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Abstract. We investigate the functional equation f(p(x)) = q(f(x)) where p and q are given
real functions. In the paper “On solvability of f(p(x)) = q(f(x)) for given real functions
p, q, Aequat. Math. 90 (2016), 471 - 494”, we solved the problem of the solvability of
f(p(x)) = q(f(x)) under the assumption that p, q are strictly increasing continuous real
functions. Now, we extend the solutions of this problem for any strictly monotonous contin-
uous real functions p, q. Thereby, we use the methods of the just mentioned paper. Further,
we present computations of the so called characteristics of the given functions p, q using the
results of this paper and, finally, present a quite short algorithm with input p, q and output
’solvable/not solvable’.
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We denote the set of all real numbers by R. The topic of our paper is an
investigation of the functional equation

f(p(x)) = q(f(x)) (1)

where p and q are two given strictly monotonous continuous real functions on
R defined totally or partially and where f is the function to be found - as a
solution of (1).

These problems were investigated by J Chvalina and others, s. [1] and [2].
They were motivated by papers of F. Neuman on transformations of differen-
tial equations ([12,13]). Their works discussed certain totally defined strictly
increasing continuous real functions.
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Recently, J. Matkowski and P. Wójcik in paper [11] investigated the solv-
ability of Eq. (1) for given p, q with special properties from the point of view
of the so called sandwich (separation) methods. The authors came to Eq. (1)
as a generalisation of the generalised property of periodicity of functions.

For strictly increasing continuous real functions p, q, a characterisation of
the existence of a solution of Eq. (1) can be found in [8]. In the present paper,
we ’round up’ this characterisation for any strictly monotonous continuous
functions p, q. The case of strictly increasing continuous functions is the basic
one with more individual possibilities and more variety (e.g., increasing func-
tions can have more fixed points, while decreasing ones have at most one). The
remaining case of strictly decreasing functions can be approached by means of
the results for strictly increasing functions. The basic fact in these considera-
tions, is that the second iteration of a strictly decreasing function is a strictly
increasing one.

Strictly monotonous real functions of one variable are the only ones which
are invertible. For strictly monotonous functions p, q which are continuous at
once, the existence of a solution of Eq. (1) can be characterised relatively
simply.

Equation (1) represents many important functional equations. However,
this equation plays a considerable role in its general form. If two continuous
real functions p, q are given, then their topological semiconjugation means the
existence of a surjective continuous function f such that Eq. (1) is fulfilled. The
methods of the present paper can be a step towards solving this well-known
problem.

Our paper has two parts.
The first part (a shorter one) will present a characterisation of the solv-

ability of the equation f(p(x)) = q(f(x)) (i.e. (1)) for any strictly monotonous
continuous functions p, q (Theorem 5). This characterisation is similar to the
main assertion in paper [8] for the solvability of (1) for any strictly increasing
continuous functions p, q ([8], Theorem 18).

The second part presents computations of the so called characteristics of
strictly monotonous continuous functions needed for the above characterisa-
tion. To conclude, a short algorithm for the solvability of (1) will be formulated
with input p, q and output ’(1) is solvable’ or ’(1) is not solvable’.

The present paper is built on paper [8] using its methods and results. Nev-
ertheless, it is not necessary to read this paper because all we need from this
paper in the following, all the concepts and assertions, are presented here in a
short form again.

1. Introduction and the theorem

First, we introduce a couple of concepts, notations and some basic facts.
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Let N denote the set of all natural numbers (or non negative integers) and
let Z denote the set of all integers. Further, let Z− denote the set of all negative
integers.

If A is a set, then |A| will denote the cardinal number of A. We will use
the ’smallest’ ordinal numbers. They are the natural numbers, i.e. elements of
N, and the first infinite ordinal number ω0 is the ordinal type of the ordered
set N.

Let α ∈ N ∪ {ω0} be an ordinal number. Then we denote W (α) = {n ∈
N;n < α}. We see that W (ω0) = N holds.

The central concept of our investigations is the concept of a function. Re-
member, given sets X and Y the denotation f : X → Y means that the
arguments of the function f are taken from X and its values belong to Y .
Notice, however, that generally the domain (of definition) dom(f) of f need
not be the whole X and the codomain img(f) = f(dom(f)) can be a proper
subset of Y . If we consider a part of a function f : X → Y on a subset
X0 ⊆ X only, then we denote this function f |X0 = {(x, f(x));x ∈ X0}, i.e.
with dom(f |X0) = X0. (If img(f) = Y , then f is surjective).

To solve the equation f(p(x)) = q(f(x)), the methods of iteration theory
can be used. For basic works on iteration theory, we refer to [9,10,18] or [19].
But it is also possible to find algebraic methods that can be applied for this
aim. These methods of both areas can be very similar in many parts and
some concepts (although with different names depending on their particular
purpose) can coincide.

In our paper, we will use an algebraic approach. Namely, we can use one of
the simplest algebras, the so called mono-unary algebras. (A detailed consid-
eration of mono-unary algebras can be found in [14,15] or [16].)

A mono-unary algebra is a pair (A, o) where A is a set and o : A → A a
(generally partial) mapping - a so called partial unary operation on A. If y ∈ A
is arbitrary, then we put o−1(y) = {x ∈ A; o(x) = y}, i. e. o−1(y) is the set of
all origins of y for the mapping o.

If dom(o) = A, then the mono-unary algebra (A, o) is called complete or
totally defined.

If n ∈ N is arbitrary, then on is called the n-th iteration of o. It is defined
as follows. For any x ∈ A, the existence of on(x) and on(x) ∈ dom(o) imply the
existence of on+1(x) putting on+1(x) = o(on(x)). And further, if o is injective,
then o−1 denotes the inverse mapping of o and o−n = (o−1)n for any n ∈ N\{0}
for which (o−1)n exists. In this case, (A, o−1) is a mono-unary algebra as well
with the injective operation o−1.

