, 4, 5.

2. The group OA(nε=0
6,19(αi, βj)) of orthogonal automorphisms of the metric

Lie algebra (nε=0
6,19(αi, βj), 〈., .〉) is the following group:

(a) in case 1. the group OA(nε=0
6,19(αi, βj)) is trivial,

(b) in case 2. one has OA(nε=0
6,19(αi, βj)) = {TE1 = E1, TE3 = E3, TEi =

εEi, i = 2, 4, 5, 6, ε = ±1} � Z2,
(c) in case 3. one has OA(nε=0

6,19(αi, βj)) = {TE3 = E3, TE4 = E4, TEi =
εEi, i = 1, 2, 5, 6, ε = ±1} � Z2,

(d) in case 4. one has OA(nε=0
6,19(αi, βj)) = {TE4 = E4, TE5 = E5, TEi =

εEi, i = 1, 2, 3, 6, ε = ±1} � Z2,
(e) in case 5. one has OA(nε=0

6,19(αi, βj)) = {TE2 = E2, TE6 = E6, TEi =
εEi, i = 1, 3, 4, 5, ε = ±1} � Z2,

(f) in case 6. one has OA(nε=0
6,19(αi, βj)) = {TE1 = E1, TE2 = E2, TE4 =

E4, TE6 = E6, TEi = εEi, i = 3, 5, ε = ±1} � Z2,
(g) in case 7. one has OA(nε=0

6,19(αi, βj)) = {TE1 = E1, TE5 = E5, TEi =
εEi, i = 2, 3, 4, 6, ε = ±1} � Z2,

(h) in case 8. one has OA(nε=0
6,19(αi, βj)) = {TEi = ε1Ei, i = 1, 3, TEj =

ε2Ej , j = 2, 6, TEk = ε1ε2Ek, k = 4, 5, ε1, ε2 = ±1} � Z2 × Z2,
(i) in case 9. one has OA(nε=0

6,19(αi, βj)) = {TE1 = E1, TEi = ε2Ei, i =
2, 4, 6, TE3 = ε3E3, TE5 = ε2ε3E5, ε2, ε3 = ±1} � Z2 × Z2,
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(j) in case 10. one has OA(nε=0
6,19(αi, βj)) = {TE4 = E4, TEi = ε1Ei, i =

1, 2, 6, TE3 = ε3E3, TE5 = ε1ε3E5, ε1, ε3 = ±1} � Z2 × Z2,
(k) in case 11. one has OA(nε=0

6,19(αi, βj)) = {TEi = ε1Ei, i = 1, 5, TEj =
ε2Ej , j = 2, 6, TEk = ε1ε2Ek, k = 3, 4, ε1, ε2 = ±1} � Z2 × Z2,

(l) in case 12. one has OA(nε=0
6,19(αi, βj)) = {TE3 = E3, TE1 = ε1E1,

TEi = ε2Ei, i = 2, 5, 6, TE4 = ε1ε2E4, ε1, ε2 = ±1} � Z2 × Z2,
(m) in case 13. one has OA(nε=0

6,19(αi, βj)) = {TE1 = ε1E1, TEi = ε2Ei,
i = 2, 6, TE3 = ε3E3, TE4 = ε1ε2E4, TE5 = ε2ε3E5, ε1, ε2,
ε3 = ±1} � Z2 × Z2 × Z2.

Proof. According to Proposition 3.1 the application of the Gram–Schmidt pro-
cess to the ordered basis {G6, G5, G4, G3, G2, G1} yields an orthonormal basis
{F1, F2, F3, F4, F5, F6} of lε=0

6,19 such that the vector Fi is a positive multiple of
Gi modulo the subspace span (Gj ; j > i) and orthogonal to span (Gj ; j > i).
The orthogonal direct sum RF1 ⊕· · ·⊕RF6 is a framing of (lε=0

6,19, 〈., .〉) and the
vectors of the new basis can be written into the form Fi =

∑6
k=i aikGk with

aii > 0. Hence we receive

[F2, F1] = α1F4 + β1F5 + β2F6, [F1, F3] = β3F5 + β4F6, (4.13)

[F1, F4] = α2F6, [F2, F3] = α3F5 + β5F6

with αi > 0, i = 1, 2, 3 and βj ∈ R, j = 1, . . . , 5. The changes of the or-
thonormal basis: F̃1 = −F1, F̃2 = F2, F̃3 = F3, F̃4 = −F4, F̃5 = F5, F̃6 = F6,
respectively F̃1 = −F1, F̃2 = F2, F̃3 = −F3, F̃4 = −F4, F̃5 = −F5, F̃6 = F6,
respectively F̃1 = −F1, F̃2 = −F2, F̃3 = F3, F̃4 = F4, F̃5 = −F5, F̃6 = −F6 give

[F̃2, F̃1] = α1F̃4 − β1F̃5 − β2F̃6, [F̃1, F̃3] = −β3F̃5 − β4F̃6,

[F̃1, F̃4] = α2F̃6, [F̃2, F̃3] = α3F̃5 + β5F̃6,

respectively

[F̃2, F̃1] = α1F̃4 + β1F̃5 − β2F̃6, [F̃1, F̃3] = −β3F̃5 + β4F̃6,

[F̃1, F̃4] = α2F̃6, [F̃2, F̃3] = α3F̃5 − β5F̃6,

respectively

[F̃2, F̃1] = α1F̃4 − β1F̃5 − β2F̃6, [F̃1, F̃3] = β3F̃5 + β4F̃6,

[F̃1, F̃4] = α2F̃6, [F̃2, F̃3] = α3F̃5 + β5F̃6.

