
Aequat. Math. 97 (2023), 629–637
c© The Author(s) 2023
0001-9054/23/030629-9
published online January 3, 2023
https://doi.org/10.1007/s00010-022-00936-9 Aequationes Mathematicae

Sincov’s and other functional equations and negative interest
rates

Gergely Kiss and Jens Schwaiger

Abstract. Investigating the future value F (K, s, t) of a capital K invested between dates s
and t, the “natural” condition F (K, s, t) ≥ K has lost its naturality because of the strange
fact of negative interest rates. This leads to the task of describing the possible solutions of
the multiplicative Sincov equation f(s, u) = f(s, t)f(t, u) for s ≤ t ≤ u where f(s, t) = 0
may happen. In this paper we solve this task and discuss connections to the theory of
investments.
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1. Introduction and motivation

A rather well known and elegant application of the theory of functional equa-
tions is given by the deduction of the formula of theoretical interest com-
pounding. As a starting point some “reasonable” conditions for the future
value function

F : [0,∞) × [0,∞) → R

are given:

F (K + L, t) = F (K, t) + F (L, t), K, L, t ≥ 0 (1.1)

F (F (K, t), s) = F (K, t + s), K, s, t ≥ 0 and (1.2)

F (K, t) ≥ K, K, t ≥ 0. (1.3)
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Theorem 1.1. Let F : [0,∞)× [0,∞) → R be given. Then (1.1), (1.2) and (1.3)
are satisfied iff there is some q ≥ 1 such that

F (K, t) = Kqt, K, t ≥ 0. (1.4)

The proof can be found in [1, pp. 105–106], [3] and in [5].
Note that (1.3) together with (1.1) implies that F (K, t) = K · f(t), since

(1.1) says that F (·, t) is additive and (1.3) that this function is bounded from
below on [0,∞) (see [1, p. 34, Theorem 1]). (1.2) implies f(t + s) = f(t)f(s)
for all s, t ≥ 0 and (1.3) that f(t) ≥ 1 for all t. This means that g := ln ◦f
is additive and ≥ 0 on [0,∞) and therefore there is some r ≥ 0 such that
ln(f(t)) = rt for all t. So q := exp(g(1)) = exp(r) ≥ 1 and f(t) = qt for all t.

2. Theoretical rule of interest compounding with negative interest
rates allowed

At least for the last decade it has became common in economics to admit zero
or even negative interest rates. This clearly contradicts (1.3). So one could ask
for a substitute for Theorem 1.1 which allows for the new situation.

Note that

F (K, t) ≥ cK, K, t ≥ 0 for some c > 0 (2.1)

instead of (1.3) does not help. Of course one could get a result as in the theorem
with some q > 0. But taking t large enough shows that (2.1) is only possible
when q ≥ 1. One possibility to characterize the theoretical rule of interest
compounding if negative interest rates are admissible could be the following
result.

Theorem 2.1. A function F : [0,∞) × [0,∞) → R satisfies

F (K + L, t) = F (K, t) + F (L, t), K, L, t ≥ 0 (2.2)

F (F (K, t), s) = F (K, t + s), K, s, t ≥ 0 (2.3)

F (·, t) is monotonic for all t and (2.4)

F (K, ·) is monotonic for all K (2.5)

iff there is some q ≥ 0 such that

F (K, t) = Kqt, K, t ≥ 0, (2.6)

where for q = 0 both the cases q0 = 1 and q0 = 0 are possible.

Proof. Obviously F with (2.6) satisfies all the conditions (2.2)–(2.5).
Let on the other hand F satisfy these conditions. Since F (·, t) is additive

and monotonic it is bounded from one side on some interval which implies (see
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[1, p. 34, Theorem 1]) that F (K, t) = K · f(t) with f(t) = F (1, t). Condition
(2.3) implies with K = 1 that

f(t)f(s) = f(s + t), s, t ≥ 0.