We will need the following basic concepts for mono-unary algebras. A mono-
unary algebra is called connected if, for any x, y ∈ A, there are m,n ∈ N
such that om(x) and on(y) are defined and om(x) = on(y) holds. Further,
if (A, o), (A′, o′) are mono-unary algebras then a (totally defined) mapping
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h : A → A′ is called a homomorphism of (A, o) into (A′, o′) if x ∈ dom(o)
implies h(x) ∈ dom(o′) and h(o(x)) = o′(h(x)).

As usual, the ’connected blocks’ of a mono-unary algebra will be called
components of this algebra. In iteration theory, components correspond to the
concepts of orbits in the sense of Kuratowski (s. [10]).

And finally now, the symbol � denotes the existence of an isomorphism
(bijective homomorphism) between two mono-unary algebras.

By Cn, we will denote a cycle with n elements, i.e. a mono-unary algebra
({a1, a2, ..., an}, o) with o(ai) = ai+1 for i = 1, 2, ..., n − 1 and o(an) = a1. In
iteration theory, cycles are known under the name periods, a singleton cycle
as a fixed point.

Furthermore, we will use mono-unary algebras (Z, ν), (N, ν0), (Z−, ν−)
and (W (n), ν1) for some n ∈ N, n > 0 which are defined in the following way.
Unary operation ν on Z is defined by ν(x) = x + 1 for any x ∈ Z and further,
we denote ν0 = ν|N, ν− = ν|(Z− \ {−1}) and ν1 = ν|(W (n) \ {n − 1}).

It is easy to see that all these algebras are simple examples of connected
mono-unary algebras.

To simplify matters, we will denote all operations ν, ν0, ν− and ν1 by the
same symbol ν. It is always enough to consider the different domains of ν for
the set Z and its subsets N,Z− and W (n).

First, we formulate simple assertions which are immediate consequences of
the above definitions for mono-unary algebras. In doing so, here and through-
out the paper, we use the following simple elementary fact. If p : R → R is a
given real function that is totally or partially defined on R, then (R, p) is a
mono-unary algebra.

Notice as well that the solvability of Eq. (1) includes implicitly the following
condition. For any x ∈ R, if p(x) is defined, then q(f(x)) is defined too.

Now, we formulate the following simple assertions concerning mono-unary
algebras and their homomorphisms. Assertions (a) and (b) are taken over from
[8], Lemma 1 (a), (b) and assertion (c) is a direct consequence of the definition
of iterations of an operation.

Lemma 1. The following assertions are valid.
(a) Let p, q : R → R be given real functions which are completely or par-

tially defined on R. Then the equation f(p(x)) = q(f(x)) is solvable if and
only if there is a homomorphism of (R, p) into (R, q).

(b) Let (A, o) be a mono-unary algebra and (B, o|B) be a component of
(A, o) which is not isomorphic to C1 (a singleton cycle). Then B∩dom(o) �= ∅
if and only if |B| > 1.

(c) Let (A, o) be a mono-unary algebra and let x ∈ A be arbitrary. Take
m ∈ N\{0} arbitrarily. Then okm(x) exists for any k ∈ N if and only if on(x)
exists for any n ∈ N.
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In assertion (b), we see that noncyclic components with one element play
no role for homomorphisms. This is so because they are outside the domains
of operations. And further (c) is a simple direct consequence of the definition
of iterations of o and is useful in our considerations.

Now, we will consider a special type of mono-unary algebras. They are
algebras whose unary operation is injective.

If (A, o) is a mono-unary algebra, then we denote d(A,o) = |A\dom(o)| and
e(A,o) = |A \ img(o)|.

In [8], Lemma 2 (b), we find the following assertion that is basic here as
well.

Lemma 2. Let (A, o) be a connected mono-unary algebra. Then o is injective
if and only if

(A, o) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C|A| if d(A,o) = 0, e(A,o) = 0 and A is finite
(Z, ν) if d(A,o) = 0, e(A,o) = 0 and A is infinite
(N, ν) if d(A,o) = 0 and e(A,o) �= 0
(Z−, ν) if d(A,o) �= 0 and e(A,o) = 0
(W (|A|), ν) if d(A,o) �= 0 and e(A,o) �= 0

is satisfied.

For the algebraic methods we use, an important concept is the concept
of categories of algebras. Recall that by category, we mean a class of objects
together with a class of morphisms between the pairs of objects with the binary
operation of their composition (which has the property of associativity) and
the existence of the so called identity morphisms for any object.

Here, we consider the category of all mono-unary algebras where the mor-
phisms are their homomorphisms. The articles [4] and [5] investigate this cate-
gory and its subcategory of all connected mono-unary algebras. In our consid-
erations, we make use of the results of article [4] and implement them directly.

But we will not need the concepts of categories to speak about the classes
of mono-unary algebras only. Moreover, we can confine our considerations on
connected mono-unary algebras for which the operation is injective.

We will denote the class of all connected mono-unary algebras whose op-
erations are injective by L. Then, by Lemma 2, objects of L are mono-unary
algebras which are isomorphic to one of the five special algebras established in
this Lemma.

Any algebra (A, o) ∈ L such that (A, o) � (W (|A|), ν) is called a mono-
unary algebra of finite type.

Now, let us keep on considering a connected mono-unary algebra (A, o)
whose operation o is injective, i.e. (A, o) ∈ L. Then by Lemma 2, we can
immediately see the following connection between the mono-unary algebras
(A, o) and (A, o−1).



906 O. Kopeček AEM

Corollary 3. Let (A, o) ∈ L. Then,
(a) if (A, o) is a cycle or if it is of finite type, then (A, o−1) � (A, o) holds,
(b) if (A, o) � Z , then (A, o−1) � (A, o) holds as well and
(c) (A, o−1) � Z− (or � N) if and only if (A, o) � N (� Z−, respectively).

Indeed, it would be very easy to define the isomorphisms wanted. But, at
the same time, the assertions are consequences of Lemma 2 because o−1 ∈ L
too and d(A,o−1) = e(A,o) and e(A,o−1) = d(A,o) hold.

Now, we formulate some assertions which we will need later in particular
cases for real functions.