Hence there is an orthonormal basis such that in commutators (4.13) one has
αi > 0, i = 1, 2, 3, and one of the cases in assertion 1. holds. This proves the
existence of nε=0

6,19(αi, βj) having properties as in assertion 1.
Let the linear map T : nε=0

6,19(αi, βj) → nε=0
6,19(α

′
i, β

′
j) be an isometric iso-

morphism. The decomposition R E1 ⊕ R E2 ⊕ R E3 ⊕ R E4 ⊕ R E5 ⊕ R E6 is a
framing of both Lie algebras, where αi, α

′
i > 0, i = 1, 2, 3. Hence by Lemma

2.3 we have αi = α′
i, i = 1, 2, 3 and |β′

j | = βj , j = 1, . . . , 5. Let T (Ei) = εiEi,
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εi = ±1, i = 1, . . . , 6. Using the commutation relations (4.13) we obtain from
[TEi, TEj ]′ = T [Ei, Ej ], i, j = 1, . . . , 6, the equations

ε2ε1 (α1E4 + β′
1E5 + β′

2E6) = α1ε4E4 + β1ε5E5 + β2ε6E6,

ε1ε3 (β′
3E5 + β′

4E6) = β3ε5E5 + β4ε6E6, ε1ε4 (α2E6) = α2ε6E6, (4.14)

ε2ε3 (α3E5 + β′
5E6) = α3ε5E5 + β5ε6E6.

It follows ε2ε1 = ε4, ε1ε4 = ε6, ε2ε3 = ε5. Hence one has ε2 = ε6.
If β1 = β′

1 > 0, then we get additionally ε2ε1 = ε5, which yields ε1 = ε3,
ε2 = ε6 and ε4 = ε5.
If β2 = β′

2 > 0, then we have additionally ε2ε1 = ε6, which gives ε1 = 1 and
ε2 = ε4 = ε6.
If β3 = β′

3 > 0, then one has in addition ε1ε3 = ε5, which yields ε4 = 1 and
ε1 = ε2 = ε6.
If β4 = β′

4 > 0, then we get additionally ε1ε3 = ε6. Hence one has ε1 = ε5,
ε2 = ε6, ε3 = ε4.
If β5 = β′

5 > 0, then we have additionally ε2ε3 = ε6, which gives ε3 = 1 and
ε2 = ε5 = ε6.
Applying these relations in assertion 1. of the Theorem
in case 1. we obtain εi = 1, i = 1, . . . , 6,
in case 2. we get ε1 = ε3 = 1 and ε2 = ε4 = ε5 = ε6,
in case 3. we have ε3 = ε4 = 1 and ε1 = ε2 = ε5 = ε6,
in case 4. we get ε4 = ε5 = 1 and ε1 = ε2 = ε3 = ε6,
in case 5. we obtain ε2 = ε6 = 1 and ε1 = ε3 = ε4 = ε5,
in case 6. we have ε1 = ε2 = ε4 = ε6 = 1 and ε3 = ε5,
in case 7. we receive ε1 = ε5 = 1 and ε2 = ε3 = ε4 = ε6,
in case 8. we get ε1 = ε3, ε2 = ε6 and ε1ε2 = ε4 = ε5,
in case 9. we have ε1 = 1 and ε2 = ε4 = ε6, ε2ε3 = ε5,
in case 10. we obtain ε4 = 1 and ε1 = ε2 = ε6, ε2ε3 = ε1ε3 = ε5,
in case 11. we have ε1 = ε5, ε2 = ε6 and ε1ε2 = ε3 = ε4,
in case 12. we get ε3 = 1 and ε2 = ε5 = ε6, ε1ε2 = ε4,
in case 13. we obtain ε2 = ε6, ε1ε2 = ε4, ε2ε3 = ε5.
Hence the system of Eq. (4.14) is satisfied with β′

j = βj , j = 1, . . . , 5 in
cases 1. − 13. of the Theorem, which proves the uniqueness of the Lie algebra
nε=0
6,19(αi, βj) in assertion 1.

If the map T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6, is an orthogonal automor-
phism of nε=0

6,19(αi, βj), then the system of equations given by (4.14) is satisfied
with αi > 0, i = 1, 2, 3, β′

j = βj , j = 1, . . . , 5. Therefore in cases 1. − 13. we
obtain the above conditions for εi, i = 1, . . . , 6. Hence the group of orthog-
onal automorphisms of nε=0

6,19(αi, βj) in case 1. is trivial, in cases 2. − 13. is
isomorphic to the group given by 2b–2 m, which proves assertion 2. �



Vol. 97 (2023) Isometry groups of six-dimensional nilmanifolds 741

Corollary 4.9. Let (ℵε=0
6,19(αi, βj), 〈., .〉) be the connected and simply connected

Riemannian nilmanifold corresponding to (nε=0
6,19(αi, βj), 〈., .〉). The isometry

group of (ℵε=0
6,19(αi, βj), 〈., .〉) is

I(ℵε=0
6,19(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 × Z2 � ℵε=0
6,19(αi, βj) if βj = 0, j = 1, 2, 3, 4, 5,

