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Abstract. In this paper, we present an application of the viscosity approximation type it-
erative method introduced by Nandal et al. (Iteration Process for Fixed Point Problems
and Zeros of Maximal Monotone Operators, Symmetry, 2019) to visualize and analyse the
Julia and Mandelbrot sets for a complex polynomial of the type T (z) = zn + pz + r, where
p, r ∈ C, and n ≥ 2. This iterative method has many applications in solving various fixed
point problems. We derive an escape criterion to visualize Julia and Mandelbrot sets via
the proposed viscosity approximation type method. Moreover, we present several graphical
examples of the fractals generated with the proposed iteration method.
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1. Introduction

Fractal geometry provides a general framework to study those natural objects
which can not be easily described using Euclidean geometry. Usually, fractals
are used for self-similar complex objects [39]. Nowadays, fractals have been
applied for various purposes, for example, in cryptography [1], image encryp-
tion [44] or compression [2], art and design [33], pattern recognition [10]. The
industry of security control systems, capacitors, radar systems, radio and an-
tennas for wireless systems [6,18] were revolutionized with the applications of
fractal theory. Fractals were also used in biology and medicine to study the
culture of micro-organisms, the nervous system, etc. [9]. Moreover, architects
and engineers applied fractal theory to sketch and design the maps of different
projects [13].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-022-00908-z&domain=pdf
http://orcid.org/0000-0003-0498-5268
http://orcid.org/0000-0001-9434-9307


258 S. Kumari et al. AEM

Before the invention of computers, the figures of attractive objects, pat-
terns and geometries had been sketched manually. Initially, the investigators
of classical fractals like the Cantor set, the Koch curve, Sierpinski’s triangle,
and the Koch snowflake sketched graphs of these fractals manually. The French
mathematician Gaston Julia [16] was the first to use an iteration process to
define a new fractal named Julia set for the complex map Tr(z) = z2 + r
where z is a complex variable, and r is a complex parameter. Thereafter, in
1975, Mandelbrot [27] used a computer for the first time to extend the work
of Julia. He generated beautiful graphics for complex polynomials known as
Mandelbrot sets. He defined a fractal as “a fragmented geometric shape that
can be subdivided into congruent pieces, each of which is a reduced-size copy of
the original one”. Julia and Mandelbrot sets were extended from the complex
numbers to quaternions [7], bicomplex numbers [43], tricomplex numbers [34]
etc. Fractals have been analysed and visualized with various techniques (see,
[4,16,19–22,27]). The escape criterion plays a prominent role in the generation
of fractals (especially, Julia and Mandelbrot sets) which is a stopping criterion
depending on the number of iterations required to determine whether the orbit
of an initial point escapes to infinity or not. This criterion has been proved
to be an appropriate mechanism to demonstrate the features of dynamical
systems using various iterative procedures.

Fixed point iterative methods have been used as a milestone to generate
and visualize fractals (especially Julia and Mandelbrot sets). These methods
provide a unified treatment for finding the fixed points of non-linear operators.
Generally, there are two main types of these fixed point iterative methods – one
is the Mann type iterative method and the other is the Halpern type iterative
method. The Mann iterative method was introduced by Mann [28] which is an
averaged iterative method. However, this method does not converge strongly
in general (see [11,38]). Many modified forms of the Mann iteration method
have been investigated to achieve strong convergence.

In 1967, Halpern [12] introduced one of the most important iterative meth-
ods for finding a fixed point of nonexpansive type mappings. In 2000, Moudafi
[29] introduced a famous generalization of the Halpern method, that is, the
viscosity approximation method which is widely used to approximate a fixed
point of a nonexpansive mapping and other classes of non-linear mappings (see
[15,30–32,35] and the references therein).