For their presentation, the following denotations are useful. Let (A, o) ∈ L
be such that it is not a cycle and let x ∈ dom(o) be arbitrary. By αx (or
βx), we denote the greatest ordinal number such that o−n(x) ∈ dom(o) for
any n ∈ W (αx) (on(x) ∈ dom(o) for any n ∈ W (βx), respectively). Thus,
αx ∈ N ∪ {ω0}, αx > 0 (βx ∈ N ∪ {ω0}, βx > 1, respectively) is satisfied. For
αx = ω0 (or βx = ω0), we have W (αx) = N (W (βx) = N, respectively).

Then we see that, in the case (A, o) ∈ L where (A, o) is not a cycle, we
have the following. If x ∈ A arbitrary, then A = {o−n(x);n ∈ W (αx)} ∪
{on(x);n ∈ W (βx)}. Thereby, if αx ∈ N (or βx ∈ N), then the element
oαx−1(x) (oβx−1(x)) can be called the least (greatest) element of (A, o).

Lemma 4. Let (A, o) ∈ L and let m ∈ N,m > 0 be such that om exists. Let
(A′, om) be an arbitrary component of (A, om). Then (A′, om) ∈ L and the
following hold.

(a) (A′, om) is a cycle if and only if (A, o) is a cycle.
(b) (A′, om) is of finite type if and only if (A, o) is of finite type.
(c) If A is infinite, then (A′, om) � (A, o) holds.

Proof. Let (A, o) ∈ L, m ∈ N, m > 0 be arbitrary and let om exist. If (A′, om)
is a component of (A, om), then (A′, om) ∈ L holds by Lemma 2 because
(A′, om) is connected and the injectivity of o implies the injectivity of om.

Now for (a), if (A′, om) is a cycle and x ∈ A′ arbitrary, then there is
s ∈ N \ {0} such that (om)s(x) = x, i.e. osm(x) = x where x ∈ A which means
that (A, o) is a cycle.

On the other hand, let (A, o) be a cycle and let x ∈ A′ be arbitrary. Then
x ∈ A and on(x) = x for some n ∈ N \ {0}. Hence (om)n(x) = omn(x) =
(on)m(x) = x and therefore, (A′, om) is a cycle.

(b) If (A, o) is of finite type, then (A′, om) is of finite type too because
A′ ⊆ A holds.

On the other hand, let (A′, om) be of finite type. Then there is b0 ∈ A′ \
dom(om). Therefore, there is i ∈ N, i ≤ m such that the element b = oi(b0) /∈
dom(o), i.e. b is the greatest element of (A, o) (in the sense of the considerations
above).

Further, (A′, (om)−1) � (A′, om) by Corollary 3 (a). Hence (A′, (om)−1) is
of finite type as well. Therefore similarly, we can find the greatest element a of
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(A, o−1). But so we obtain o−1(a) = ∅ which means that a is the least element
of (A, o) (see above).

Therefore altogether, (A, o) is of finite type.
(c) If A is infinite, then (A, o) is isomorphic to (Z, ν) or (N, ν) or to (Z−, ν)

by Lemma 2.
Further, we take x0 ∈ A′ arbitrarily. Since (A, o) ∈ L, by the denotations

above, A = {o−n(x0);n ∈ W (αx0)}∪{on(x0);n ∈ W (βx0)} for some αx0 , βx0 ∈
N ∪ {ω0}. Similarly, since (A′, om) ∈ L we have A′ = {(om)−k(x0); k ∈
W (α′

x0
)} ∪ {(om)k(x0); k ∈ W (β′

x0
)} for some α′

x0
, β′

x0
∈ N ∪ {ω0}.

Now, by Lemma 1 (c), okm(x0) = (om)k(x0) exists for any k ∈ N if and
only if on(x0) exists for any n ∈ N and similarly, o−km(x0) = (om)−k(x0)
exists for any k ∈ N if and only if o−n(x0) exists for any n ∈ N. Therefore,
βx0 = ω0, i.e. d(A,o) = 0 if and only if β′

x0
= ω0, i.e. d(A′,om) = 0 is satisfied.

And similarly, αx0 = ω0, i.e. e(A,o) = 0 if and only if α′
x0

= ω0, i.e. e(A′,om) = 0
hold.

It means by Lemma 2 that both (A′, om) and (A, o) are isomorphic to the
same algebra (Z, ν) or (N, ν) or (Z−, ν). Thus, (A′, om) � (A, o) holds. �

These last assertions will be used in the second part of the article. The
second section deals with a practical use of Theorem 5 (the last one of the
first part) which is an answer to our problem of the solvability of Eq. (1). The
second part has the name ’Computations of characteristics and an algorithm’.

From now on, we want to focus our considerations on special mono-unary
algebras, namely algebras with the carrier R and strictly monotonous real
functions as operations. Thereby, we will confine our considerations to strictly
monotonous functions which are continuous.

Let p : R → R be a (strictly) monotonous function defined on an interval
(a, b).

Then we define

p(a) = lim
x→a+

p(x) and p(b) = lim
x→b−

p(x).

The values p(a) and p(b) exist because of the monotony of p on (a, b). So the
domain of p can be extended onto the interval [a, b] (where, for dom(p) = R,
[−∞,∞] = R ∪ {−∞,∞} with −∞ < x < ∞ for any x ∈ R). Further, if p
is continuous on (a, b), then, in this way, it is right continuous at a and left
continuous at b.

Let p : R → R be a strictly monotonous function. Let A = (A, p|A) be
a component of the mono-unary algebra (R, p). Remember the assertion of
Lemma 2 for a mono-unary algebra with an injective operation (and recall
that |A| denotes the cardinal number of the set A). Then we put
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χ(A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞2 if A isacycle
∞1 if A � Z
ω if A � N
ω− if A � Z−

|A| if A � W (|A|).
The symbol ∞2 is used in the theory of papers [3–5] for certain characteris-

tics of cyclic elements. And the symbol ∞1 is used in those papers for certain
characteristics of elements with infinite sequences of predecessors.

Further, ω is an abbreviation for the ordinal type ω0 (of N) and ω− is the
symbol of the type of the ordered set Z−.

χ is a mapping χ : L → (N\{0})∪{ω, ω−,∞1,∞2}. However, for a mono-
unary algebra (R, p), we need a part of mapping χ only. If Kp is the system of
all components of (R, p), then it is the part χ|Kp. But we will not mention this
fact because the association of the considered connected mono-unary algebras
to (R, p) as its components is clear.

