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Finite dimensional varieties over the Heisenberg group

László Székelyhidi

Abstract. Spectral analysis and synthesis studies translation invariant function spaces, so-
called varieties over topological groups. The basic building blocks are the finite dimensional
varieties. In the commutative case finite dimensional varieties are spanned by exponential
polynomials. In non-commutative situations no relevant results exist. In this paper we con-
sider finite dimensional left translation invariant linear spaces of continuous complex valued
functions over the Heisenberg group. Using basic knowledge about Lie algebra we describe
all left varieties of this type. In particular, it turns out that those function spaces are spanned
by exponential polynomials as well.
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1. Introduction

Given a commutative topological group G a linear space of continuous complex
valued functions on G is called a variety if it is closed with respect to uniform
convergence on compact sets and with respect to translation. Varieties are
the basic building blocks of spectral analysis and spectral synthesis. Spectral
analysis for a variety means that each nonzero subvariety contains a finite
dimensional nonzero subvariety, and spectral synthesis means that all finite
dimensional subvarieties span a dense subspace in each subvariety. The basics
of the theory can be found in [3]. In the non-commutative case, however,
no general results are available. In this paper we consider a delicate non-
commutative group: the Heisenberg group. We give a complete description of
all finite dimensional left invariant closed linear spaces of continuous complex
valued functions on this group in Theorem 6. In particular, in Theorem 8 we
show that these function spaces are spanned by exponential polynomials. In
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Sects. 6 and 7 we describe the particular form of the generating functions of
two and three dimensional varieties. It turns out that nontrivial varieties exist
only if the dimension is at least three.

2. The Heisenberg group

The three dimensional Heisenberg group structure is defined on the set H =
R × R × R by the following operation: for (x, y, t) and (u, v, s) in H we let

(x, y, t) · (u, v, s) = (x + u, y + v, t + s + xv).

Then H is a group with identity (0, 0, 0) and the inverse of (x, y, t) is (−x,−y,
−t+xy). This group is obviously noncommutative, the commutator of (x, y, t)
and (u, v, s) is

(x, y, t) · (u, v, s) · (−x,−y,−t + xy) · (−u,−v,−s + uv) = (0, 0, xv − uy).

Using the Euclidean topology on R×R×R the Heisenberg group H is a locally
compact topological group—in fact, it is a Lie group.

If we identify (x, y, t) with the matrix⎛
⎝

1 x t
0 1 y
0 0 1

⎞
⎠ , (1)

then we set up an isomorphism between H and the subgroup of GL(R, 3)
consisting of all matrices of the given type. Indeed,⎛

⎝
1 x t
0 1 y
0 0 1

⎞
⎠ ·

⎛
⎝

1 u s
0 1 v
0 0 1

⎞
⎠ =

⎛
⎝

1 x + y t + xv
0 1 y + s
0 0 1

⎞
⎠ .

We shall denote the Lie group of these matrices with H as well. The Lie algebra
of H can be identified with the algebra of matrices of the form⎛

⎝
0 x t
0 0 y
0 0 0

⎞
⎠ . (2)

This Lie algebra will be denoted by h. It is well-known, that the exponential
map from h onto H is bijective.

The Lie algebra h of H has the basis

A =

⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝

0 0 0
0 0 1
0 0 0

⎞
⎠ , C =

⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ (3)

with the commutation relations

[A,B] = C, [A,C] = [B,C] = 0.
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It follows that
[
[X,Y ], Z

]
= 0 for any three matrices X,Y,Z in h. By the

Campbell–Baker–Hausdorff formula (see e.g. [2, Proposition 1.3.2], p.25), it
follows that for any matrices X,Y in h we have

eXeY e−Xe−Y = e[X,Y ], (4)

and
eXeY = eX+Y + 1

2 [X,Y ]. (5)

3. Varieties

The space of all continuous complex valued functions on H will be denoted by
C(H), and will be equipped with the topology of compact convergence. Its dual
can be identified with the space Mc(H) of all compactly supported complex
Borel measures on H. The space Mc(H) is equipped with the convolution:

∫

H

f d(μ ∗ ν) =
∫

R

∫

R

∫

R

f(x + u, y + v, t + s + xv) dμ(x, y, t) dν(u, v, s)

whenever f is in C(H) and μ, ν are in Mc(H). With this convolution—together
with the linear operations—Mc(H) is an algebra. The space C(H) turns into
a left module over Mc(H) under the action

μ ∗ f(x, y, t) =
∫

H

f(x + u, y + v, t + s + uy) dμ(u, v, s)

corresponding to left translation on H. Closed submodules of this module will
be called varieties.