Z2 × Z2 � ℵε=0
6,19(αi, βj) if β1 > 0, βj = 0, j = 2, 3, 4, 5,

or β2 > 0, βj = 0, j = 1, 3, 4, 5,

or β3 > 0, βj = 0, j = 1, 2, 4, 5,

or β4 > 0, βj = 0, j = 1, 2, 3, 5,

or β5 > 0, βj = 0, j = 1, 2, 3, 4,

Z2 � ℵε=0
6,19(αi, βj) if β1 > 0, β2 > 0, β3 = β4 = 0,

or β1 > 0, β5 > 0, β3 = β4 = 0,

or β2 > 0, β5 > 0, β3 = β4 = 0,

or β3 > 0, β4 > 0, β1 = β2 = 0,

or β3 > 0, β5 > 0, β1 = β2 = 0,

or β4 > 0, β5 > 0, β1 = β2 = 0,

or β1 > 0, β3 > 0, β2 = β4 = β5 = 0,

or β1 > 0, β4 > 0, β2 = β3 = β5 = 0,

or β2 > 0, β3 > 0, β1 = β4 = β5 = 0,

or β2 > 0, β4 > 0, β1 = β3 = β5 = 0,

ℵε=0
6,19(αi, βj) if β1 > 0, β2 > 0, β3 > 0,

or β1 > 0, β2 > 0, β4 > 0,

or β1 > 0, β3 > 0, β4 > 0,

or β1 > 0, β3 > 0, β5 > 0,

or β1 > 0, β4 > 0, β5 > 0,

or β2 > 0, β3 > 0, β4 > 0,

or β2 > 0, β3 > 0, β5 > 0,

or β2 > 0, β4 > 0, β5 > 0.

We consider the 6-dimensional Lie algebra l6,20.

Definition 4.10. Let {E1, E2, E3, E4, E5, E6} be an orthonormal basis in the
Euclidean vector space E

6. Denote by n6,20(αi, βj), αi, βj ∈ R, i = 1, . . . , 4,
j = 1, . . . , 5 with αi �= 0 the metric Lie algebra defined on E

6 given by the
non-vanishing commutators

[E1, E2] = α1E4 + β1E5 + β2E6, [E1, E4] = β4E6, [E2, E3] = β5E6,

[E1, E3] = α2E5 + β3E6, [E1, E5] = α3E6, [E2, E4] = α4E6.
(4.15)
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The bracket operation (4.15) satisfies the Jacobi identity.

Theorem 4.11. Let 〈., .〉 be an inner product on the 6-dimensional Lie algebra
l6,20.

1. There is a unique metric Lie algebra (n6,20(αi, βj), 〈., .〉) which is iso-
metrically isomorphic to the metric Lie algebra (l6,20, 〈., .〉) with αi > 0,
i = 1, . . . , 4 and such that one of the following cases is satisfied

1. at least two of the elements of the set {β1, β2, β3, β4, β5} are positive
with the exception of the pairs {β1, β4} and {β2, β5},

2. β1 > 0 or β4 > 0, β2 = β3 = β5 = 0,
3. β2 > 0 or β5 > 0, β1 = β3 = β4 = 0,
4. β3 > 0, β1 = β2 = β4 = β5 = 0,
5. β1 = β2 = β3 = β4 = β5 = 0.

2. The group OA(n6,20(αi, βj)) of orthogonal automorphisms of the metric
Lie algebra (n6,20(αi, βj), 〈., .〉) is the following group:
(a) in case 1. the group OA(n6,20(αi, βj)) is trivial,
(b) in case 2. one has OA(n6,20(αi, βj)) = {TE4 = E4, TE5 = E5,

TEi =εEi, i = 1, 2, 3, 6, ε = ±1} � Z2,
(c) in case 3. one has OA(n6,20(αi, βj)) = {TE2 = E2, TE5 = E5,

TEi =εEi, i = 1, 3, 4, 6, ε = ±1} � Z2,
(d) in case 4. one has OA(n6,20(αi, βj)) = {TE1=E1, TE3=E3, TE5=

E5, TE6 = E6, TEi = εEi, i = 2, 4, ε = ±1} � Z2,
(e) in case 5. one has OA(n6,20(αi, βj)) = {TE5 = E5, TEi = ε1Ei, i =

1, 3, 6, TE2 = ε2E2, TE4 = ε1ε2E4, ε1, ε2 = ±1} � Z2 × Z2.

Proof. According to Proposition 3.1 we apply the Gram–Schmidt process to
the ordered basis {G6, G5, G4, G3, G2, G1} and obtain an orthonormal basis
{F1, F2, F3, F4, F5, F6} of l6,20 such that the vector Fi is a positive multiple
of Gi modulo the subspace span (Gj ; j > i) and orthogonal to span (Gj ; j >
i). The orthogonal direct sum RF1 ⊕ · · · ⊕ RF6 is a framing of (l6,20, 〈., .〉).
Expressing the vectors of the new basis in the form Fi =

∑6
k=i aikGk with

aii > 0 we get

[F1, F2] = α1F4 + β1F5 + β2F6, [F1, F4] = β4F6, [F2, F3] = β5F6, (4.16)

[F1, F3] = α2F5 + β3F6, [F1, F5] = α3F6, [F2, F4] = α4F6

with αi > 0, i = 1, . . . , 4 and βj ∈ R, j = 1, . . . , 5. The change of the or-
thonormal basis: F̃1 = F1, F̃2 = −F2, F̃3 = F3, F̃4 = −F4, F̃5 = F5, F̃6 = F6

gives

[F̃1, F̃2] = α1F̃4 − β1F̃5 − β2F̃6, [F̃1, F̃4] = −β4F̃6, [F̃2, F̃3] = −β5F̃6,

[F̃1, F̃3] = α2F̃5 + β3F̃6, [F̃1, F̃5] = α3F̃6, [F̃2, F̃4] = α4F̃6.
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Similarly, changing the orthonormal basis: F̃1 = −F1, F̃2 = F2, F̃3 = −F3,
F̃4 = −F4, F̃5 = F5, F̃6 = −F6 we obtain

[F̃1, F̃2] = α1F̃4 − β1F̃5 + β2F̃6, [F̃1, F̃4] = −β4F̃6, [F̃2, F̃3] = β5F̃6,

[F̃1, F̃3] = α2F̃5 − β3F̃6, [F̃1, F̃5] = α3F̃6, [F̃2, F̃4] = α4F̃6.