Now, let Kp be the system of all components of (R, p). Then we define

char(R, p) = {χ(A);A ∈ Kp, χ(A) �= 1}
and call char(R, p) the characteristic of p. We will use a shorter notation
char(p) for char(R, p).

To be brief in our next denotations, mainly in some formulas later, we put
N1+ = N \ {0} and N2+ = N \ {0, 1} now.

We denote the set Γ = N2+ ∪ {ω, ω−,∞1,∞2}. Then char(p) ⊆ Γ.
For constructions of the solutions of Eq. (1) if there are any, it is - concerning

cycles - necessary to have a ’finer’ characterisation for them as it is the value
∞2 only. But for the question of solvability of (1), the value ∞2 alone is
enough. This is because of the simplest consequence of the famous Theorem
of A. N. Sharkovskyi ([17]) (actually Ukrainian O. M. Sharkovskyi). Namely,
if a continuous function has cycles, then it has singleton cycles - called fixed
points as well. (We can say that the singleton cycles ’represent’ the existence
of cycles of a function.)

Now, we consider the set Γ of the characteristic values of components of con-
tinuous strictly monotonous functions, i.e. the set Γ = N2+∪{ω, ω−,∞1,∞2}.
In connection with our questions, there is a hierarchy of these values.

We define a relation ≤ on the set Γ in the following way.
The relation < is defined so that

n < n + 1 for any n ∈ N2+, further,
n < ω and n < ω− for any n ∈ N2+ and finally,
ω < ∞1, ω− < ∞1 and ∞1 < ∞2.

Now, let the relation ≤ be the reflexive and transitive closure of relation
<. Then ≤ is a partial ordering on Γ, i.e. (Γ,≤) is a (partially) ordered set.

The relation < is described by Fig. 1 where the symbols ∞1,∞2 are ab-
breviated by 1 and 2, respectively.
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Figure 1. The structure of relation < on (Γ,≤)

The Theorem of this section (Theorem 5) will be obtained as a consequence
of the results of article [4]. Actually, Theorem 5 is the reduction of Theorem
1.28 in [4] for our particular problem for strictly monotonous continuous func-
tions. We do it in the same way as for the problem of solvability of Eq. (1) for
strictly increasing continuous functions in paper [8].

Article [4] investigates a general form of our problem for connected mono-
unary algebras. There, we could begin with definition 1.19. It was written
in concepts of categories (classes) but, in our reduced situation for mono-
unary algebras of real functions and in our denotation, it can be rewritten as
follows. For this purpose, let us recall the denotations d(A,o) = |A \ dom(o)|
and e(A,o) = |A \ img(o)| which we introduced before Lemma 2.

Let (A, o) be a connected mono-unary algebra. Then, we define

χ(A, o) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|A| if (A, o) is a cycle
d̄ if A is infinite with d(A,o) = 0
d if A is infinite with d(A,o) �= 0
ω0 if e(A,o) �= 0with d(A,o) = 0
|W (A, o)| if e(A,o) �= 0with d(A,o) �= 0

where d, d̄, d �= d̄ are two symbols that are neother cardinal nor ordinal number.
Additionally, we see that A is finite for (A, o) as a cycle or for e(A,o) �=

0, d(A,o) �= 0 and, on the other hand, A is infinite for e(A,o) �= 0, d(A,o) = 0.
Now, if we have a strictly monotonous continuous function p, then its

char(p) is defined by means of the function χ of the components of the mono-
unary algebra (R, p) (s. above). Here, we use the same symbol χ as in paper
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[4] for components of mono-unary algebras generally. And we see that both
have the same structure.

The new function χ is a reduction of the old one. So we could easily prove
that the ordered set (Γ,≤) of characteristics of components of strictly monoto-
nous continuous functions (s. eg. Fig. 1) can be isomorphically embedded into
the ordered set of characteristics of all connected mono-unary algebras with
injective operations. Actually, the isomorphism φ is such that φ|N2+ = idN2+ ,
φ(ω) = ω0, φ(ω−) = d, φ(∞1) = d̄ and φ(∞2) = 1 where 1 denotes the
cardinal number of singleton cycles (fixed points).

On the other hand, consider Fig. 1 above for a representation of the ordered
set (Γ,≤). By means of ordering ≤ on set Γ, we now define a relation ρ on
set 2Γ. If θ, θ′ ∈ 2Γ are arbitrary, then θ ρ θ′ holds if and only if, for any α ∈
θ, there is α′ ∈ θ′ with α ≤ α′.

So we obtain the set (2Γ, ρ) with a quasi-ordering ρ on 2Γ.
And now, using the existence of an isomorphic embedding for any compo-

nent of the mono-unary algebra (R, p), we can obtain almost immediately the
following assertion as a consequence of Theorem 1.28 in [4].

Theorem 5. Let p, q : R → R be strictly monotonous continuous functions.
Then the equation f(p(x)) = q(f(x)) has a solution if and only if char(p) ρ
char(q) holds.

This Theorem is an extension of Theorem 1.18 in [8] which is formulated for
strictly increasing continuous functions. It presents an answer to the problem
formulated in the title of our paper.

2. Computations of characteristics and an algorithm

Theorem 5 would not have much impact if we didn’t have the possibility to
find out the values of the characteristics of the given strictly monotonous
continuous functions in a not very complicated way. Therefore, we have to
dedicate ourselves to these computations now.

For our computation, we need the following central definition. Let p be a
strictly monotonous continuous function defined on (a, b). Putting

|a, b| =
{

[a, b] if p is increasing
(a, b) if p is decreasing

we define Ip = {x ∈ |a, b|; p(x) = x}.
The reason for making a distinction, in the definition of Ip, between an

increasing and a decreasing function is that, for a decreasing function p, the
neighborhoods of a and b play no direct role in the components of the mono-
unary algebra (R, p). For an increasing function p, it can be the case.
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To begin with, the set of all possible characteristics for strictly monotonous
continuous functions as a subset of 2Γ can be described in the following way.