To solve this we follow [1, p. 38, Theorem 1] and assume that f(t0) = 0 for some
t0 > 0. Then f(t) = f(t0 + (t − t0)) = f(t0)f(t − t0) = 0 for all t ≥ t0. Since
moreover 0 = f(t0) = f

(
n t0

n

)
= f

(
t0
n

)n, t0 may be chosen arbitrarily close to
0. So f(t) = 0 for all t > 0. f(0) = f(0 + 0) = f(0)2 implies f(0) ∈ {0, 1} and
therefore f(t) = 0t for all t with 00 ∈ {0, 1}. In the remaining case f(t) must
be different from 0 for all t > 0. By f(t) = f

(
t
2

)2 the value f(t) must even be
> 0. Note also that f(0) = 1 since f(t) = f(t + 0) = f(t)f(0). Moreover f is
monotonic. So using the remarks following Theorem 1.1 there is some q > 0
such that f(t) = qt for all t. �

3. Future value formulas depending on the interval of investment

In [5, Theorem 2] a situation is discussed where for Δ := ΔR := {(s, t) ∈ R
2 |

s ≤ t} the value of the function F : [0,∞) × Δ → [0,∞) at (K, s, t) denotes
the future value of the capital K at time t when invested at time s. Theorem 2
in [5] reads as follows.

Theorem 3.1. The function F : [0,∞) × Δ → [0,∞) satisfies the conditions

F (K + L, s, t) = F (K, s, t) + F (L, s, t), K, L ≥ 0, (s, t) ∈ Δ (3.1)

F (F (K, s, t), t, u) = F (K, s, u), K ≥ 0, (s, t), (t, u) ∈ Δ and (3.2)

F (K, s, t) ≥ K, K ≥ 0, (s, t) ∈ Δ, (3.3)

iff there is some non decreasing function ϕ : R → (0,∞) such that

F (K, s, t) = K
ϕ(t)
ϕ(s)

, K ≥ 0, (s, t) ∈ Δ. (3.4)

Remark 3.2. (3.4) is the result of solving the multiplicative Sincov equation
f(s, t)f(t, u) = f(s, u). Moreover, choosing some fixed t0, the function ϕ is
given by

ϕ(t) =

{
f(t0, t) , if t ≥ t0

1
f(t,t0)

, if t < t0.
(3.5)

Now we want to investigate the situation when (3.3) is weakened in order to
treat (generalized) negative interest rates also in the situation when intervals
of investments themselves are considered rather than their length only.

Theorem 3.3. The function F : [0,∞) × Δ → [0,∞) satisfies the conditions
(3.1) and (3.2) and

F (·, s, t) is monotonic on some interval for all (s, t) ∈ Δ, (3.6)
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iff there is some solution f : Δ → [0,∞) of the Sincov equation

f(s, t)f(t, u) = f(s, u), (s, t), (t, u) ∈ Δ (3.7)

such that
F (K, s, t) = Kf(s, t), K ≥ 0, (s, t) ∈ Δ. (3.8)

Proof. (3.1) and (3.6) imply that F has the form (3.8) with f(s, t) = F (1, s, t).
Accordingly (3.2) results in (3.7).

On the other hand (3.7) and (3.8) imply (3.1), (3.2) and (3.6). �

Remark 3.4. The rest of our considerations is devoted to the solution of (3.7)
in the slightly generalized situation that the function

f : ΔJ → R (3.9)

is defined on Δ = ΔJ := {(s, t) ∈ J2 | s ≤ t} for some non-trivial interval J ,
has R as the codomain and solves (3.7). A special case has been considered
in [2, Theorem 14]. The problem in its general form was posed by Detlef
Gronau as Problem 2.1 in [4].

From now on we assume that f : Δ → R satisfies the Sincov equation (3.7)
and we use Δ◦ := {(x, y) ∈ Δ | x < y}. And we proceed with some lemmata.