Hence there exists an orthonormal basis such that in commutators (4.16) we
have αi > 0, i = 1, . . . , 4 and one of the cases in assertion 1. is satisfied. This
proves the existence of n6,20(αi, βj) with the properties in assertion 1.

Let the linear map T : n6,20(αi, βj) → n6,20(α′
i, β

′
j) be an isometric isomor-

phism. The decomposition R E1⊕R E2⊕R E3⊕R E4⊕R E5⊕R E6 is a framing
of both Lie algebras, where αi, α

′
i > 0, i = 1, . . . , 4. Hence by Lemma 2.3 we

have αi = α′
i, i = 1, . . . , 4 and |β′

j | = βj , j = 1, . . . , 5. Let T (Ei) = εiEi, εi =
±1, i = 1, . . . , 6, then we obtain from [TEi, TEj ]′ = T [Ei, Ej ], i, j = 1, . . . , 6,
using the commutation relations (4.16) the equations

ε1ε2 (α1E4 + β′
1E5 + β′

2E6) = α1ε4E4 + β1ε5E5 + β2ε6E6,

ε1ε3 (α2E5 + β′
3E6) = α2ε5E5 + β3ε6E6, ε1ε4 (β′

4E6) = β4ε6E6, (4.17)

ε1ε5 (α3E6) = α3ε6E6, ε2ε3 (β′
5E6) = β5ε6E6, ε2ε4 (α4E6) = α4ε6E6.

From (4.17) it follows ε1ε2 = ε4, ε1ε3 = ε5, ε1ε5 = ε2ε4 = ε6, which yields
ε5 = 1, ε1 = ε3 = ε6.
If β1 = β′

1 > 0 or β4 = β′
4 > 0, then we have additionally ε1ε2 = ε5 or

ε1ε4 = ε6, which gives that ε4 = ε5 = 1 and ε1 = ε2 = ε3 = ε6.
If β2 = β′

2 > 0 or β5 = β′
5 > 0, then we get additionally ε1ε2 = ε6 or ε2ε3 = ε6.

Hence one has ε2 = ε5 = 1 and ε1 = ε3 = ε4 = ε6.
If β3 = β′

3 > 0, then we have ε1ε3 = ε6, which yields that ε1 = ε3 = ε5 = ε6 =
1 and ε2 = ε4.
Using these relations in assertion 1. of the Theorem
in case 1. we obtain εi = 1, i = 1, . . . , 6,
in case 2. we have ε4 = ε5 = 1 and ε1 = ε2 = ε3 = ε6,
in case 3. we get ε2 = ε5 = 1 and ε1 = ε3 = ε4 = ε6,
in case 4. we obtain ε1 = ε3 = ε5 = ε6 = 1 and ε2 = ε4,
in case 5. we get ε5 = 1, ε1 = ε3 = ε6 and ε1ε2 = ε4.
Hence the system of Eq. (4.17) is satisfied with β′

j = βj , j = 1, . . . , 5 in
cases 1. − 5. of the Theorem, which proves the uniqueness of the Lie alge-
bra n6,20(αi, βj). This shows assertion 1.

If the map T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6, is an orthogonal automor-
phism of n6,20(αi, βj), then the system of equations given by (4.17) is satisfied
with αi > 0, i = 1, . . . , 4, β′

j = βj , j = 1, . . . , 5. Therefore in cases 1. − 5. the
conditions for εi, i = 1, . . . , 6, are given above. Hence the group of orthogo-
nal automorphisms of n6,20(αi, βj) in case 1. is trivial, in cases 2. − 5. it is
isomorphic to the group given by 2b–2e and assertion 2 is proved. �
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Corollary 4.12. Let (ℵ6,20(αi, βj), 〈., .〉) be the connected and simply connected
Riemannian nilmanifold corresponding to (n6,20(αi, βj), 〈., .〉). The isometry
group of (ℵ6,20(αi, βj), 〈., .〉) is

I(ℵ6,20(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 � ℵ6,20(αi, βj) if βj = 0, j = 1, 2, 3, 4, 5,

Z2 � ℵ6,20(αi, βj) if β1 > 0 or β4 > 0, β2 = β3 = β5 = 0,

or β2 > 0 or β5 > 0, β1 = β3 = β4 = 0,

or β3 > 0, β1 = β2 = β4 = β5 = 0,

ℵ6,20(αi, βj) if β1 > 0, β2 > 0, or β1 > 0, β3 > 0,

or β1 > 0, β5 > 0, or β2 > 0, β3 > 0,

or β2 > 0, β4 > 0, or β3 > 0, β4 > 0,

or β3 > 0, β5 > 0, or β4 > 0, β5 > 0.

We consider the 6-dimensional Lie algebra lε=0
6,21.

Definition 4.13. Let {E1, E2, E3, E4, E5, E6} be an orthonormal basis in the
Euclidean vector space E

6. Denote by nε=0
6,21(αi, βj), αi, βj ∈ R, i = 1, . . . , 4,

j = 1, . . . , 6 with αi �= 0 the metric Lie algebra defined on E
6 given by the

non-vanishing commutators

[E1, E2] = α1E3 + β1E4 + β2E5 + β3E6, [E1, E4] = α3E6, (4.18)

[E1, E3] = α2E4 + β4E5 + β5E6, [E2, E3] = α4E5 + β6E6.