In [8], we find the assertions for strictly increasing continuous functions
(Corollaries 12 and 13) as follows. (Recall the denotation N2+ = N \ {0, 1}.)

Lemma 6. Let p be a strictly increasing continuous function. Then the follow-
ing assertions hold.

(a)

char(p) ⊆
{
N2+ if Ip = ∅
{ω, ω−,∞1,∞2} if Ip �= ∅

(b) Let Ip �= ∅. If |char(p)| ≥ 2 is satisfied, then ∞2 ∈ char(p) holds.

In this connection, we will have a closer look at strictly decreasing contin-
uous functions. We can formulate the following assertion.

Lemma 7. Let p : R → R be a strictly decreasing continuous function defined
on (a, b). Then the following assertions are valid.

(a) |Ip| ≤ 1 holds.
(b) It holds that

|Ip| =
{

0 if p(a) ≤ a or p(b) ≥ b
1 otherwise.

Proof. (a) If x1, x2 ∈ (a, b), x1 �= x2 are arbitrary, then x1 < x2 implies p(x1) >
p(x2) because p is strictly decreasing and thus, both p(x1) = x1 and p(x2) = x2

can not be fulfilled. Hence |Ip| ≤ 1 holds.
(b) Let p(a) ≤ a. Then, for any x ∈ (a, b), p(x) < p(a) ≤ a < x which

implies Ip = ∅, i.e. |Ip| = 0. Dually, the same holds in the case p(b) ≥ b.
On the other hand, let p(a) > a and p(b) < b be satisfied. Then there is

x0 ∈ (a, b) such that p(x0) = x0 by the Intermediate value theorem because p
is continuous on [a, b]. So we have Ip �= ∅, i.e. |Ip| = 1 by (a). �

Lemma 6 shows us that values of characteristics of strictly increasing con-
tinuous functions have a special structure. For values of strictly decreasing
continuous functions, this can be shown by means of Lemma 4, where we have
considered some properties of mono-unary algebras.

For this, we recall some well-known properties of strictly monotonous func-
tions.

Lemma 8. Let f, g : R → R be real functions. Then the following assertions
hold.

(a) If f(x) and g(x) are both strictly increasing or if they are both strictly
decreasing, then f(g(x)) is strictly increasing.

(b) If f(x)is strictly monotonous, then f2(x) is strictly increasing.
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Now, we can use a consequence of Lemma 4 for mono-unary algebras whose
operations are injective. It could be formulated more generally but for our
considerations, we need it only for the second iteration of the given functions.

If we consider a strictly monotonous continuous function p : R → R (de-
fined on an interval (a, b)), and consider the comparison of values χ( ) of the
components of (R, p) and values χ( ) of the components of (R, p2), then we
obtain the following assertions.

Lemma 9. Let p : R → R be a strictly monotonous continuous function. Let
(A, p) be a component of (R, p). Further, let p2 on A exist and let (A′, p2) be a
component of (R, p2) such that A′ ⊆ A holds. Then the following is satisfied.

(a) If A is finite, then either χ((A, p)) = χ((A′, p2)) = ∞2 or χ((A, p)),
χ((A′, p2)) ∈ N2+ holds.

(b) If A is infinite, then χ((A, p)) = χ((A′, p2)) holds.

Proof. By Lemma 2, if A is finite, then (A, p) is a cycle or it is of finite type.
Thus, (a) is satisfied by Lemma 4 (a) and (b). Further for (b), if A is infinite,
then χ((A′, p2)) = χ((A, p)) holds by Lemma 4 (c). �

Hence, by the definition of char(p) of a strictly monotonous continuous
function p, we obtain the following.

Corollary 10. Let p : R → R be a strictly monotonous continuous function. If
p2 exists, then char(p) = char(p2) holds.

So we can formulate a similar assertion to Lemma 6 for strictly decreasing
continuous functions as well.

Corollary 11. Let p : R → R be a strictly decreasing continuous function.
Then the following assertions hold.

(a) char(p) ⊆ {2, ω, ω−,∞1,∞2} (for 2 ∈ N2+).
(b) If Ip = ∅, then char(p) = {2} holds.
(c) If Ip �= ∅, then ∞2 ∈ char(p) is satisfied.

Indeed, let p be defined on (a, b).
Then for (a), if (A, p) is a component of (R, p) such that |A| > 2, then there

is p2 on A and χ((A, p)) = χ((A, p2)) holds by Lemma 9. Thus, χ((A, p)) ∈
{ω, ω−,∞1,∞2} by Lemma 6 because p2 is increasing. On the other hand,
if |A| ≤ 2, then |A| = 2 because A ∩ (a, b) �= ∅ and so, for x ∈ A ∩ (a, b),
A = {a, p(x)} holds. Hence, char(p) ⊆ {2, ω, ω−,∞1,∞2}.

Further, (b) and (c) are consequences of Lemma 7 (b) because, by the
definition of Ip, Ip �= ∅ and (a, b) ∩ (p(b), p(a)) �= ∅ are equivalent.

Thus by Lemma 6 and Corollary 11, we obtain the following.

Corollary 12. Let p be a strictly monotonous continuous function. Then

char(p) ∈ 2N2+ ∪ {{ω}, {ω−}, {∞1}} ∪ {X ∪ {∞2};X ∈ 2{ω,ω−,∞1}}
holds.
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Indeed, by Lemma 6, the characteristic of a strictly increasing continuous
function can be, on the one hand, a subset of N2+ and on the other hand, a
subset of {ω, ω−,∞1,∞2} whereby the singletons {ω}, {ω−}, {∞1}, {∞2} are
possible. Further, by Corollary 11, the characteristic of a strictly decreasing
continuous function can be either a subset {2} (for 2 ∈ N2+) or a subset of
{ω, ω−,∞1,∞2} whereby the singletons {ω}, {ω−}, {∞1} are not possible (by
(c) of this Corollary).

Now, we denote the set from Corollary 12 by Θ. Thus, if we denote Θ∗ =
{X ∪ {∞2};X ∈ 2{ω,ω−,∞1}} (which is a set with eight elements), then we
obtain the set Θ from this Corollary in the form

Θ = 2N2+ ∪ {{ω}, {ω−}, {∞1}} ∪ Θ∗.