Lemma 3.5. Assume that (x, y) ∈ Δ◦ and that f(x, y) �= 0. Then

I(x,y) :=
⋃

x′≤x<y≤y′,
(x′,y′)∈Δ◦,f(x′,y′)�=0

[x′, y′] (3.10)

is an interval, and

f(u, v) �= 0, ∀(u, v) ∈ Δ satisfying u, v ∈ I(x,y).

Moreover, f(u, v) = 1, if u = v.

Proof. Of course I(x,y) is an interval since it is the union of a set of intervals
with non empty intersection. Note also that

0 �= f(x′, y′) = f(x′, u)f(u, v)f(v, y′) (x′ ≤ u ≤ v ≤ y′)

implies f(u, v) �= 0.
Now let u, v ∈ I(x,y), u ≤ v and x0 ≤ u ≤ y0, x1 ≤ v ≤ y1 where

(xi, yi) ∈ Δ◦, xi ≤ x < y ≤ yi and f(xi, yi) �= 0 for i = 0, 1. Put x2 :=
min(x0, x1), y2 := max(y0, y1). Then x2 ≤ u ≤ v ≤ y2. Thus it is enough
to show f(x2, y2) �= 0. Let, for example x0 ≤ x1. Then f(x2, x) �= 0 since
0 �= f(x0, y0) = f(x0, x)f(x, y0). Analogously we have f(y, y2) �= 0 and there-
fore f(x2, y2) = f(x2, x)f(x, y)f(y, y2) �= 0.

f(u, u) = f(v, v) = 1, since 0 �= f(u, v) = f(u, u)f(u, v) = f(u, v)f(v, v).
�
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Lemma 3.6. Let x, y be as in the previous lemma. Then

I(x,y) =
⋃

I∈J
I, where (3.11)

J := J(x,y) := {I ⊆ J | I is an interval,

x, y ∈ I, f(u, v) �= 0 for all u, v ∈ I such that u < v}. (3.12)

Proof. Note that by Lemma 3.5 I(x,y) ∈ J implying I(x,y) ⊆ ⋃
J∈J J .

Let, on the other hand I ∈ J . Then there are sequences (an), (bn) such that
(an) is decreasing, (bn) is increasing, an ≤ x < y ≤ bn and I =

⋃
n∈N

[an, bn].
Since an, bn ∈ I the value f(an, bn) has to be �= 0. So [an, bn] ⊆ I(x,y). Therefore
I ⊆ I(x,y) for all I ∈ J . �
Lemma 3.7. Let x, y be as above and assume that u ∈ J \ I(x,y). Then either

u < v for all v ∈ I(x,y) or (3.13)

v < u for all v ∈ I(x,y). (3.14)

Moreover in case (3.13) f(u, v) = 0 and in case (3.14) f(v, u) = 0.

Proof. Assume v ≤ u ≤ w for some v, w ∈ I(x,y). Then u ∈ [v, w] ⊆ I(x,y), a
contradiction.

So, let u < v for all v ∈ I(x,y), and suppose that f(u, v0) �= 0 for some
v0 ∈ I(x,y). Then there are x0, y0 ∈ I(x,y) such that x0 ≤ v0 ≤ y0, x0 ≤
x < y ≤ y0 and f(x0, y0) �= 0. Then f(u, y0) = f(u, v0)f(v0, y0) �= 0 since
f(u, v0), f(v0, y0) �= 0. But then [u, y0] ⊆ I(x,y) contradicting u �∈ I(x,y).

The other case, v < u for all v ∈ I(x,y) may be treated similarly. �
Lemma 3.8. Let (x, y) ∈ Δ◦ be such that f(x, y) �= 0. Then I(u,v) = I(x,y) for
all u, v ∈ I(x,y) satisfying u < v.