The bracket operation (4.18) satisfies the Jacobi identity.

Theorem 4.14. Let 〈., .〉 be an inner product on the 6-dimensional Lie algebra
lε=0
6,21.

1. There is a unique metric Lie algebra (nε=0
6,21(αi, βj), 〈., .〉) which is iso-

metrically isomorphic to the metric Lie algebra (lε=0
6,21, 〈., .〉) with αi > 0,

i = 1, . . . , 4 and such that one of the following cases is satisfied
1. at least two of the elements of the set {β1, β2, β4, β5, β6} are positive

with the exception of the pairs {β1, β5} and {β2, β6},
2. β1 > 0 or β5 > 0, β2 = β4 = β6 = 0,
3. β2 > 0 or β6 > 0, β1 = β4 = β5 = 0,
4. β4 > 0, β1 = β2 = β5 = β6 = 0,
5. β1 = β2 = β4 = β5 = β6 = 0.

2. The group OA(nε=0
6,21(αi, βj)) of orthogonal automorphisms of the metric

Lie algebra (nε=0
6,21(αi, βj), 〈., .〉) is the following group:

(a) in case 1. the group OA(nε=0
6,21(αi, βj)) is trivial,

(b) in case 2. one has OA(nε=0
6,21(αi, βj)) = {TE1 = E1, TE5 = E5,

TEi = εEi, i = 2, 3, 4, 6, ε = ±1} � Z2,
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(c) in case 3. one has OA(nε=0
6,21(αi, βj)) = {TE2 = E2, TE4 = E4,

TEi = εEi, i = 1, 3, 5, 6, ε = ±1} � Z2,
(d) in case 4. one has OA(nε=0

6,21(αi, βj)) = {TE3 = E3, TE6 = E6,
TEi = εEi, i = 1, 2, 4, 5, ε = ±1} � Z2,

(e) in case 5. one has OA(nε=0
6,21(αi, βj)) = {TEi = ε1Ei, i = 1, 5,

TEj = ε2Ej , j = 2, 4, TEk = ε1ε2Ek, k = 3, 6, ε1, ε2 = ±1} �
Z2 × Z2.

Proof. Invoking Proposition 3.1, we apply the Gram–Schmidt process to the
ordered basis {G6, G5, G4, G3, G2, G1} and we receive an orthonormal basis
{F1, F2, F3, F4, F5, F6} of lε=0

6,21 such that the vector Fi is a positive multiple of
Gi modulo the subspace span (Gj ; j > i) and orthogonal to span (Gj ; j > i).
The orthogonal direct sum RF1 ⊕· · ·⊕RF6 is a framing of (lε=0

6,21, 〈., .〉) and the
vectors of the new basis has the form Fi =

∑6
k=i aikGk with aii > 0. Using

this we have

[F1, F2] = α1F3 + β1F4 + β2F5 + β3F6, [F1, F4] = α3F6, (4.19)

[F1, F3] = α2F4 + β4F5 + β5F6, [F2, F3] = α4F5 + β6F6

with αi > 0, i = 1, . . . , 4 and βj ∈ R, j = 1, . . . , 6. Changing the orthonormal
basis: F̃1 = −F1, F̃2 = F2, F̃3 = −F3, F̃4 = F4, F̃5 = −F5, F̃6 = −F6 we obtain

[F̃1, F̃2] = α1F̃3 − β1F̃4 + β2F̃5 + β3F̃6, [F̃1, F̃4] = α3F̃6,

[F̃1, F̃3] = α2F̃4 − β4F̃5 − β5F̃6, [F̃2, F̃3] = α4F̃5 + β6F̃6.

Similarly, the change of the basis: F̃1 = −F1, F̃2 = −F2, F̃3 = F3, F̃4 =
−F4, F̃5 = −F5, F̃6 = F6 gives

[F̃1, F̃2] = α1F̃3 − β1F̃4 − β2F̃5 + β3F̃6, [F̃1, F̃4] = α3F̃6,

[F̃1, F̃3] = α2F̃4 + β4F̃5 − β5F̃6, [F̃2, F̃3] = α4F̃5 − β6F̃6.

Hence there is an orthonormal basis such that in commutators (4.19) we have
αi > 0, i = 1, . . . , 4 and one of the cases in assertion 1. holds. Therefore the
existence of nε=0

6,21(αi, βj) with properties given by assertion 1. follows.
Let the linear map T : nε=0

6,21(αi, βj) → nε=0
6,21(α

′
i, β

′
j) be an isometric isomor-

phism. The decomposition R E1⊕R E2⊕R E3⊕R E4⊕R E5⊕R E6 is a framing
of both Lie algebras, where αi, α

′
i > 0, i = 1, . . . , 4. Hence by Lemma 2.3 we

have αi = α′
i, i = 1, . . . , 4 and |β′

j | = βj , j = 1, . . . , 6. Let T (Ei) = εiEi, εi =
±1, i = 1, . . . , 6, then we obtain from [TEi, TEj ]′ = T [Ei, Ej ], i, j = 1, . . . , 6,
using the commutation relations (4.19) the equations

ε1ε2 (α1E3 + β′
1E4 + β′

2E5 + β′
3E6) = α1ε3E3 + β1ε4E4 + β2ε5E5 + β3ε6E6,

ε1ε3 (α2E4 + β′
4E5 + β′

5E6) = α2ε4E4 + β4ε5E5 + β5ε6E6, (4.20)