Further, we come back to the quasi-ordered set (2Γ, ρ) where Γ = N2+ ∪
{ω, ω−,∞1,∞2}. Then we see, that Θ ⊂ 2Γ holds and so we can reduce quasi-
ordering ρ on set Θ, i.e. put ρΘ = ρ ∩ (Θ × Θ).

Thereby, coming from the ordered set (Γ,≤) we see as well that the relation
ρΘ on Θ is defined so that, for any θ, θ′ ∈ Θ, θρΘθ′ holds if and only if, for
any α ∈ θ, there is α′ ∈ θ′ with α ≤ α′ (cf. Fig. 1 for (Γ,≤)).

For the purpose of simplicity, we use the same denotation ρ for its reduction
ρΘ and come to the quasi-ordered set (Θ, ρ).

Further especially, ∞2 ∈ θ for any θ ∈ Θ∗. Thus by the definition of ρ,
θ ρ θ′ is satisfied for any θ, θ′ ∈ Θ∗ and so the relation ρ is complete on
Θ∗. Moreover, we recognize a congruence on the quasi-ordered set (Θ, ρ) with
congruence classes 2N2+ , {ω}, {ω−}, {∞1} and Θ∗.

The relation ρ is represented in Fig. 2. There we use the possibility of a
graphical representation by means of the above congruence classes. Also, the
reflexive arrows are omitted. (The symbol ∞1 is abbreviated by 1 again).

Figure 2. The structure of relation ρ of (Θ, ρ)
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Comparing this Figure and Fig. 1 we can see a similarity between the
representations of the relational sets (Γ,≤) and (Θ, ρ).

And now, we can come to computations of characteristics of our considered
strictly monotonous continuous functions. The more difficult part of this ques-
tion was treated in paper [8]. Moreover, we can use some results from [8] now.
There, we find Corollary 16 where this problem is solved for strictly increasing
continuous function.

In this connection, we consider the set I of all intervals on R with the
partial order ⊆ on I. We use ⊂ or ⊃ for ⊆ or ⊇ respectively and �=. Further,
|| denotes �⊆ and �⊇, i.e. it means the incomparability of two intervals with
respect to the order ⊆. Then the assertion ([8], 16) is as follows.

Theorem 13. Let p be a strictly increasing continuous function with dom(p) =
(a, b). Let Ip �= ∅. Denote I

()
p = Ip ∩ (a, b) and let I be the set of all intervals

on set R. Then

char(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{∞1} if a, b ∈ Ip and I
()
p = ∅

{∞2} if a, b ∈ Ip and Ip ∈ I
{∞1,∞2} if a, b ∈ Ip, I

()
p �= ∅ and Ip /∈ I

{ω} if (p(a), p(b)) ⊂ (a, b) and I
()
p = ∅

{ω,∞2} if (p(a), p(b)) ⊂ (a, b), I
()
p �= ∅ and Ip ∈ I

{ω,∞1,∞2} if (p(a), p(b)) ⊂ (a, b), I
()
p �= ∅ and Ip /∈ I

{ω−} if (a, b) ⊂ (p(a), p(b)) and I
()
p = ∅

{ω−,∞2} if (a, b) ⊂ (p(a), p(b)), I
()
p �= ∅ and Ip ∈ I

{ω−,∞1,∞2} if (a, b) ⊂ (p(a), p(b)), I
()
p �= ∅ and Ip /∈ I

{ω−, ω,∞2} otherwise with Ip ∈ I
{ω, ω−,∞1,∞2} otherwise with Ip /∈ I

is satisfied.

For a more practical use of this assertion, we will add a new natural property
of Ip for a strictly monotonous continuous function p. If p is such a function,
then we assume that Ip �= (a, b) implies |Ip| ≤ ℵ0 and say that Ip is countable.
Then we can formulate the following consequence of Theorem 13.

Theorem 14. Let p be a strictly increasing continuous function with dom(p) =
(a, b). Let Ip �= ∅ and be countable. Denote I

()
p = Ip ∩ (a, b). Then
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char(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{∞2} if I
()
p = (a, b)

{∞1} if (p(a), p(b)) = (a, b) and |I()
p | = 0

{∞1,∞2} if (p(a), p(b)) = (a, b) and |I()
p | > 0

{ω} if (p(a), p(b)) ⊂ (a, b) and |I()
p | = 0

{ω,∞2} if (p(a), p(b)) ⊂ (a, b) and |I()
p | = 1

{ω,∞1,∞2} if (p(a), p(b)) ⊂ (a, b) and |Ip| > 1
{ω−} if (p(a), p(b)) ⊃ (a, b) and |I()

p | = 0
{ω−,∞2} if (p(a), p(b)) ⊃ (a, b) and |I()

p | = 1
{ω−,∞1,∞2} if (p(a), p(b)) ⊃ (a, b) and |Ip| > 1
{ω−, ω,∞2} if (p(a), p(b)) || (a, b) and |I()

p | = 1
{ω, ω−,∞1,∞2} if (p(a), p(b)) || (a, b) and |I()

p | > 1

is satisfied.

Proof. The assertion is a direct consequence of Theorem 13.
The conditions for the computations of the value of char(p) in Theorem 13

can be separated into two parts. The first ones give the relationship between
the intervals (a, b) and (p(a), p(b)). The others are combinations of conditions
for I

()
p and the conditions for Ip to belong to the set I of all intervals in R.

The conditions a, b ∈ Ip in the first three cases of the computation of
char(p) mean p(a) = a and p(b) = b or also, (p(a), p(b)) = (a, b). Further, it is
|Ip ∩ {a, b}| = 2.

On the other hand, the conditions ’otherwise’ (for the relationship among
(p(a), p(b)) and (a, b)) in the two last cases of this computation mean (p(a),
p(b)) �⊆ (a, b) and (p(a), p(b)) �⊇ (a, b), i.e. (p(a), p(b))||(a, b). Now, |Ip∩{a, b}| =
0 holds because for p(a) = a, we would have (p(a), p(b)) ⊆ (a, b) or (a, b) ⊆
(p(a), p(b) and similarly it for p(b) = b.