In the literature, the Mann and similar types of fixed point iterative meth-
ods have been used so far for generating these fractals. For example, the ex-
plicit type of iterations: Mann iteration [36,37], Picard-Mann iteration [45],
Picard-Mann iteration with s-convexity [40], Ishikawa iteration [5], Noor iter-
ation [3], SP iteration with s-convexity [23], and the implicit ones: Jungck-CR
iteration [41], Jungck-CR iteration with s-convexity [26], Jungck-SP iteration
[25], Jungck-SP iteration with s-convexity [24].
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In [32], Nandal et al. introduced a generalized form of viscosity approxima-
tion type iterative methods in the framework of a Hilbert space. They used
their method to solve various problems, including a general system of varia-
tional inequalities, convex feasibility problems, zero point problems of inverse
strongly monotone and maximal monotone mappings, split common null point
problems, split feasibility problems, split monotone variational inclusion prob-
lems and split variational inequality problems. Due to the large number of
applications of the proposed iterative method in the field of fixed point theory,
we realized that this method also has a potential to generate fractals. Moti-
vated by this fact, our paper used this new type of viscosity approximation
method for generating fractals (Julia and Mandelbrot sets).

The rest of the paper is organized as follows: Sect. 2 deals with the ba-
sic definitions, facts and notations. In Sect. 3, we derive the escape criterion
which is used to draw Julia and Mandelbrot sets. Next, in Sect. 4, we present
pseudocodes of escape time algorithms for generating Mandelbrot and Julia
sets via the proposed iteration method. Moreover, we present some graphical
examples of the sets obtained with those algorithms. Finally, we conclude our
findings in Sect. 5.

2. Preliminaries

In this section, we give some basic definitions, notations and facts from the
literature for the completeness of the paper.

Definition 2.1. (Julia set [8]) The filled Julia set FTr
of a function Tr : C → C,

where r ∈ C is a parameter, is the set of points in the complex plane whose
orbits are bounded, i.e.,

FTr
= {z ∈ C : {|T j

r (z)|}∞
j=0 is bounded}, (1)

where T j
r denotes the jth iteration of the function Tr. The boundary of the

filled Julia set FTr
is said to be the Julia set JTr

of the function Tr, i.e.,
JTr

= ∂FTr
.

In 1975, Mandelbrot [27] defined the Mandelbrot set as follows:

Definition 2.2. (Mandelbrot set [8]) The collection of all complex numbers r ∈
C for which the filled Julia set FTr

remains connected is known as Mandelbrot
set M , i.e.,

M = {r ∈ C : FTr
is connected}. (2)

Equivalently,

M = {r ∈ C : |T j
r (0)| �→ ∞}. (3)
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Initially, in 2000 Moudafi [29] investigated the viscosity approximation
method. In the complex plane, this method can be defined as

Definition 2.3. (Viscosity approximation method [29]) Let T : C → C be a
complex map. For an initial point z0 ∈ C, consider the following sequence {zj}
of iterates

zj+1 = αjg(zj) + (1 − αj)T (zj), j ≥ 0, (4)

where αj ∈ (0, 1) and g : C → C is a contraction mapping. The iterative
method given in (4) is called the viscosity approximation method.

It is remarkable to note that if in (4), we consider the mapping g as a
constant mapping, i.e., g(z) = b, where b ∈ C, then the sequence {zj} reduces
to the Halpern iteration [12].

In [32], Nandal et al. considered a new generalized viscosity approximation
type method. In the complex plane, this method can be defined as follows:
starting with an arbitrary initial point z0 ∈ C, the sequence {zj} generated
by

zj+1 = JB1
ρj

T j
kT j

k−1 · · · T j
1 yj ,

yj = αjg(zj) + (1 − αj)JB2
μj

Vjzj , j ≥ 0, (5)

where g is a contraction, Vj = (1 − βj)I + βjV , T j
i = (1 − γi

j)I + γi
jTi for i =

1, 2, · · · , k with αj , βj , γ
i
j ∈ (0, 1), the resolvent operators JB1

ρj
= (I + ρjB1)−1

and JB2
μj

= (I + μjB2)−1 are associated with monotone operators B1 and B2,
respectively, with ρj , μj ∈ (0,∞).

3. Main result

In the literature, usually, the authors study the escape criterion for the function
of the form zn + r. To gain more control over the shape of the generated set,
we will consider a function that has a parameter controlling the linear part,
i.e.,

T (z) = zn + pz + r, (6)

where n ≥ 2 and p, r ∈ C. For this function, we prove a general escape criterion
by using a form of the viscosity approximation type method given in (5).