Proposition 1. The closed subspace of C(H) is a variety if and only if it is
closed under left translation.

Proof. Suppose that V is a variety in C(H), and f is in V , (u, v, s) is in H.
If δu,v,s denotes the point mass supported at the singleton (u, v, s), then we
have

δu,v,s ∗ f(x, y, t) =
∫

H

f(x + p, y + q, t + r + py) dδu,v,s(p, q, r)

= f(x + u, y + v, t + s + uy) = f
(
(u, v, s) · (x, y, t)

)
,

which is the left translate of f by (u, v, s). As V is a variety, the function δu,v,s∗
f is in V , hence V is left translation invariant. The converse statement follows
from the fact, that point masses span a weak*-dense subspace in Mc(H),
hence if convolutions with point masses from the left leave V invariant, then
the same holds for their finite linear combinations and their weak*-limits as
well, which implies that V is a variety. �
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As an illustration we describe all one dimensional varieties in C(H). If V is
one dimensional, then let f be a nonzero function in V . Then for each (u, v, s)
in H there exists a complex number λ(u, v, s) such that

f(x + u, y + v, t + s + uy) = λ(u, v, s)f(x, y, t) (6)

holds for each (x, y, t). Clearly, f(0, 0, 0) �= 0, hence we have that cλ = f for
some nonzero complex number c. In particular, λ is continuous. It follows that

λ(x + u, y + v, t + s + uy) = λ(u, v, s)λ(x, y, t) (7)

holds for each (x, y, t) and (u, v, s). Putting u = s = y = 0 we get

λ(x, v, t) = λ(0, v, 0)λ(x, 0, t).

On the other hand, from (7) we infer with y = v = 0 that

λ(x, 0, t)λ(u, 0, s) = λ(x + u, 0, t + s),

which implies that

λ(x, 0, t) = eμx+ξt

holds with some complex numbers μ, ξ. Similarly, we obtain from (7) with
x = u = t = s = 0 that

λ(0, y + v, 0) = λ(0, v, 0)λ(0, y, 0),

which implies that

λ(0, y, 0) = eνy

holds with some complex number ν. Finally, we have

λ(x, y, t) = λ(0, y, 0)λ(x, 0, t) = eμx+νy+ξt.

On the other hand, substitution into (7) yields

eμ(x+u)+ν(y+v)+ξ(t+s+uy) = eμu+νv+ξs · eμx+νy+ξt,

which implies eξuy = 1 for each u, y in R, that is ξ = 0. Finally, we arrive at
λ(x, y, t) = eμx+νy. It is easy to check that indeed, such functions span one
dimensional varieties in C(H) for any choice of complex numbers μ, ν, hence
we have proved the following result:

Proposition 2. A variety in C(H) is one dimensional if and only if it is spanned
by a function of the form (x, y, t) �→ eμx+νy with some complex numbers μ, ν.
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4. Matrix functional equations

In this section we go on to the describe finite dimensional varieties with di-
mension greater than one. Clearly, finite sums of one dimensional varieties of
the above type may result in higher dimensional varieties – we shall call them
trivial. In other words, a variety is called trivial, if it consists of functions inde-
pendent of the variable t. Trivial finite dimensional varieties can be described
easily: they are spanned by finitely many functions of the form

(x, y, t) �→ eμx+νy,

where μ, ν are arbitrary complex numbers. Our main goal will be to describe
all nontrivial finite dimensional varieties over the Heisenberg group H.