The other conditions, for I
()
p and Ip, are simple in our case. Namely, the

condition that Ip is countable implies that an interval in R can be a singleton
only. Therefore, the condition I

()
p �= ∅, Ip ∈ I is equivalent to |I()

p | = 1. And
further, the condition I

()
p �= ∅, Ip /∈ I is equivalent to |I()

p | > 1 or to |I()
p | = 1

(if |Ip ∩ {a, b}| ≥ 1) and thus, it is equivalent to |Ip| > 1.
Finally, in the first two cases of the computation here with (p(a), p(b)) =

(a, b), we have either |I()
p | = 0 or |I()

p | > 0 (because |Ip ∩ {a, b}| = 2 holds)
and in the last two cases with (p(a), p(b))||(a, b), we have |I()

p | = 1 or |I()
p | > 1

(because |Ip ∩ {a, b}| = 0 holds now). �

The following rules could serve as a mnemonic for the numerous possible
values of char(p) of a given p in the Theorem.

If the function p, its dom(p)
contracts, then ω ∈ char(p) (in any x ∈ dom(p) \ img(p) begins a

component),
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expands, then ω− ∈ char(p) (in any x ∈ img(p)\dom(p) ends a component),
moves sideways (neither ⊂ nor ⊃), then both ω, ω− ∈ char(p).
And, |Ip| > 1 adds ∞1 ∈ char(p).
Now, let us look at the case of strictly decreasing continuous functions.
For strictly decreasing continuous functions, it is possible to use Corol-

lary 10. Therefore, the second iteration of a strictly decreasing continuous
function is important for our computations.

Let p be a strictly decreasing continuous function defined on (a, b). Then
the following can be proven.

Since dom(p2) = p−1((a, b) ∩ (p(b), p(a))) holds and p2 is increasing, The-
orem 14 implies that the possible values of char(p2) are {∞2}, {∞1,∞2},
{ω,∞2}, {ω,∞1,∞2}, {ω−,∞2} and {ω−,∞1,∞2}. Hence, these six values
are the only possible ones for strictly decreasing continuous functions - and not
all of the eleven in Theorem 14. It is different for strictly increasing functions.
In [8], we showed that strictly increasing functions can take all the values listed
in Theorem 14.

Example 15. In [8], we can find several examples of computations of char(p)
if p is a strictly increasing continuous function (Example 17). There, we have
an example for any possibility of the characteristic of a strictly increasing
continuous function. The number of such possibilities is 11 (Theorem 14),
actually ten, because the first one is trivial.

Now, we can continue this ’tradition’ for strictly decreasing continuous
function. If we look at the remark just mentioned above, then we see that we
have less work this time. The number of such possibilities is 6, actually five,
because the value {∞2} as the characteristic of a strictly decreasing continuous
function, is trivial again.

(a) Consider the (partially defined) strictly decreasing continuous function
p(x) = −√

x + 1 and let us compute char(p).
Firstly, by Corollary 11 (b), (c), we look at whether Ip �= ∅ or not. So we

set p(x) = x, i.e. −√
x + 1 = x and find that the equation is solvable. Hence,

Ip �= ∅ and so ∞2 ∈ char(p) by 11 (c).
Further, by Corollary 10, we can compute char(p2). Then, since p2 is a

strictly increasing continuous function we will use Theorem 14. Denote (a, b) =
dom(p).

Using Theorem 14 we must determine the relation between dom(p2) and
img(p2). Denote (a1, b1) = dom(p2) and so img(p2) = (p2(a1), p2(b1)).

We see that (a1, b1) = p−1((a, b) ∩ (p(b), p(a))) = p−1(max{a, p(b)},min{b,
p(a)}) = (p−1(min{b, p(a)}), p−1(max{a, p(b)})).

Therefore,
a1 = p−1(min{b, p(a)}) and
b1 = p−1(max{a, p(b)}).
So, we have carried out this computation for the next examples as well.
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Here, we have a = 0, b = ∞ and p(a) = p(0) = 1, p(b) = p(∞) = −∞.
Thus, max{a, p(b)} = max{0,−∞} = 0 and min{b, p(a)} = min{∞, 1} = 1.
Now, we need p−1(x) = (1 − x)2| (−∞, 1) and determine a1 = p−1(1) = 0

and b1 = p−1(0) = 1. Hence, we obtain (a1, b1) = (0, 1).
Further, we compute p2(a1) = p2(0) = p(p(0)) = p(1) = 0 and p2(b1) =

p2(1) = p(p(1)) = p(0) = 1 which implies (p2(a1), p2(b1)) = (a1, b1).
This relation corresponds to the condition for the value {∞1} or {∞1,∞2}

of a characteristic in Theorem 14. But we already know from before that
∞2 ∈ char(p) and so we obtain char(p) = char(p2) = {∞1,∞2} by Corollary
10.

Altogether, we get the result char(−√
x + 1) = {∞1,∞2}.

Let us still notice that, in the case of the characteristic {∞1,∞2}, we did
not need to know the help-function p2 exactly, but only the values p2(a1) and
p2(b1).

(b) Consider the (totally defined) strictly decreasing continuous function
p(x) = − arctan(x). We will compute char(p) and can do so in a shorter way
now (by means of some computations from (a)).

Since the equation − arctan(x) = x has a solution we have Ip �= ∅ and so
∞2 ∈ char(p).

Further, dom(p) = (−∞,∞) and p(−∞) = π
2 , p(∞) = −π

2 . We need
p−1(x) = tan (−x).

If we denote (a1, b1) = dom(p2) like in example (a) , then we have, by
the computations in (a), a1 = p−1(min{∞, π

2 }) = p−1(π
2 }) = −∞ and b1 =

p−1(max{−∞,−π
2 }) = p−1(−π

2 }) = ∞.
Thus, (a1, b1) = (−∞,∞). Thereby, p2(a1) = p2(−∞) = p(π

2 ) = − arctan
(π

2 ) and p2(b1) = p2(∞) = p(−π
2 ) = arctan(π

2 ) hold. Hence, (p2(a1), p2(b1)) =
(− arctan(π

2 ), arctan(π
2 )).