Let us assume that k = 1, and that we use constant sequences αj = α,
βj = β, γ1

j = γ, ρj = ρ, μj = μ, where α, β, γ ∈ (0, 1) and ρ, μ ∈ (0,∞).
Moreover, let us assume that g(z) = az + b is a complex contraction with
a, b ∈ C and |a| < 1, and that B1(z) = mz and B2(z) = qz, where m, q ∈ R.
Thus, JB1

ρ (z) = z
1+mρ and JB2

μ (z) = z
1+qμ . Also, let T1 = V = T where T is

given in (6). For such parameters the iteration (5) takes the following form:

zj+1 = JB1
ρ Tγyj ,
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yj = αg(zj) + (1 − α)JB2
μ Vβzj , (7)

where

Tγ = (1 − γ)I + γT,

Vβ = (1 − β)I + βT. (8)

Theorem 3.1. Let |z0| ≥ max{|r|, |b|} > max
{( (1+α(1+|a|))|1+qμ|+(1−α)(1+β|p|)

β(1−α)

) 1
n−1 ,

( |1+mρ|+1+γ|p|
γ

) 1
n−1

}
. Then |zj | → ∞ as

j → ∞ where {zj} is defined in (7).

Proof. From the construction of Vβ , we have

|Vβzj | = |((1 − β)I + βT )zj |, j ≥ 0.

For j = 0, we have

|Vβz0| = |((1 − β)I + βT )z0|
= |(1 − β)z0 + βTz0|
= |(1 − β)z0 + β(z0n + pz0 + r)|
≥ |βzn

0 + βpz0 + βr| − |(1 − β)z0|
≥ β|zn

0 | − β|p||z0| − β|r| − (1 − β)|z0|.
The assumption |z0| ≥ max{|r|, |b|} implies −|r| ≥ −|z0|, therefore, we obtain

|Vβz0| ≥ β|zn
0 | − β|p||z0| − β|z0| − (1 − β)|z0|

= β|zn
0 | − β|p||z0| − |z0|

= |z0|(β|z0|n−1 − (1 + β|p|)).
Thus,

|Vβz0| ≥ |z0|(β|z0|n−1 − (1 + β|p|)). (9)

From (7), consider

|y0| = |αg(z0) + (1 − α)JB2
μ (Vβz0)|

=
∣
∣
∣
∣α(az0 + b) + (1 − α)

Vβz0
1 + qμ

∣
∣
∣
∣

≥ (1 − α)
∣
∣
∣
∣

Vβz0
1 + qμ

∣
∣
∣
∣ − α|az0| − α|b|.

The assumption |z0| ≥ max{|r|, |b|} yields −|b| ≥ −|z0|, therefore, we have

|y0| ≥ (1 − α)
|Vβz0|

|1 + qμ| − α|a||z0| − α|z0|.
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Using (9), we get

|y0| ≥ (1 − α)
|z0|(β|z0|n−1 − (1 + β|p|))

|1 + qμ| − α(1 + |a|)|z0|

= |z0|
(

(1 − α)β|z0|n−1 − (1 − α)(1 + β|p|)
|1 + qμ| − α(1 + |a|)

)
.

Thus, we have

|y0| ≥ |z0|
(

(1 − α)β|z0|n−1 − (1 − α)(1 + β|p|)
|1 + qμ| − α(1 + |a|)

)
. (10)

Our assumption |z0| >
(

(1+α(1+|a|))|1+qμ|+(1−α)(1+β|p|)
β(1−α)

) 1
n−1

gives

(1 − α)β|z0|n−1 − (1 − α)(1 + β|p|)
|1 + qμ| − α(|a| + 1) > 1. (11)

Using (11) in (10), we obtain

|y0| > |z0|. (12)

Now, from the construction of Tγ , we have

Tγ(yj) = ((1 − γ)I + γT )yj

= (1 − γ)yj + γT (yj)
= (1 − γ)yj + γ(yn

j + pyj + r).

Therefore,

Tγ(yj) = (1 − γ)yj + γ(yn
j + pyj + r). (13)

Further, from (7), consider

|z1| = |JB1
ρ Tγ(y0)|.