The problem of describing finite dimensional varieties over H is closely
related to the study of finite dimensional representations of the Heisenberg
group, that is, to the study of the matrix functional equation

F (x, y, t)F (u, v, s) = F (x + u, y + v, t + s + xv), (8)

where F : H → M(Cn) is a function, and M(Cn) denotes the algebra of n × n
matrices with complex entries. We note that the functional Eq. (8) provides a
method for creating finite dimensional varieties in C(H). Indeed, if F : H →
M(C, n) is a continuous solution of (8), and F (x, y, t) =

(
Fij(x, y, t)

)
i,j=1,2,...,n

,
then

Fij(x + u, y + v, t + s + uy) =
n∑

k=1

Fik(u, v, s)Fkj(x, y, t)

holds for each i, j = 1, 2, . . . n and for every x, y, t, u, v, s in R, hence every left
translate of the functions in the linear space V generated by the functions Fij is
in V , hence the functions Fij for i, j = 1, 2, . . . , n generate a finite dimensional
variety. Later, in Theorem 6 we shall see that every finite dimensional variety
arises in this way.

Proposition 3. If F : H → M(Cn) is a continuous solution of the functional
Eq. (8) such that F (0, 0, 0) is invertible, then F (x, y, t) is invertible for each
x, y, t in R, F (0, 0, 0) = I, the identity matrix, and F is analytic.

Proof. We have, by (8)

F (0, 0, 0)F (0, 0, 0) = F (0, 0, 0), (9)

and multiplying by the inverse of F (0, 0, 0) we have that F (0, 0, 0) = I. Now
(8) implies

F (x, y, t)F (−x,−y,−t + xy) = F (0, 0, 0) = I,

hence each F (x, y, t) is invertible. Then the analiticity of F follows from the
fact that F is a continuous Lie group homomorphism of H into the Lie group
GL(C, n) (see e.g. [1], p. 50). �
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Given F with the above properties G = F (H) is a (linear) Lie group as
well: we shall denote its Lie algebra by g. The following theorem is well-known
(see e.g. [2, Theorem 2.6.1], p.78.)

Theorem 4. The continuous homomorphism F : H → G of the Lie group H
onto the Lie group G induces a Lie algebra homomorphism ϕ : h → g onto g,
which is given by the differential of F at the identity (0, 0, 0) of H, denoted by
dF . Further we have

F (exp X) = exp dF (X) (10)

for each X in h.

The following theorem describes all continuous solutions F of the functional
Eq. (8) from H to M(Cn) satisfying F (0, 0, 0) = I.

Theorem 5. The continuous function F : H → GL(Cn) with invertible F (0, 0,
0) is a solution of the functional Eq. (8) if and only if there exist matrices
X,Y in M(Cn) such that in the Lie algebra generated by X,Y and [X,Y ] the
commutator [X,Y ] is central, and for each x, y, t in R

F (x, y, t) = eXx+Y y+[X,Y ](t− xy
2 ) (11)

holds.

Proof. First we prove the necessity. Equation (8), together with the continuity
of F and F (0, 0, 0) = I (see Proposition 3) implies that F : H → G is a Lie
group homomorphism. Via simple substitutions in (8) we have

F (x, y, t) = F (0, y, 0)F (x, 0, 0)F (0, 0, t) (12)

for each x, y, t in R.
Now substituting y = v = t = s = 0 in (8) we get that x �→ F (x, 0, 0)

is a one-parameter subgroup in the Lie group G = F (H). Similarly, by the
substitutions x = u = t = s, resp. x = y = u = v we obtain that y �→ F (0, y, 0),
resp. t �→ F (0, 0, t) are one-parameter subgroups in G, as well. On the other
hand, we have

(x, 0, 0) =

⎛
⎝

1 x 0
0 1 0
0 0 1

⎞
⎠ = expAx,

hence F (x, 0, 0) = F (exp Ax) = exp
(
dF (A)x

)
, by Theorem 4. Similarly, we

have

F (0, y, 0) = exp(dF (B)y), F (0, 0, t) = exp(dF (C)t)

for each x, y, t, where C = [A,B]. Now if we take X = dF (A), Y = dF (B) we
infer

dF (C) = dF ([A,B]) = [dF (A), dF (B)],
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as dF : h → g is a Lie algebra homomorphism. In particular, X,Y satisfy the
conditions of the theorem.