ε1ε4 (α3E6) = α3ε6E6, ε2ε3 (α4E5 + β′
6E6) = α4ε5E5 + β6ε6E6.
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Hence we obtain ε1ε2 = ε3, ε1ε3 = ε4, ε1ε4 = ε6, ε2ε3 = ε5, which yields
ε1 = ε5, ε2 = ε4, ε1ε2 = ε3 = ε6. Using these relations we have ε1ε2 = ε6.
Therefore one has β′

3 = β3.
If β1 = β′

1 > 0 or β5 = β′
5 > 0, then we have additionally ε1ε2 = ε4 or

ε1ε3 = ε6, which yields that ε1 = ε5 = 1 and ε2 = ε3 = ε4 = ε6.
If β2 = β′

2 > 0 or β6 = β′
6 > 0, then we get additionally ε1ε2 = ε5 or ε2ε3 = ε6.

Hence one has ε2 = ε4 = 1 and ε1 = ε3 = ε5 = ε6.
If β4 = β′

4 > 0, then one has in addition ε1ε3 = ε5, which gives ε3 = ε6 = 1,
ε1 = ε2 = ε4 = ε5.
Applying these relations in assertion 1. of the Theorem
in case 1. we obtain εi = 1, i = 1, . . . , 6,
in case 2. we have ε1 = ε5 = 1 and ε2 = ε3 = ε4 = ε6,
in case 3. we receive ε2 = ε4 = 1 and ε1 = ε3 = ε5 = ε6,
in case 4. we obtain ε3 = ε6 = 1 and ε1 = ε2 = ε4 = ε5,
in case 5. we get that ε1 = ε5, ε2 = ε4, ε1ε2 = ε3 = ε6.
Therefore the system of Eq. (4.20) is satisfied with β′

j = βj , j = 1, . . . , 6 in cases
1.−5. of the Theorem and the uniqueness of the metric Lie algebra nε=0

6,21(αi, βj)
with properties given by assertion 1. follows. The proof of assertion 1. is done.

If the map T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6, is an orthogonal automor-
phism of nε=0

6,21(αi, βj), then the system of equations given by (4.20) is satisfied
with αi > 0, i = 1, . . . , 4, β′

j = βj , j = 1, . . . , 6. Hence for εi, i = 1, . . . , 6,
we have the same conditions as above. Taking this into account the group of
orthogonal automorphisms of nε=0

6,21(αi, βj) in case 1. is trivial, in cases 2. − 5.
it is isomorphic to the group given by 2b-2e. This proves assertion 2. �

Corollary 4.15. Let (ℵε=0
6,21(αi, βj), 〈., .〉) be the connected and simply connected

Riemannian nilmanifold corresponding to (nε=0
6,21(αi, βj), 〈., .〉). The isometry

group of (ℵε=0
6,21(αi, βj), 〈., .〉) is

I(ℵε=0
6,21(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 � ℵε=0
6,21(αi, βj) if βj = 0, j = 1, 2, 4, 5, 6,

Z2 � ℵε=0
6,21(αi, βj) if β1 > 0 or β5 > 0, β2 = β4 = β6 = 0,

or β2 > 0 or β6 > 0, β1 = β4 = β5 = 0,

or β4 > 0, β1 = β2 = β5 = β6 = 0,

ℵε=0
6,21(αi, βj) if β1 > 0, β2 > 0, or β1 > 0, β4 > 0,

or β1 > 0, β6 > 0, or β2 > 0, β4 > 0,

or β2 > 0, β5 > 0, or β4 > 0, β5 > 0,

or β4 > 0, β6 > 0, or β5 > 0, β6 > 0.

Finally we deal with the 6-dimensional Lie algebras l6,23 and l6,25.
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Definition 4.16. Let {E1, E2, E3, E4, E5, E6} be an orthonormal basis in the
Euclidean vector space E

6. We denote by n6,25(αi, βj), αi, βj ∈ R, i = 1, 2, 3,
j = 1, 2, 3 with αi �= 0 the metric Lie algebra defined on E

6 given by the
non-vanishing commutators

[E1, E2] = α1E4 + β1E5 + β2E6, [E1, E3] = α2E5 + β3E6, [E1, E4] = α3E6.

(4.21)

Denote by n6,23(αi, βj), αi, βj ∈ R, i = 1, . . . , 4, j = 1, 2, 3 with αi �= 0 the
metric Lie algebra defined on E

6 given by (4.21) and by the additional com-
mutator

[E2, E3] = α4E6. (4.22)

The bracket operations (4.21) as well as (4.21) and (4.22) satisfy the Jacobi
identity.

Theorem 4.17. Let 〈., .〉 be an inner product on the 6-dimensional Lie algebra
l6,23, respectively l6,25.
1. There is a unique metric Lie algebra (n6,25(αi, βj), 〈., .〉) which is iso-

metrically isomorphic to the metric Lie algebra (l6,25, 〈., .〉) with αi > 0,
i = 1, 2, 3, such that one of the following cases is satisfied
1. at least two of the elements of the set {β1, β2, β3} are positive,
2. β1 > 0, β2 = β3 = 0,
3. β2 > 0, β1 = β3 = 0,
4. β3 > 0, β1 = β2 = 0,
5. β1 = β2 = β3 = 0.