From (13), we have

|z1| = |JB1
ρ ((1 − γ)y0 + γ(yn

0 + py0 + r))|

=
∣
∣
∣
∣
(1 − γ)y0 + γ(yn

0 + py0 + r)
1 + mρ

∣
∣
∣
∣

≥ |γ(yn
0 + py0 + r)| − (1 − γ)|y0|

|1 + mρ|
≥ γ|yn

0 | − γ|p||y0| − γ|r| − (1 − γ)|y0|
|1 + mρ|

≥ γ|yn
0 | − γ|p||y0| − γ|z0| − (1 − γ)|y0|

|1 + mρ|

=
|y0|(γ|yn−1

0 | − γ|p| − (1 − γ)) − γ|z0|
|1 + mρ| .
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Now, from (12), we obtain

|z1| >
|z0|(γ|zn−1

0 | − γ|p| − 1 + γ) − γ|z0|
|1 + mρ|

= |z0| (γ|zn−1
0 | − γ|p| − 1)

|1 + mρ| .

This gives

|z1| > |z0| (γ|zn−1
0 | − γ|p| − 1)

|1 + mρ| . (14)

Our assumption |z0| >
(

|1+mρ|+1+γ|p|
γ

) 1
n−1

gives

γ|zn−1
0 | − γ|p| − 1

|1 + mρ| > 1. (15)

Thus, there exists a real number λ > 0 such that

γ|zn−1
0 | − γ|p| − 1

|1 + mρ| > λ + 1 > 1. (16)

Using (16) in (14), we have

|z1| > (λ + 1) |z0|.
In particular |z1| > |z0|, so we may apply the same argument repeatedly to
obtain

|zj | > (λ + 1)j |z0|.
Hence, |zj | → ∞ as j → ∞. �

We obtain the following corollary as a refinement of Theorem 3.1:

Corollary 3.2. Let

|z0| > max

{

|r|, |b|,
(

(1 + α(1 + |a|))|1 + qμ| + (1 − α)(1 + β|p|)
β(1 − α)

) 1
n−1

,

( |1 + mρ| + 1 + γ|p|
γ

) 1
n−1

}

, (17)

then |zj | → ∞ as j → ∞.

Corollary 3.3. Suppose that:

|zk| > max

{

|r|, |b|,
(

(1 + α(1 + |a|))|1 + qμ| + (1 − α)(1 + β|p|)
β(1 − α)

) 1
n−1

,

( |1 + mρ| + 1 + γ|p|
γ

) 1
n−1

}

, (18)
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for some k ≥ 0. Then, there exists λ > 0 such that |zk+j | > (1 + λ)j |zk| and
we have |zj | → ∞ as j → ∞.

4. Graphical examples of mandelbrot and julia sets via the proposed
iteration method

Corollaries 3.2 and 3.3 enable us to generate the Julia and Mandelbrot sets
of the nth degree complex polynomial T1(z) = zn + pz + r, where n ≥ 2 and
p, r ∈ C, via the iteration method given in (7) using the escape time algorithm.
Namely, if for some j, the element zj lies outside the circle of radius:

R = max

{

|r|, |b|,
(

(1 + α(1 + |a|))(|1 + qμ|) + (1 − α)(1 + β|p|)
β(1 − α)

) 1
n−1

,

( |1 + mρ| + 1 + γ|p|
γ

) 1
n−1

}

, (19)

then the orbit of |z0| escapes to infinity. Which implies that the point z0 does
not lie in the filled Julia set. If zj does not exceed this bound, then by definition,
z0 lies in the filled Julia set. In Algorithm 1, we present the pseudocode of a
method for generating Julia sets via the viscosity approximation type method
given in (7). We generate Julia sets in the given area A ⊂ C and the given
colour map. Since an infinite number of iterations cannot be performed, we fix
the maximum number of iterations at K iterations.

Using a very similar escape time algorithm, we can generate a Mandelbrot
set via the viscosity approximation type method given in (7). The pseudocode
of this algorithm is presented in Algorithm 2. The set is generated in the area
A ⊂ C using the maximal K iterations and a given colour map.

The graphical examples in this section were obtained by a program written
in Mathematica 12. In all the examples presented in this section, we used
the colour map presented in Fig. 1. The resolution of the images was set to
800 × 800 pixels, and we used K = 50.