Proof. By Lemma 3.5 we have f(u′, v′) �= 0 for all u′, v′ ∈ I(x,y) with u′ < v′.
Thus using Lemma 3.6 results in I(x,y) ⊆ I(u,v). Therefore x, y ∈ I(u,v), which
analogously implies I(u,v) ⊆ I(x,y). �
Lemma 3.9. Let I1, I2 be intervals such that I1 ∩ I2 = {a}. Then either a =
min(I1) = max(I2) or a = min(I2) = max(I1).

Proof. The (simple) considerations are left to the reader. �
Lemma 3.10. Let (x, y), (u, v) ∈ Δ◦ with f(x, y), f(u, v) �= 0. Then either
I(x,y) = I(u,v) or I(x,y) ∩ I(u,v) = ∅.
Proof. Let I(x,y) ∩ I(u,v) �= ∅. If this intersection contains two different points
a, b with, say, a < b, then I(x,y) = I(a,b) = I(u,v) by Lemma 3.8. Otherwise
I(x,y) ∩ I(u,v) = {a}. Using Lemma 3.9 we may assume, without loss of gen-
erality that a = max I(x,y) = min I(u,v). Therefore x < y ≤ a ≤ u < v and
f(x, a), f(a, v) �= 0. Thus also f(x, v) = f(x, a)f(a, v) �= 0 which implies by
Lemma 3.6 that [x, v] ⊆ I(x,y) ∩ I(u,v). So I(x,y) ∩ I(u,v) = {a} is not possible.
Accordingly I(x,y) ∩ I(u,v) �= ∅ implies I(x,y) = I(u,v). �
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Now we are able to formulate necessary conditions for the solutions f of
the Sincov equation on Δ = ΔJ .

Theorem 3.11. Let f : Δ = ΔJ → R be a solution of (3.7). Then there is a
countable (possibly empty) system S of pairwise disjoint non-trivial intervals
I ⊆ J and there is a function d :

⋃
I∈S I → R

× := R \ {0}, such that

f(x, y) =
d(y)
d(x)

, x, y ∈ I ∈ S, x ≤ y. (3.15)

Moreover for any x ∈ I ∈ S
f(x, y) = f(z, x) = 0, I � z < x < y �∈ I, (3.16)

and

f(x, x) =

{
1 if x ∈ ⋃

I∈S I,

0 or 1 otherwise.
(3.17)

Proof. Let S := {I(x,y) | (x, y) ∈ Δ◦, f(x, y) �= 0}. Then the intervals in S are
pairwise disjoint by Lemma 3.10. Moreover S is countable since every I(x,y)
equals I(r,s) with x ≤ r < s < y and r, s ∈ Q by Lemma 3.8.

Let I ∈ S and x0 ∈ I. Then d : I → R
×,

d(x) =

{
f(x0, x) , if x ≥ x0

1
f(x,x0)

, if x < x0,
(3.18)

is well defined and satisfies f(x, y) = d(y)
d(x) for all x, y ∈ I, x ≤ y. This can be

easily seen by distinguishing the cases x ≥ x0, y < x0 and x < x0 ≤ y.
(3.16) follows from Lemma 3.7.
Since f(x, x)f(x, y) = f(x, y) �= 0 for x, y ∈ I ∈ S, we have f(x, x) =

1 which is the first case of (3.16). The second case of (3.16) follows from
f(x, x) = f(x, x)f(x, x) and from Lemma 3.7. (Note also that f(x, y) = 0 for
all x, y �∈ ⋃

I∈S I with x < y.) �

Finally we prove that all Sincov functions on Δ = ΔJ may be obtained by
using the just derived necessary conditions.

Theorem 3.12. Let J be a non-trivial interval and S the at most countable
(maybe empty) set of disjoint subintervals of J . Let furthermore d :

⋃
I∈S I →

R
× be an arbitrary function. Then f : Δ = ΔJ → R defined by

f(x, y) :=

⎧
⎪⎨

⎪⎩

d(y)
d(x) , if x, y ∈ I ∈ S,

0, if x, y not in the same I ∈ S,

0 or 1 arbitrarily, if x = y �∈ ⋃
I∈S I

(3.19)

satisfies (3.7).
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Proof. Let x ≤ y ≤ z. If x, z ∈ I(∈ S) then also y ∈ I. Moreover

f(x, y)f(y, z) =
d(y)
d(x)

d(z)
d(y)

=
d(z)
d(x)

= f(x, z).