Now we have, by (5),

F (x, y, t) = eY yeXxe[X,Y ]t = eXx+Y y− 1
2xy[X,Y ]e[X,Y ]t. (13)

Using the fact that [X,Y ] is central, we can write (13) in the desired form
(11).

For the sufficiency we remark, that the assumption on X and Y implies

eXxeY ye−Xxe−Y y = e[Xx,Y y],

exactly as in (4). Then we can compute as follows, using repeatedly the pre-
vious identity:

F (x, y, t)F (u, v, s) = eY yeXx+[X,Y ]t · eY veXu+[X,Y ]s

= eY yeXx · eY veXue[X,Y ](t+s) = eY ye[Xx,Y v]eY veXxeXue[X,Y ](t+s)

= eY (y+v)eX(x+u)e[X,Y ](t+s+xv) = F (x + u, y + v, t + s + xv),

and the proof is complete. �

5. Finite dimensional varieties

Now we are in the position to describe all finite dimensional varieties over the
Heisenberg group.

Theorem 6. Let n be a positive integer, and V be an n dimensional variety
in C(H). Then there exist matrices X,Y in M(Cn) satisfying the conditions
of Theorem 5 such that the elements of the matrix function F given by (11)
span V .

Proof. Let f1, f2, . . . , fn be a basis of V – then there exist continuous functions
αij : H → C (i, j = 1, 2, . . . , n) such that

fi(x + u, y + v, t + s + uy) =
n∑

j=1

αij(u, v, s)fj(x, y, t) i = 1, 2, . . . , n (14)

holds for each (x, y, t) and (u, v, s) in H. Indeed, the left side is the left translate
of fi by (u, v, s), which belongs to V , by left invariance. Now we apply the
associativity of the group operation in H to get

fi

(
[(p, q, r) · (u, v, s)] · (x, y, t)

)
= fi

(
(p, q, r) · [(u, v, s) · (x, y, t)]

)
,

where the left hand side is

fi(x + u + p, y + v + q, t + s + r + uy + py + pv)

=
n∑

j=1

αij(p + u, q + v, r + s + pv)fj(x, y, t), i = 1, 2, . . . , n, (15)
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and the right hand side is
n∑

j=1

αij(p, q, r)fj(x + u, y + v, t + s + uy)

=
n∑

j=1

n∑
k=1

αij(p, q, r)αjk(u, v, s)fk(x, y, t), i = 1, 2, . . . , n. (16)

Using the linear independence of the functions fj we infer from (15) and (16)

αij(p + u, q + v, r + s + pv) =
n∑

k=1

αik(p, q, r)αkj(u, v, s), i, j = 1, 2, . . . , n.

(17)

Let F : H �→ M(Cn) denote the matrix valued mapping such that the i, j entry
Fij(x, y, t) of F (x, y, t) is αij(x, y, t), then we have from (17) with x = p, y =
q, t = r the functional Eq. (8), and, by the definition of F , we have F (0, 0, 0) =
I. Hence F : H → M(Cn) is a continuous solution of the functional Eq. (8)
with F (0, 0, 0) = I. The functions f1, f2, . . . , fn in the i-th equation of the
system (14) are linearly independent, hence there are elements (xk, yk, tk) in H

such that the matrix
(
fj(xk, yk, tk

)n

j,k=1
is regular. Substituting xk, yk, tk in the

i-th equation of the system (14) for x, y, t we have a system of linear equations
for the unknowns αij for j = 1, 2, . . . , n with regular matrix. It follows, by
Cramer’s Rule, that the elements of the matrix F are linear combinations of
some left translates of the fi’s, hence they are in V . This means that the
matrix elements of F span V and the theorem is proved. �

From this theorem we can see that a variety is trivial if and only if in the
representation (11) we have [X,Y ] = 0, that is, if the matrices X,Y commute.
In this case eX and eY commute as well, and F can be written in the form

F (x, y, t) = eXx+Y y,

where X,Y are commuting matrices. They can be triangularized simultane-
ously, and from well-known results (see e.g. [3, Lemma 12.8.2] p. 181.) it follows
that the elements of F (x, y, t) are exponential polynomials. On the other hand,
in the case of nontrivial varieties [X,Y ] is nonzero, hence eX and eY cannot
be triangularized simultaneously. Nevertheless, as we shall see below, even in
those cases the solutions can be described using exponential polynomials.