4.1. Examples of Julia sets

In the first example, we generated Julia sets for a quadratic function. The
parameters used to generate these sets were the following: n = 2, p = 0.09

0 5 10 15 20 25 30 35 40 45 50

Figure 1. Colour map used in the graphical examples
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Algorithm 1: Julia set generation
Input: T (z) = zn + pz + r, where p, r ∈ C and n ≥ 2; A ⊂ C – area; K –

the maximum number of iterations; α, β, γ ∈ (0, 1), m, q ∈ R and
ρ, μ ∈ (0,∞) – parameters for the viscosity approximation
iterative method; g(z) = az + b, where a, b ∈ C and |a| < 1;
colourmap[0..K] – colour map with K + 1 colours.

Output: Julia set for area A.

1 R =

max
{

|r|, |b|,
(

(1+α(1+|a|))|1+qμ|+(1−α)(1+β|p|)
β(1−α)

) 1
n−1

,
(

|1+mρ|+1+γ|p|
γ

) 1
n−1

}

2 for z0 ∈ A do
3 j = 0
4 while |zj | < R and j < K do
5 v = (1 − β)zj + βT (zj)
6 yj = αg(zj) + (1 − α) v

1+qμ

7 zj+1 = (1−γ)yj+γT (yj)
1+mρ

8 j = j + 1

9 colour z0 with colourmap[j]

Algorithm 2: Mandelbrot set generation
Input: Tr(z) = zn + pz + r, where p ∈ C, n ≥ 2, and r ∈ C is a parameter;

A ⊂ C – area; K – the maximum number of iterations; α, β, γ ∈ (0, 1),
m, q ∈ R and ρ, μ ∈ (0, ∞)– parameters for the viscosity approximation
iterative method; g(z) = az + b, where a, b ∈ C and |a| < 1;
colourmap[0..K] – colour map with K + 1 colours.

Output: Mandelbrot set for area A.

1 for r ∈ A do
2 R =

max

{
|r|, |b|,

(
(1+α(1+|a|))|1+qμ|+(1−α)(1+β|p|)

β(1−α)

) 1
n−1

,
(

|1+mρ|+1+γ|p|
γ

) 1
n−1

}

3 j = 0

4 z0 = r

5 while |zj | < R and j < K do
6 v = (1 − β)zj + βTr(zj)

7 yj = αg(zj) + (1 − α) v
1+qμ

8 zj+1 =
(1−γ)yj+γTr(yj)

1+mρ

9 j = j + 1

10 colour r with colourmap[j]
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(a) α = 0.11 (b) α = 0.35 (c) α = 0.6

Figure 2. Julia set for n = 2, p = 0.09 − 0.09i, r = 0.02 +
0.02i generated via (7) with β = 0.89, γ = 0.11 and varying α

(a) β = 0.25 (b) β = 0.5 (c) β = 0.85

Figure 3. Julia set for n = 2, p = 0.09 − 0.09i, r = 0.02 +
0.02i generated via (7) with α = 0.56, γ = 0.44 and varying β

− 0.09i, r = 0.02 + 0.02i, A = [−5.3, 3.7] × [−4.5, 4.5], K = 50, g(z) = 0.85z +
2.07 − 6.92i, m = 0.52, q = 0.75, ρ = 0.45, μ = 0.27. In the example, we
divided the images into three groups. In each group, we fix two parameters
from α, β, γ and vary the remaining one. In Fig. 2, we see images generated for
fixed β = 0.89, γ = 0.11, and varying α: (a) 0.11, (b) 0.35, (c) 0.6. In Fig. 3,
we fixed α = 0.56, γ = 0.44 and varied β: (a) 0.25, (b) 0.5, (c) 0.85. Finally, in
Fig. 4, the images were generated for fixed α = 0.33, β = 0.67 and varying γ:
(a) 0.2, (b) 0.55, (c) 0.85. From the three figures, we clearly see that each of
the three parameters has a great impact on the shape of the Julia set and its
size. We also notice that when the value of the varying parameter increases,
then the set loses its connectivity and tends to a dust-like set. Moreover, we
see a great variety of shapes for the fixed function.