There is a unique metric Lie algebra (n6,23(αi, βj), 〈., .〉) which is isometri-
cally isomorphic to the metric Lie algebra (l6,23, 〈., .〉) with αi > 0, i = 1, 2, 3, 4,
and such that one of the above cases 1. –5. is satisfied.
2. The group OA (n6,23(αi, βj)) of orthogonal automorphisms of the metric

Lie algebra (n6,23(αi, βj), 〈., .〉) is the following group:
(a) in case 1. the group OA(n6,23(αi, βj)) is trivial,
(b) in case 2. one has OA(n6,23(αi, βj)) = {TE2 = E2, TE3 = E3,

TE6 = E6, TEi = εEi, i = 1, 4, 5, ε = ±1} � Z2,
(c) in case 3. one has OA(n6,23(αi, βj)) = {TE1 = E1, TE3 = E3,

TE5 = E5, TEi = εEi, i = 2, 4, 6, ε = ±1} � Z2,
(d) in case 4. one has OA(n6,23(αi, βj)) = {TE3 = E3, TE4 = E4,

TEi = εEi, i = 1, 2, 5, 6, ε = ±1} � Z2,
(e) in case 5. one has OA(n6,23(αi, βj)) = {TE3 = E3, TEi = ε1Ei,

i = 1, 5, TEj = ε2Ej , j = 2, 6, TE4 = ε1ε2E4, ε1, ε2 = ±1}�Z2×Z2.
3. The group OA(n6,25(αi, βj)) of orthogonal automorphisms of the metric

Lie algebra (n6,25(αi, βj), 〈., .〉) is the following group:
(a) in case 1. one has OA(n6,25(αi, βj)) = {TE1 = E1, TEi = εEi,

i = 2, 3, 4, 5, 6, ε = ±1} � Z2.
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(b) in case 2. one has OA(n6,25(αi, βj)) = {TE1 = ε1E1, TEi = ε2Ei,
i = 2, 3, 6, TEj = ε1ε2Ej , j = 4, 5, ε1, ε2 = ±1} � Z2 × Z2.

(c) in case 3. one has OA(n6,25(αi, βj)) = {TE1 = E1, TEi = ε2Ei,
i = 2, 4, 6, TEj = ε3Ej , j = 3, 5, ε2, ε3 = ±1} � Z2 × Z2.

(d) in case 4. one has OA(n6,25(αi, βj)) = {TE1 = ε1E1, TEi = ε2Ei,
i = 2, 5, 6, TEj = ε1ε2Ej , j = 3, 4, ε1, ε2 = ±1} � Z2 × Z2.

(e) in case 5. one has OA(n6,25(αi, βj)) = {TE1 = ε1E1, TEi = ε2Ei,
i = 2, 6, TE3 = ε3E3, TE4 = ε1ε2E4, TE5 = ε1ε3E5, ε1, ε2,
ε3 = ±1} � Z2 × Z2 × Z2.

Proof. According to Proposition 3.1 the application of the Gram–Schmidt pro-
cess to the ordered basis {G6, G5, G4, G3, G2, G1} yields an orthonormal basis
{F1, F2, F3, F4, F5, F6} of l6,23, respectively l6,25 such that the vector Fi is a
positive multiple of Gi modulo the subspace span (Gj ; j > i) and orthogonal
to span (Gj ; j > i). The orthogonal direct sum RF1 ⊕ · · · ⊕ RF6 is a fram-
ing of (l6,23, 〈., .〉), respectively (l6,25, 〈., .〉). The vectors of the new basis have
the form Fi =

∑6
k=i aikGk with aii > 0. We get for the metric Lie algebras

(l6,23, 〈., .〉) and (l6,25, 〈., .〉)
[F1, F2] = α1F4 + β1F5 + β2F6, [F1, F3] = α2F5 + β3F6, [F1, F4] = α3F6,

(4.23)

and for (l6,23, 〈., .〉) in addition

[F2, F3] = α4F6, (4.24)

where αi > 0, i = 1, 2, 3, 4 and βj ∈ R, j = 1, 2, 3. Changing the orthonormal
basis: F̃1 = −F1, F̃2 = −F2, F̃3 = F3, F̃4 = F4, F̃5 = −F5, F̃6 = −F6 we obtain

[F̃1, F̃2] = α1F̃4 − β1F̃5 − β2F̃6, [F̃1, F̃3] = α2F̃5 + β3F̃6,

[F̃1, F̃4] = α3F̃6, [F̃2, F̃3] = α4F̃6.

Similarly, the change of the basis: F̃1 = −F1, F̃2 = F2, F̃3 = F3, F̃4 = −F4, F̃5 =
−F5, F̃6 = F6 yields

[F̃1, F̃2] = α1F̃4 + β1F̃5 − β2F̃6, [F̃1, F̃3] = α2F̃5 − β3F̃6,

[F̃1, F̃4] = α3F̃6, [F̃2, F̃3] = α4F̃6.

Hence there is an orthonormal basis such that in commutators (4.23) and
(4.24) we have αi > 0, i = 1, . . . , 4 and one of the cases in assertion 1. is
satisfied. Consequently the existence of n6,23(αi, βj), respectively n6,25(αi, βj)
with the properties in assertion 1. is proved.