6. Two dimensional varieties

As an application of our result we show how to describe two and three di-
mensional varieties in C(H). In this section we study the case n = 2, when
the variety V in C(H) is two dimensional. We may assume that the matrix X
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in (11) has Jordan normal form. This means that X has one of the following
forms:

Case i) X =
(

a1 0
0 a2

)
, Case ii) X =

(
a1 1
0 a1

)
,

where a1, a2 are arbitrary complex numbers. If Y has the form(
b11 b12
b21 b22

)
,

then in Case i) we have

[X,Y ] = (a2 − a1)
(

0 −b12
b21 0

)
,

[
X, [X,Y ]

]
= (a1 − a2)2

(
0 b12

b21 0

)
,

hence the requirement
[
X, [X,Y ]

]
= 0 implies either a1 = a2, or b12 = b21 = 0.

In both cases [X,Y ] = 0, hence V is trivial.
In Case ii) we have

[X,Y ] =
(

b21 b22 − b11
−b21

)
,
[
X, [X,Y ]

]
=

(
0 −2b21
0 0

)
,

hence
[
X, [X,Y ]

]
= 0 implies b21 = 0 and then

Y =
(

b11 b12
0 b22

)
, [X,Y ] =

(
0 b22 − b11
0 0

)
.

On the other hand, we have
[
Y, [X,Y ]

]
=

(
0 −(b11 − b22)2

0 0

)
,

hence
[
Y, [X,Y ]

]
= 0 implies b11 = b22, [X,Y ] = 0, consequently V is a trivial

variety. It follows that there are no nontrivial varieties on H with dimension
less then three.

7. Three dimensional varieties

Now we consider three dimensional varieties on H. Again, we assume that X
in Theorem 5 has Jordan normal form, and

Y =

⎛
⎝

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞
⎠ .

Case (i) In the first case we have three one dimensional Jordan blocks:

X =

⎛
⎝

a1 0 0
0 a2 0
0 0 a3

⎞
⎠ , [X,Y ] =

⎛
⎝

0 b12(a1 − a2) b13(a1 − a3)
b21(a2 − a1) 0 b23(a2 − a3)
b31(a3 − a1) b32(a3 − a2) 0

⎞
⎠ ,
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and

[
X, [X,Y ]

]
=

⎛
⎝

0 b12(a1 − a2)2 b13(a1 − a3)2

b21(a1 − a2)2 0 b23(a2 − a3)2

b31(a1 − a3)2 b32(a2 − a3)2 0

⎞
⎠ .

It is easy to see that
[
X, [X,Y ]

]
= 0 implies [X,Y ] = 0, hence in this case

there is no nontrivial variety.
Case (ii) In the second case we have two Jordan blocks—one is two dimen-

sional, and the other is one dimensional:

X =

⎛
⎝

a1 1 0
0 a1 0
0 0 a3

⎞
⎠ .

Then [X,Y ] =⎛
⎝

b21 b22 − b11 b13(a1 − a3) + b23
0 −b21 b23(a1 − a3)

b31(a3 − a1) b32(a3 − a1) − b31 0

⎞
⎠ ,

and
[
X, [X,Y ]

]
=

⎛
⎝

0 −2b21 (a1 − a3)
(
b13(a1 − a3) + 2b23

)
0 0 b23(a1 − a3)

2

b31(a1 − a3)
2 (a1 − a3)

(
b32(a1 − a3) + 2b31

)
0

⎞
⎠ .

The condition
[
X, [X,Y ]

]
= 0 implies b21 = 0, and we have

[X,Y ] =

⎛
⎝

0 b22 − b11 b13(a1 − a3) + b23
0 0 b23(a1 − a3)

b31(a3 − a1) b32(a3 − a1) − b31 0

⎞
⎠ ,

and
[
X, [X,Y ]

]
=

(a1 − a3)

⎛
⎝

0 0 b13(a1 − a3) + 2b23
0 0 b23(a1 − a3)

b31(a1 − a3) b32(a1 − a3) + 2b31 0

⎞
⎠ .