In the next example, we generated Julia sets for a fourth order function.
The parameters used to generate these sets were the following: n = 4, p =
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(a) γ = 0.2 (b) γ = 0.55 (c) γ = 0.85

Figure 4. Julia set for n = 2, p = 0.09 − 0.09i, r = 0.02 +
0.02i generated via (7) with α = 0.33, β = 0.67 and varying γ

(a) α = 0.15 (b) α = 0.65 (c) α = 0.9

Figure 5. Julia set for n = 4, p = −3.45−0.01i, r = −0.01−
0.01i generated via (7) with β = 0.67, γ = 0.67 and varying α

−3.45 − 0.01i, r = −0.01 − 0.01i, A = [−2.5, 2.5]2, K = 50, g(z) = (−0.37 +
0.37i)z − 0.01 + 0.01i, m = 0.13, q = 0.61, ρ = 0.54, μ = 1.12. Like in the first
example, the images are divided into three groups according to the varying
parameter. In Fig. 5, we fixed β = 0.67, γ = 0.67 and vary the value of α:
(a) 0.14, (b) 0.65, (c) 0.9. The values of α and γ were fixed in Fig. 6, where
α = 0.33, γ = 0.44, and the values of β were the following: (a) 0.5, (b) 0.79,
(c) 0.9. In the last figure in this example – Fig. 7 – we fixed α = 0.89, β = 0.67
and varied γ: (a) 0.45, (b) 0.67, (c) 0.95. In Fig. 5, we see that the generated
Julia set becomes bigger and more complex with the increase in the value of
α, whereas in Figs. 6, 7, we see an opposite tendency. The parameters also
have influence on the symmetry of the sets. In most of the cases the sets have
a rotational symmetry, but for some values of the parameters the symmetry is
broken, see, for instance, Figs. 5c or 6b.
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(a) β = 0.5 (b) β = 0.79 (c) β = 0.9

Figure 6. Julia set for n = 4, p = −3.45−0.01i, r = −0.01−
0.01i generated via (7) with α = 0.33, γ = 0.44 and varying β

(a) γ = 0.45 (b) γ = 0.67 (c) γ = 0.95

Figure 7. Julia set for n = 4, p = −3.45−0.01i, r = −0.01−
0.01i generated via (7) with α = 0.89, β = 0.67 and varying γ

The shape of the set, except for the iteration parameters (α, β, γ), can
be changed using the p parameter of Tr. To show this, for both the examples
used in this section, we generated Julia sets for fixed α, β, γ, but with various
values of p. For the quadratic Julia set, we used α = 0.33, β = 0.67, γ = 0.35,
whereas for the fourth order function we used α = 0.45, β = 0.65, γ = 0.56.
Figures 8, 9 present the obtained images of Julia sets in the quadratic and the
fourth order case, respectively. From the images, we see that the imaginary
part of p plays an important role in obtaining the swirls in the pattern. In
the quadratic case, the negative imaginary part of p caused that the swirls are
smaller, whereas the positive value of the same magnitude caused that many
swirls appeared, and that the set lost its connectivity. In the quartic case, we
see a similar behaviour. However, this time for the negative values, we get
more smaller swirls, and for the positive ones, the swirls disappear.
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(a) p = 0.31− 0.4i (b) p = 0.31 (c) p = 0.31 + 0.4i

Figure 8. Julia set for n = 2, r = 0.02 + 0.02i, α = 0.33,
β = 0.67, γ = 0.35 generated via (7) with varying p

(a) p = 2.88− i (b) p = 2.88 (c) p = 2.88 + i

Figure 9. Julia set for n = 4, r = −0.01 − 0.01i, α = 0.45,
β = 0.65, γ = 0.56 generated via (7) with varying p

To show the variety of Julia sets that can be generated by the proposed
method, in the last example we present various Julia sets. They are presented
in Fig. 10, and the parameters used to generate them were the following:

(a) n = 3, p = 4.89 − 0.2i, r = 0.09 − 2.91i, A = [−3, 3]2, K = 50, g(z) =
0.58z − 0.02 + 2.4i, m = 0.65, q = 0.75, ρ = 0.45, μ = 2.05, α = 0.01,
β = 0.5, γ = 0.36,