If x ∈ I and z �∈ I we have f(x, z) = 0. Assuming y ∈ I implies f(y, z) = 0
and therefore 0 = f(x, z) = f(x, y)f(y, z). This also holds true when y �∈ I.

If x �∈ ⋃
I∈S I we have f(x, z) = 0 for x < z and therefore 0 = f(x, z) = 0 ·

f(y, z) = f(x, y)f(y, z) if additionally x < y. In case y = x we have f(y, z) = 0
implying (3.7). If finally x = y = z we again have f(x, z) = f(x, y)f(y, z). �

Remark 3.13. Gronau in [4] gave two types of solutions. The first one with
f(x, y) = δx(y) for all x ≤ y is the special case S = ∅, g = 1 of Theorem 3.12.
The second one may be described by S = {[x0, y0]}, σ = d[x0,y0] and g(x) = 0
for all x �∈ [x0, y0].

Remark 3.14. (Generalization) The codomain of the function f may be chosen
to be much more general without altering the results.

Let (G, ·) be an arbitrary not necessarily abelian group with neutral element
1 and add an absorbing element 0, such that 0 �∈ G and in G′ := G ∪· {0} we
have x · 0 = 0 · x = 0. Then the only elements in G′ with x2 = x are 0 and
1. This, more or less, implies that Theorems 3.11, 3.12 also hold in the new
situation with the modification that the functions d are defined as

d(x) =

{
f(x0, x) , if x ≥ x0

f(x, x0)−1 , if x < x0,
(3.20)

because then f(x, y) = d(x)−1d(y) in Theorem 3.11 and

f(x, y)f(y, z) = d(x)−1d(y)d(y)−1d(z) = d(x)−1d(z) = f(x, z)

in the proof of Theorem 3.12.
Examples of groups with added absorbing elements are G∪· {0} where G is a

subgroup of K× for division algebras K, in particular R and [0,∞) and also,for
any n and any field K, the union G ∪· {0} where G is a subgroup Gln(K) and
0 the null matrix. The last example is itself a special case of G ∪· {0} where G
is a subgroup of the group of units in a unitary ring R and 0 the zero element
in R.

Remark 3.15. In [2] the Sincov equation is considered in the form

g(x, z) = g(x, y)g(y, z), x > y > z, x, y, z ∈ J, (3.21)

with J = (0, 1). The general solution of (3.21) is easily derived from Theo-
rems 3.11 and 3.12 by

i) considering f defined by f(y, x) = g(x, y) when x > y and
ii) by observing that we may extend f to the pairs (x, x) by choosing

f(x, x) ∈ {0, 1} as in Theorems 3.11 and 3.12.
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As a result of Theorems 3.12 and 3.11 we obtain the following characteri-
zation of F (K, s, t) satisfying (3.1), (3.2) and (3.6).

Corollary 3.16. The function F : [0,∞) × ΔJ → [0,∞) satisfies the condi-
tions (3.1), (3.2) and (3.6) iff there is a countable (possibly empty) system
S of pairwise disjoint non-trivial intervals I ⊆ J and there is a function
d :

⋃
I∈S I → R

×, such that

F (K, s, t) = K
d(s)
d(t)

, s, t ∈ I ∈ S, s ≤ t. (3.22)

Moreover for any s ∈ I ∈ S

F (K, s, t) = F (K,u, s) = 0, I � u < s < t �∈ I (3.23)

and

F (K, s, s) =

{
K if s ∈ ⋃

I∈S I,

0 or K otherwise.
(3.24)

Remark 3.17. This corollary also implies Theorem 3.1 by observing that (3.3)
implies S = {R} and also that d is monotonically increasing.
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