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An alternative equation for generalized monomials

Zoltán Boros and Rayene Menzer

Abstract. In this paper we consider a generalized monomial or polynomial f : R → R that
satisfies the additional equation f(x)f(y) = 0 for the pairs (x, y) ∈ D , where D ⊆ R

2 is
given by some algebraic condition. In the particular cases when f is a generalized polynomial
and there exist non-constant regular polynomials p and q that fulfill

D = { (p(t), q(t)) | t ∈ R }

or f is a generalized monomial and there exists a positive rational m fulfilling

D = { (x, y) ∈ R
2 |x2 − my2 = 1 },

we prove that f(x) = 0 for all x ∈ R .
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1. Introduction

Let R , Q , and N denote the set of all real numbers, rationals, and positive
integers, respectively. We call a function f : R → R additive if f(x + y) =
f(x) + f(y) holds for all x, y ∈ R . The function f is called Q-homogeneous
if the equation f(qx) = qf(x) is fulfilled by every q ∈ Q and x ∈ R . As it
is also well-known [6, Theorem 5.2.1], if f : R → R is additive, then f is
Q-homogeneous as well.
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We define the following sets:

S0 = {(x, y) ∈ R
2 |xy = 1},

S1 = {(x, y) ∈ R
2 |x2 − y2 = 1},

S2 = {(x, y) ∈ R
2 |x2 + y2 = 1}.

Moreover, if p and q are regular, non-constant, real polynomials, while m
is a positive real number, we shall also consider the sets

Rp,q = { (p(t), q(t)) | t ∈ R },

S1,m = {(x, y) ∈ R
2 |x2 − my2 = 1}.

Z. Kominek, L. Reich and J. Schwaiger [5] investigated additive real func-
tions that satisfy the additional equation

f(x)f(y) = 0 (1)

for every (x, y) ∈ D, considering various subsets D of R
2. In several cases,

involving D = Rp,q and D = S2, they obtained f(x) = 0 for every x ∈ R. Their
result for D = S2 was extended by Z. Boros and W. Fechner [1] to the situation
when f is a generalized polynomial. On the other hand, P. Kutas [7] has recently
established the existence of a non-zero additive function f : R → R fulfilling
(1) for all (x, y) ∈ S0 . The case of bounded f(x)f(y) on S2 was investigated
by these authors [2].

The purpose of the present paper is to involve the case D = S1,m into this
research for every positive rational m. We note that, in some sense, S1,1 = S1

is on a half way from S0 to S2 , as it is geometrically analogous to S0 and
algebraically analogous to S2 . Moreover, motivated by [1, Theorem 1], we
wish to extend the investigation of the cases D = Rp,q and D = S1,m for a
generalized polynomial or monomial f , respectively.

2. Concepts and lemmas

Let n ∈ N . A function F : Rn → R is called n-additive if F is additive in each
of its variables. Clearly, an n-additive function is also Q-homogeneous in each
variable.

Given a function F : Rn → R, by the diagonalization (or trace) of F we
understand the function f : R → R arising from F by putting all the variables
(from R) equal:

f(x) = F (x, . . . , x) (x ∈ R) .

If, in particular, f is a diagonalization of an n-additive function F : Rn → R ,
we say that f is a generalized monomial of degree n . It is convenient to assume
that generalized monomials of degree zero are precisely constant mappings. It
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is also clear that the set of all monomials of degree n is a real linear space with
respect to the pointwise operations for any non-negative integer n.

If f is a finite sum of generalized monomials, then f is called a generalized
polynomial.

For more information concerning these notions the reader is referred to the
monograph by M. Kuczma [6, Chapter 15.9] as well as to the short introduction
in [1].

In order to make use of the already mentioned Q-homogeneity property of
n-additive functions, in our arguments we shall repeatedly apply the following
observation. If a regular real polynomial P (s) equals zero for infinitely many
distinct values of the variable s, then it is identically zero, i.e., the coefficient
of sk equals zero for every non-negative integer k (up to the degree of P ).
Clearly, it follows from the fact that for a not identically zero polynomial P
the equation P (s) = 0 is satisfied only by a finite number of distinct values of
s. This idea is explicitly stated in [3, Lemma 1]. The application of this idea in
the theory of functional equations goes back to the paper by Nishiyama and
Horinouchi [8].

We shall also need to verify the following statements.

Lemma 2.1. If f : R → R is a generalized polynomial, I ⊆ R is a non-
degenerated interval and f(x) = 0 for every x ∈ I , then f(x) = 0 for all
x ∈ R .