(b) n = 5, p = 4.9 − 0.2i, r = 0.09 − 0.09i, A = [−2, 2]2, K = 50, g(z) =
(0.3 + 0.01i)z − 0.02 + 0.04i, m = 0.95, q = 0.95, ρ = 0.45, μ = 1.05,
α = 0.76, β = 0.45, γ = 0.67,

(c) n = 10, p = −5.54 − 0.02i, r = 0.02 − 0.09i, A = [−1.25, 1.25]2, K = 50,
g(z) = (0.04−0.2i)z−0.01+0.02i, m = 0.41, q = 0.86, ρ = 1.85, μ = 0.62,
α = 0.45, β = 0.75, γ = 0.36.
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(a) n = 3 (b) n = 5 (c) n = 10

Figure 10. Various Julia sets generated via (7)

(a) α = 0.2 (b) α = 0.6 (c) α = 0.78

Figure 11. Mandelbrot set for n = 2, p = 4.62 − 0.002i
generated via (7) with β = 0.56, γ = 0.78 and varying α

4.2. Examples of mandelbrot sets

In the first example in this section, we generated Mandelbrot sets for a qua-
dratic function. The parameters used to generate these sets were the follow-
ing: n = 2, p = 4.62 − 0.002i, A = [−9.5, 0.5] × [−5, 5], K = 50, g(z) =
0.5z + 0.01 + 0.02i, m = 0.7, q = 0.01, ρ = 0.05, μ = 0.62. In the example,
we divided the images into three groups. In each group, we fix two parameters
from α, β, γ and vary the remaining one. In Fig. 11, we see images generated
for fixed β = 0.56, γ = 0.78, and varying α: (a) 0.2, (b) 0.6, (c) 0.78. In Fig. 12,
we fixed α = 0.33, γ = 0.11 and varied β: (a) 0.4, (b) 0.6, (c) 0.9. Finally, in
Fig. 13, the images were generated for fixed α = 0.78, β = 0.67 and varying γ:
(a) 0.4, (b) 0.65, (c) 0.9. From the figures, we see that the three parameters
have a great impact on the size of the generated Mandelbrot set. In Fig. 11,
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(a) β = 0.4 (b) β = 0.6 (c) β = 0.9

Figure 12. Mandelbrot set for n = 2, p = 4.62 − 0.002i
generated via (7) with α = 0.33, γ = 0.11 and varying β

(a) γ = 0.4 (b) γ = 0.65 (c) γ = 0.9

Figure 13. Mandelbrot set for n = 2, p = 4.62 − 0.002i
generated via (7) with α = 0.78, β = 0.67 and varying γ

the set grows when α increases, whereas in Figs. 12 and 13, the set grows when
β or γ decreases. We also see that in each case the set has axial symmetry,
and that using the viscosity approximation iteration (7) we can generate sets
of various shapes for a fixed function.

In the next example, we generated Mandelbrot sets for a fifth order func-
tion. The parameters used to generate these sets were the following: n = 5,
p = 3.4 + 0.01i, A = [−2, 2]2, K = 50, g(z) = (0.3 + 0.37i)z + 0.1 + 0.1i,
m = 0.21, q = 0.91, ρ = 1.44, μ = 0.72. Like in the first example, the images
are divided into three groups according to the varying parameter. In Fig. 14,
we fixed β = 0.56, γ = 0.44 and varied the value of α: (a) 0.25, (b) 0.5, (c)
0.75. The values of α and γ were fixed in Fig. 15, where α = 0.11, γ = 0.33,
and the values of β were the following: (a) 0.2, (b) 0.5, (c) 0.8. In the last
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(a) α = 0.25 (b) α = 0.5 (c) α = 0.75

Figure 14. Mandelbrot set for n = 5, p = 3.4 + 0.01i gener-
ated via (7) with β = 0.56, γ = 0.44 and varying α

(a) β = 0.2 (b) β = 0.5 (c) β = 0.8

Figure 15. Mandelbrot set for n = 5, p = 3.4 + 0.01i gener-
ated via (7) with α = 0.11, γ = 0.33 and varying β

figure in this example – Fig. 16 – we fixed α = 0.56, β = 0.33 and varied γ:
(a) 0.25, (b) 0.45, (c) 0.85. In the three figures, we see that each of the three
parameters has a great impact not only on the shape, like in all the previous
examples, but also on the symmetry. Most of the presented sets do not possess
symmetry, but there is one example of a set with rotational symmetry, see
Fig. 15a. Moreover, we can notice that the shape changes in a very irregular
way.