Let the linear map T : n6,k(αi, βj) → n6,k(α′
i, β

′
j), k = 23, 25, be an isomet-

ric isomorphism. The decomposition R E1 ⊕R E2 ⊕R E3 ⊕R E4 ⊕R E5 ⊕R E6

is a framing of both Lie algebras, where αi, α
′
i > 0, i = 1, . . . , 4. Hence by

Lemma 2.3 we have αi = α′
i, i = 1, . . . , 4 and |β′

j | = βj for all j = 1, 2, 3.
Let T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6. Using the commutation relations
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(4.23) and (4.24) we obtain from [TEi, TEj ]′ = T [Ei, Ej ], i, j = 1, . . . , 6, for
n6,25(αi, βj) and n6,23(αi, βj) the equations

ε1ε2 (α1E4 + β′
1E5 + β′

2E6) = α1ε4E4 + β1ε5E5 + β2ε6E6, (4.25)

ε1ε3 (α2E5 + β′
3E6) = α2ε5E5 + β3ε6E6, ε1ε4 (α3E6) = α3ε6E6,

and in addition for n6,23(αi, βj) the equation

ε2ε3 (α4E6) = α4ε6E6. (4.26)

From (4.25) and (4.26) for the metric Lie algebra n6,23(αi, βj) we get ε1ε2 =
ε4, ε1ε3 = ε5, ε1ε4 = ε2ε3 = ε6. Then one has ε3 = 1, ε1 = ε5, ε2 = ε6.
If β1 = β′

1 > 0, then we get additionally ε1ε2 = ε5, which gives ε2 = ε3 = ε6 =
1, ε1 = ε4 = ε5.
If β2 = β′

2 > 0, then we obtain ε1ε2 = ε6. Hence one has ε1 = ε3 = ε5 = 1,
ε2 = ε4 = ε6.
If β3 = β′

3 > 0, then we get additionally ε1ε3 = ε6, which yields ε3 = ε4 = 1,
ε1 = ε2 = ε5 = ε6.
Using the conditions for βj , j = 1, 2, 3 given in assertion 1. of the Theorem
in case 1. we get εi = 1, i = 1, . . . , 6,
in case 2. we obtain ε2 = ε3 = ε6 = 1 and ε1 = ε4 = ε5,
in case 3. we have ε1 = ε3 = ε5 = 1 and ε2 = ε4 = ε6,
in case 4. we obtain ε3 = ε4 = 1 and ε1 = ε2 = ε5 = ε6,
in case 5. we get ε3 = 1, ε1 = ε5, ε2 = ε6 and ε1ε2 = ε4.

For the metric Lie algebra n6,25(αi, βj) from (4.25) it follows ε1ε2 = ε4,
ε1ε3 = ε5, ε1ε4 = ε6. Then one has ε2 = ε6.
If β1 = β′

1 > 0, then we get additionally ε1ε2 = ε5. Hence one has ε2 = ε3 = ε6
and ε4 = ε5.
If β2 = β′

2 > 0, then we get additionally ε1ε2 = ε6, which gives ε1 = 1,
ε2 = ε4 = ε6, ε3 = ε5.
If β3 = β′

3 > 0, then we get additionally ε1ε3 = ε6, which yields that ε2 =
ε5 = ε6 and ε3 = ε4.
Applying these relations in assertion 1. of the Theorem
in case 1. we obtain ε1 = 1, ε2 = ε3 = ε4 = ε5 = ε6,
in case 2. we get ε2 = ε3 = ε6, ε4 = ε5 and ε1ε2 = ε4,
in case 3. we have ε1 = 1, ε2 = ε4 = ε6 and ε3 = ε5,
in case 4. we get ε2 = ε5 = ε6, ε3 = ε4 and ε1ε2 = ε4,
in case 5. we obtain ε2 = ε6, ε1ε2 = ε4 and ε1ε3 = ε5.

Hence in both metric Lie algebras the system of Eq. (4.25) is satisfied with
β′

j = βj , i = 1, 2, 3, in cases 1.−5. This proves the uniqueness of the Lie algebra
n6,23(αi, βj), respectively n6,25(αi, βj) in cases 1. − 5., which gives assertion 1.

If the map T (Ei) = εiEi, εi = ±1, i = 1, . . . , 6, is an orthogonal automor-
phism of n6,25(αi, βj), respectively n6,23(αi, βj), then the system of equations
given by (4.25), respectively (4.25) and (4.26) is satisfied with β′

j = βj , j =
1, 2, 3. Therefore in cases 1. − 5. for εi, i = 1, . . . , 6 we have the conditions as
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above. Hence the group of orthogonal automorphisms of n6,23(αi, βj), respec-
tively n6,25(αi, βj) in cases 1. − 5. is isomorphic to the group given by 2a–2e,
respectively 3a–3e. This proves assertions 2 and 3. �

Corollary 4.18. Let (ℵ6,k(αi, βj), 〈., .〉), k = 23, 25, be the connected and sim-
ply connected Riemannian nilmanifold corresponding to the metric Lie algebra
(n6,k(αi, βj), 〈., .〉), k = 23, 25. The isometry group of (ℵ6,23(αi, βj), 〈., .〉) is

I(ℵ6,23(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 � ℵ6,23(αi, βj) if β1 = β2 = β3 = 0,

Z2 � ℵ6,23(αi, βj) if β1 > 0, β2 = β3 = 0,

or β2 > 0, β1 = β3 = 0,

or β3 > 0, β1 = β2 = 0,

ℵ6,23(αi, βj) if β1 > 0, β2 > 0, or β1 > 0, β3 > 0,

or β2 > 0, β3 > 0.

The isometry group of (ℵ6,25(αi, βj), 〈., .〉) is

I(ℵ6,25(αi, βj))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z2 × Z2 × Z2 � ℵ6,25(αi, βj) if β1 = β2 = β3 = 0,

Z2 × Z2 � ℵ6,25(αi, βj) if β1 > 0, β2 = β3 = 0,

or β2 > 0, β1 = β3 = 0,

or β3 > 0, β1 = β2 = 0,

Z2 � ℵ6,25(αi, βj) if β1 > 0, β2 > 0, or β1 > 0, β3 > 0,

or β2 > 0, β3 > 0.
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