Proof. Due to our assumptions, there exist a positive integer n and k-additive
mappings Ak : Rk → R (k = 1, . . . , n) such that

f(x) =
n∑

k=0

A∗
k(x) (2)

for every x ∈ R , where A∗
0(x) = A0 ∈ R and

A∗
k(x) = Ak(x, x, . . . , x) (x ∈ R , k = 1, 2, . . . , n).

According to the hypothesis, I ⊆ R is an interval with positive length.
From the density of Q in R we can see that for any real number x �= 0 there
exist infinitely many r ∈ Q such that rx ∈ I and thus

0 = f(rx) =
n∑

k=0

A∗
k(rx) =

n∑

k=0

rkA∗
k(x) .

We have just obtained a polynomial of degree (at most) n with infinitely
many rational zeroes. This implies that the polynomial is identically zero,
hence A∗

k(x) = 0 for every k ∈ { 0, , 1, , . . . , n }, which yields f(x) = 0 . In
particular, we have 0 = A∗

0(x) = A0 = f(0) . Therefore, f vanishes on R . �

Lemma 2.2. If f : R → R is a generalized monomial and p : R → R is a
regular real polynomial, then f ◦ p is a generalized polynomial.
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Proof. Let j be a positive integer such that f is a monomial of degree j, i.e.,
f is the diagonalization of the j-additive mapping A : Rj → R . Moreover, let
n be a non-negative integer and ak ∈ R (k = 0, 1, . . . .n) such that

p(x) =
n∑

k=0

akx
k

for every x ∈ R . Then

f(p(x)) = f

(
n∑

k=0

akx
k

)
= A

⎛

⎝
n∑

k1=0

ak1x
k1 , . . . ,

n∑

kj=0

akj
xkj

⎞

⎠

=
n∑

k1=0

· · ·
n∑

kj=0

A
(
ak1x

k1 , . . . , akj
xkj

)
.

For any fixed non-negative integers kl ∈ { 0, , 1, , . . . , n } (l = 1, 2, . . . , j), let

s =
j∑

l=1

kl and

G(t1, . . . , ts) = A
(
ak1t1 . . . tk1 , ak2tk1+1 . . . tk1+k2 , . . . , akj

ts−kj+1 . . . ts
)
,

where any empty product equals 1 (i.e., for kl = 0 we have only akl
in the l-th

entry of A). Due to the distributivity of multiplication of real numbers and
the j-additivity of A , G is s-additive and

A
(
ak1x

k1 , ak2x
k2 , . . . , akj

xkj
)

= G(x, x, . . . , x) .

Thus f ◦ p is a finite sum of generalized monomials, hence it is a generalized
polynomial. �

3. Main results

Now we can establish our main theorems. The first one involves two non-
constant regular polynomials with possibly different degrees.

Theorem 3.1. Let p and q be polynomials of degrees at least one. If the gener-
alized polynomial f : R → R satisfies the equation

f(p(x))f(q(x)) = 0 (3)

for every x ∈ R , then f(x) = 0 identically.

Proof. Since generalized polynomials are obtained as finite sums of general-
ized monomials, Lemma 2.2 implies that both f ◦ p and f ◦ q are generalized
polynomials. Now we can use a result [4, Theorem 2] by Halter-Koch, Reich
and Schwaiger claiming that the set of generalized polynomials is an integral
domain. In particular, if the product of two generalized polynomials is identi-
cally zero, then one of those generalized polynomials has to be identically zero
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as well. Therefore the functional equation (3) implies that either f(p(x)) = 0
identically or f(q(x)) = 0 identically. Due to our assumptions the ranges p(R)
and q(R) are unbounded intervals, hence f vanishes on an unbounded interval.
Applying Lemma 2.1 we obtain that f(x) = 0 for all x ∈ R . �

Our second theorem involves particular hyperbolas. The major tool in our
arguments is obtained by a family of linear transformations that leave such a
hyperbola invariant.

Lemma 3.2. Let m denote a positive real number. Suppose that x , y , α and
β are real numbers such that

x2 − my2 = 1 and α2 − mβ2 = 1 .

Then we have

(αx + βmy)2 − m(βx + αy)2 = 1

as well.

Proof. It is obtained by a straightforward calculation. �

Remark 3.3. The geometric interpretation of this observation is that, for any
(α, β) ∈ S1,m , the linear transformation on R

2 given by the matrix
(

α mβ
β α

)

leaves the hyperbola S1,m invariant.