Similarly, as in the case of the Julia sets, we can change the shape of the
Mandelbrot set by changing the value of p in Tr. To show this effect, we
generated Mandelbrot sets for fixed values of α, β and γ and various values
of p. For the quadratic Mandelbrot set, we used α = 0.78, β = 0.56, γ =
0.78, whereas for the fifth order function α = 0.15, β = 0.91 and γ = 0.01.
Figures 17, 18 present the obtained images of Mandelbrot sets in the quadratic
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(a) γ = 0.25 (b) γ = 0.45 (c) γ = 0.85

Figure 16. Mandelbrot set for n = 5, p = 3.4 + 0.01i gener-
ated via (7) with α = 0.56, β = 0.33 and varying γ

(a) p = 3− i (b) p = 3 (c) p = 3 + i

Figure 17. Mandelbrot set for n = 2, α = 0.78, β = 0.56,
γ = 0.78 generated via (7) with varying p

and the fifth order cases, respectively. For the quadratic Mandelbrot set, we see
that the introduction of the imaginary part into p causes the set to rotate, and
the direction of rotation depends on the sign of the imaginary part of p. In the
quintic case, the imaginary part of p causes that the set loses its connectivity,
and some rotation appears. For the negative value of the imaginary part, the
rotation is in a clockwise direction, whereas for the positive one, the rotation
is in a counter-clockwise direction.

To show the variety of Mandelbrot sets that can be generated by the pro-
posed method, in the last example we present various Mandelbrot sets. They
are presented in Fig. 19, and the parameters used to generate them were the
following:
(a) n = 4, p = −3.04−0.01i, A = [−1.6, 1.6]2, K = 50, g(z) = (0.3−0.17i)z+

0.01 − 0.09i, m = 0.05, q = 0.51, ρ = 0.64, μ = 1.42, α = 0.15, β = 0.65,
γ = 0.56,
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(a) p = 4− i (b) p = 4 (c) p = 4 + i

Figure 18. Mandelbrot set for n = 5, α = 0.15, β = 0.91,
γ = 0.01 generated via (7) with varying p

(a) n = 4 (b) n = 10 (c) n = 15

Figure 19. Various Mandelbrot sets generated via (7)

(b) n = 10, p = −5.54 − 0.02i, A = [−1.4, 1.4]2, K = 50, g(z) = (0.02 −
0.8i)z + 0.01 + 0.02i, m = 0.41, q = 0.86, ρ = 1.85, μ = 0.62, α = 0.45,
β = 0.75, γ = 0.36,

(c) n = 15, p = −2.97 − 0.01i, A = [−1.2, 1.2]2, K = 50, g(z) = (0.05 −
0.05i)z + 0.01 − 0.01i, m = 0.05, q = 0.51, ρ = 0.54, μ = 1.42, α = 0.15,
β = 0.65, γ = 0.59.

5. Conclusions

We conclude from our work that the viscosity approximation type method
considered by Nandal et al. [32] has the capability of generating fascinating
and attracting graphics of fractals (Julia and Mandelbrot sets), which proves
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the applicability of the proposed method. We have derived a result to obtain an
escape criterion for the generation of these fractals using the proposed iterative
method. Some tempting graphics of fractals have been generated by choosing
different values of polynomials, contraction mappings, the resolvent operators
associated with monotone operators and parameters α, β, γ. We have noticed
that the parameters have a great impact not only on the shape, but also on
the symmetry of the generated set.

Due to their attractive nature in the field of design [17,42], we believe that
the results of this research might be very useful for those who are interested in
creating nice looking graphics and designer printing patterns. Moreover, the
results of this paper might be used to expand the space for the initial keys
used in image encryption [14].
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[16] Julia, G.: Mémoire sur l’itération des fonctions rationnelles. Journal de Mathématiques
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