Each entry of
[
X, [X,Y ]

]
must be zero. First we assume that a1 = a3, then

we have

[X,Y ] =

⎛
⎝

0 b22 − b11 b23
0 0 0
0 −b31 0

⎞
⎠ ,

and
[
X, [X,Y ]

]
= 0, further

[
Y, [X,Y ]

]
=

⎛
⎝

−b23b31 −b211 + 2b11b22 − b13b31 − b222 − b23b32 b23(2b11 − b22 − b33)
0 −b23b31 0
0 −b31(b11 − 2b22 + b33) 2b23b31

⎞
⎠ .



Vol. 97 (2023) Finite dimensional varieties over the Heisenberg group 387

If b23 �= 0, then b31 = 0, and

[
Y, [X,Y ]

]
=

⎛
⎝

0 −(b11 − b22)2 − b23b32 b23(2b11 − b22 − b33)
0 0 0
0 0 0

⎞
⎠ .

As b23 �= 0, we must have b22 = 2b11 − b33, and b32 = − (b11−b22)
2

b23
. With

this choice we have

X =

⎛
⎝

a1 1 0
0 a1 0
0 0 a1

⎞
⎠ , Y =

⎛
⎝

b11 b12 b13
0 2b11 − b33 b23

0 − (b33−b11)
2

b23
b33

⎞
⎠ ,

[X,Y ] =

⎛
⎝

0 b11 − b33 b23
0 0 0
0 0 0

⎞
⎠ ,

and the corresponding variety is nontrivial. We note that with the simple
choice a1 = b11 = b12 = b13 = b33 = 0 and b23 = 1 we have the generators of
the Lie algebra h of the Heisenberg group H.

If b31 �= 0, then b23 = 0 and we must have b32 = 2b22 − b11, further
b13 = − (b11−b22)

2

b31
. With this choice we have

X =

⎛
⎝

a1 1 0
0 a1 0
0 0 a1

⎞
⎠ , Y =

⎛
⎝

b11 b12 − (b11−b22)
2

b31
0 b22 0
0 2b22 − b11 b33

⎞
⎠ ,

[X,Y ] =

⎛
⎝

0 b22 − b11 0
0 0 0
0 0 0

⎞
⎠ ,

and again, the corresponding variety is nontrivial.
Now we consider the case when a1 �= a3. In this case

[
X, [X,Y ]

]
= 0 implies

that b13 = b21 = b23 = b31 = b32 = 0. We have

X =

⎛
⎝

a1 1 0
0 a1 0
0 0 a3

⎞
⎠ , Y =

⎛
⎝

b11 b12 0
0 b22 0
0 0 b33

⎞
⎠, [X,Y ]=

⎛
⎝

0 b22 − b11 0
0 0 0
0 0 0

⎞
⎠ ,

and
[
X, [X,Y ]

]
= 0. On the other hand,

[
Y, [X,Y ]

]
=

⎛
⎝

0 −(b22 − b11)2 0
0 0 0
0 0 0

⎞
⎠ ,

hence the requirement
[
Y, [X,Y ]

]
= 0 implies b11 = b22, and [X,Y ] = 0, hence

in this case there is no nontrivial variety.
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Case (iii) Let

X =

⎛
⎝

a1 1 0
0 a1 1
0 0 a1

⎞
⎠ ,

then

[X,Y ] =

⎛
⎝

b21 b22 − b11 b23 − b12
b31 b32 − b21 b33 − b22
0 −b31 −b32

⎞
⎠ ,

and

[
X, [X,Y ]

]
=

⎛
⎝

b31 b32 − 2b21 b11 + b33 − 2b22
0 −2b31 b21 − 2b32
0 0 b31

⎞
⎠ .

Now
[
X, [X,Y ]

]
= 0 implies b21 = b31 = b32 = 0, hence

Y =

⎛
⎝

b11 b12 b13
0 b21 b23
0 0 b33

⎞
⎠ , [X,Y ] =

⎛
⎝

0 b22 − b11 b23 − b12
0 0 b33 − b22
0 0 0

⎞
⎠ ,

and, again
[
X, [X,Y ]

]
= 0 implies b11 + b33 = 2b22. On the other hand, in this

case we have

[
Y, [X,Y ]

]
=

⎛
⎝

0 −(b11 − b22)2 −3(b11 − b22)(b12 − b23)
0 0 −(b11 − b22)2

0 0 0

⎞
⎠ .