Theorem 3.4. Let m denote a positive rational. Suppose that f : R → R is
a generalized monomial and f(x)f(y) = 0 for all solutions of the equation
x2 − my2 = 1 . Then f is identically equal to zero.

Proof. Given a generalized monomial f , we can associate a positive integer k
and a k-additive and symmetric functional A : Rk → R with f in such a way
that

f(x) = A(x, . . . , x) (4)

for all x ∈ R .
Now, let x ∈ R such that x ≥ 1 . Then there exists 0 ≤ y ∈ R such that

x2 − my2 = 1 . If α, β are rational numbers such that α2 − mβ2 = 1 , Lemma
3.2 and our assumptions on f imply

f(αx + βmy)f(βx + αy) = 0 . (5)

Next, let us denote

al = A(x, . . . , x︸ ︷︷ ︸
l

, y, . . . , y︸ ︷︷ ︸
k−l

)
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for l = 0, 1, . . . k . With this notation we can calculate that

f(αx + βmy) = A(αx + βmy , . . . , αx + βmy) =
k∑

l=0

(
k

l

)
(α)l(βm)k−lal

and

f(βx + αy) = A(βx + αy , . . . , βx + αy) =
k∑

l=0

(
k

l

)
αk−lβlal .

Due to Eq. (5), for every pair of rationals (α, β) fulfilling α2 − mβ2 = 1 , at
least one of the foregoing expressions is equal to zero.

What is more, we can find infinitely many distinct pairs (αj , βj) such that
α2
j − mβ2

j = 1 and both αj and βj are rationals, so let us take

αj =
mj2 + 1
mj2 − 1

and βj =
2j

mj2 − 1
(6)

for j ∈ N such that mj2 �= 1 .
Thus, for every j ∈ Nm

.= N \ {1/
√

m}, we have either

0 =
k∑

l=0

(
k

l

)(
mj2 + 1
mj2 − 1

)l ( 2mj

mj2 − 1

)k−l

al

or

0 =
k∑

l=0

(
k

l

)(
mj2 + 1
mj2 − 1

)k−l ( 2j

mj2 − 1

)l

al .

Multiplying both equations by (mj2 − 1)k and introducing the functions

P (j) =
k∑

l=0

(
k

l

)(
mj2 + 1

)l
(2mj)k−l

al ,

P̃ (j) =
k∑

l=0

(
k

l

)(
mj2 + 1

)k−l
(2j)l al ,

we have P (j) = 0 or P̃ (j) = 0 for each integer j ∈ Nm . Hence either P or P̃

has infinitely many zeros. On the other hand, both P and P̃ are polynomials
of degree not greater than 2k . Therefore, one of them has to be identically
equal to 0 . So either

0 = P (0) = ak = Ak(x , x , . . . , x) = f(x)

or

0 = P̃

(
i√
m

)
=

(
2i√
m

)k

ak =
(

2i√
m

)k

Ak(x , x , . . . , x) =
(

2i√
m

)k

f(x) ,
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i.e., f(x) = 0 (here i denotes the imaginary unit as polynomials with real
coefficients can be considered as polynomials over the complex number field
as well).

We have thus proved f(x) = 0 for every real number x ≥ 1 . Hence, applying
Lemma 2.1, we obtain that f(x) = 0 for all x ∈ R . �

Corollary 3.5. Let a and b denote positive real numbers such that a2

b2 is rational.
Suppose that f : R → R is a generalized monomial and f(x)f(y) = 0 for all
solutions of the equation x2

a2 − y2

b2 = 1 . Then f is identically equal to zero.

Proof. Let u and w be real numbers fulfilling the condition u2 − a2

b2 w2 = 1 .
Moreover, let g(t) = f(at) for all t ∈ R . Clearly, then g is a generalized
monomial as well. For x = au and y = aw we have

x2

a2
− y2

b2
= u2 − a2

b2
w2 = 1 ,

hence our assumption yields g(u)g(w) = f(au)f(aw) = f(x)f(y) = 0 . There-
fore g satisfies the assumptions in Theorem 3.4 with m = a2

b2 , hence g is
identically equal to zero, which yields f(x) = g(x/a) = 0 for every x ∈ R as
well. �

Funding Information Open access funding provided by University of Debrecen.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Boros, Z., Fechner, W.: An alternative equation for polynomial functions. Aequationes
Math. 89(1), 17–22 (2015)

[2] Boros, Z., Fechner, W., Kutas, P.: A regularity condition for quadratic functions involving
the unit circle. Publ. Math. Debrecen 89(3), 297–306 (2016)
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