The requirement
[
Y, [X,Y ]

]
= 0 implies b11 = b22, and then also b33 = b22,

and we conclude

Y =

⎛
⎝

b11 b12 b13
0 b11 b23
0 0 b11

⎞
⎠ , [X,Y ] =

⎛
⎝

0 0 b23 − b12
0 0 0
0 0 0

⎞
⎠ ,

hence the corresponding variety is nontrivial. It can be checked that this variety
is spanned by the functions

ϕ1(x, y, t) = ea1x+b11y,

ϕ2(x, y, t) = yea1x+b11y,

ϕ3(x, y, t) = ea1x+b11y
(
(b33 − b11)2b13y2 + 2b23(2(b33 − b11)t + b12y

2 − 2x)
)
.

8. Exponential polynomials

It is well-known that if G is a commutative group, then every finite dimen-
sional variety in C(G) consists of exponential polynomials. In fact, exponential
polynomials can be characterized by the property that they are exactly those
functions which are included in some finite dimensional variety. On the real
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line complex exponential polynomials are the elements of the function alge-
bra generated by the complex exponential functions and complex polynomials.
In the non-commutative case the situation is not so simple. Nevertheless, we
have seen above that trivial finite dimensional varieties consist of exponential
polynomials, and even in the nontrivial cases in three dimensional varieties the
matrix elements of the function F (x, y, t) are exponential polynomials. Now
we will show that this is the case for every finite dimensional variety over the
Heisenberg group. For this we shall use the following result.

Theorem 7. Every matrix in M(Cn) is the sum of a semisimple and a nilpotent
matrix, which commute.

We recall that a matrix is called semisimple, if it is diagonaziable, that
is, similar to a diagonal matrix, and it is called nilpotent, if some power of
it is zero. Clearly, being semisimple or nilpotent is similarity invariant. If the
matrix A is the sum of As and An where As is semisimple and An is nilpotent,
then A = As + An is called the Chevalley–Jordan decomposition of A.

Theorem 8. Every finite dimensional variety over the Heisenberg group con-
sists of exponential polynomials.

Proof. Let V be an n-dimensional variety in C(H) and let F : H �→ GL(C, n)
be of the form (11) so that the matrix elements of F span V . It is enough to
show that the matrix elements of F are exponential polynomials. We have

F (x, y, t) = eY yeXx+[X,Y ]t

for each x, y, t in R. Here the matrices X,Y satisfy the conditions of Theo-
rem 6. Clearly, it is enough to show that the matrix elements of y �→ eY y, the
matrix elements of x �→ eXx, and also the matrix elements of t �→ e[X,Y ]t are
exponential polynomials. We show this for y �→ eY y, the proof is similar in the
other cases.

Let Y = Ys + Yn be the Chevalley–Jordan decomposition of Y , where Ys is
diagonizable and Yn is nilpotent, moreover YsYn = YnYs. Let P be an invertible
matrix such that PYsP

−1 = D is diagonal, and we write N = P−1YnP . We
have

P−1eY yP = P−1ePYsP−1yePYnP−1yP = P−1eDyeNyP.

In general, the matrix elements of Z are the linear combinations of the matrix
elements of P−1ZP , hence it is enough to show that the matrix elements of
eDy and the matrix elements of eNy are exponential polynomials.

If the diagonal elements of D are νii (i = 1, 2, . . . , n), then the matrix eDy

is a diagonal matrix with diagonal elements eνiiy (i = 1, 2, . . . , n). As N is
nilpotent, we have Nn = 0, and

eNy = I + Ny +
1
2
N2y2 + · · · +

1
(n − 1)!

Nn−1yn−1,
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that is, the matrix elements of eNy are polynomials of y of degree at most n−1.
It is clear, that the matrix elements of eDy · eNy are linear combinations of
the exponential functions eνiiy with polynomial coefficients of degree at most
n − 1. The proof is complete. �
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