It implies the relation (p2(a1), p2(b1)) ⊂ (a1, b1). If we check in Theorem 14
the conditions with this relation, then we see that they can have the charac-
teristics with values {ω}, {ω,∞2} or {ω,∞1,∞2}. But we already know that
∞2 ∈ char(p) and so {ω} is omitted.

On the other hand, the equation p2(x) = − arctan(− arctan(x)) = x for Ip2

has the only solution 0 and thus, |I()
p2 | = 1. Therefore, char(p2) = {ω,∞2}.

Hence, char(− arctan(x)) = {ω,∞2} by Corollary 10.
(c) Now, let as look at the (partially defined) strictly decreasing continuous

function p(x) = − 3
√

x |(−8, 8).
Here again, p(x) = x has one solution (actually, 0) which means for the

computation of char(p) that ∞2 ∈ char(p). However, this result also appears
later.

By (a) and similarly to (a) and (b), we come to the relation (p2(a1), p2(b1))
⊂ (a1, b1) where (a1, b1) = dom(p2). Looking at the conditions in Theorem 14
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for char(p2) we see (knowing that ∞2 is also included) that the possible values
would be {ω,∞2} and {ω,∞1,∞2}.

But further for |Ip2 |, the equation 9
√

x = x has the solutions −1, 0 and 1
and thus, |Ip2 | > 1.

That implies the result char(− 3
√

x |(−8, 8)) = {ω,∞1,∞2} (Corollary 10).
(d) Let us compute char(p) for p(x) = − ln(x) in the same way but as an ex-

ample of a strictly decreasing continuous function with another
characteristic.

Here again, by (a) and similarly to (a) and (b), we come to the relation
(p2(a1), p2(b1)) ⊃ (a1, b1) where (a1, b1) = dom(p2).

Now, we look at the possible characteristics in Theorem 14. To the condition
for the relation ⊃ we add the fact that the equation p2(x) = x has one solution
which implies |Ip2 | = 1.

So we obtain the result char(− ln x) = {ω−,∞2} (by Corollary 10).
(e) We can show the following. If p is a strictly monotonous continuous

function, then char(p) and char(p−1) are conjugated to each other in the sense
that - as the only difference - the value ω will be exchanged by ω− and vice
versa.

Therefore, char(−x3 |(−2, 2)) = {ω−,∞1,∞2} holds by example (c) be-
cause −x3 |(−2, 2) and − 3

√
x |(−8, 8) are mutually inverse functions.

{ω−,∞1,∞2} is the last possible value of a characteristic of a strictly de-
creasing continuous function out of the five.

Now, let us come back to the problem of our paper. Remember that the
equation f(p(x)) = q(f(x)) is denoted by (1). An answer to the question of
the solvability of (1) for given strictly monotonous continuous functions p, q
was given in Theorem 5. In the second section of the paper, we considered the
structure of the relation set (Θ, ρ) which plays the main role in Theorem 5.
Further, we have investigated computations of the characteristics of strictly
monotonous continuous functions.

By Theorem 14 and by means of Corollary 10, char(p) can be computed
for any strictly monotonous continuous function p under the assumption that
Ip �= ∅ holds.

But, on the other hand, for a strictly monotonous continuous function p
with Ip = ∅, the situation is easier because of the simplicity of the structure
of the relation set (Θ, ρ) - see Fig. 2. Namely, the area of values of char(p) is
N2+ by Lemma 6 and Corollary 11. (See Corollary 17 later.)

Not just any solution of (1) can be as important or interesting as others.
For instance, this may be the set of trivial solutions of Eq. (1) if there is any.

A solution f of (1) is called trivial if f(R) ⊆ Iq holds. If any solution of
Eq. (1) is trivial, then we say that (1) is solvable trivially.

Here, the naming ’solvable trivially’ concerns only the existence of solutions
of (1) and does not imply a way to find or constructions of solutions of (1) if
f(R) ⊆ Iq holds.
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In this connection, it can be seen that the number of all trivial solutions
of Eq. (1) can be countable. It is in contrast with the fact that, on the other
hand, it can be shown that the number of all non trivial solutions (if there is
one) is uncountable (cf. [6]).

We find the subrelation of relation ρ on the set Θ (of all characteristics
of strictly monotonous continuous functions), which represents only trivially
solvable equations and which we will denote by ρt, as follows. In fact, if θ, θ′ ∈
Θ, then we write θρtθ

′ in the case that θρθ′ holds and if, for any α ∈ θ, α′ ∈ θ′,
α ≤ α′ implies α′ = ∞2.

We will demonstrate this in the next table. The elements of the subset
{{ω}, {ω−}, {∞1}} ∪ Θ∗ of Θ are written without curly brackets and com-
mas and symbols ∞1, ∞2 are abbreviated by 1, 2, respectively. If θ, θ′ ∈
{{ω}, {ω−}, {∞1}} ∪ Θ∗, then we denote the case that θρθ′ is not fulfilled by
’−’, further by ’+’ if θρθ′ holds and finally, by ’(+)’ if θρtθ

′ is satisfied. (Ac-
tually, ’−’ stands for ’not solvable’, ’+’ for ’solvable’ and ’(+)’ for ’solvable
trivially’.)

So we obtain the table

θ | θ′ ω ω− 1 2 ω2 ω−2 12 ωω−2 ω12 ω−12 ωω−12

ω + − + (+) + (+) + + + + +
ω− − + + (+) (+) + + + + + +
1 − − + (+) (+) (+) + (+) + + +
2 − − − (+) (+) (+) (+) (+) (+) (+) (+)
ω2 − − − (+) + (+) + + + + +
ω−2 − − − (+) (+) + + + + + +
12 − − − (+) (+) (+) + (+) + + +
ωω−2 − − − (+) + + + + + + +
ω12 − − − (+) + (+) + + + + +
ω−12 − − − (+) (+) + + + + + +
ωω−12 − − − (+) + + + + + + +

This table presents a part of relation ρ on set Θ, namely this one on Θ \
2N2+ = {{ω}, {ω−}, {∞1}} ∪ Θ∗ and its subrelation ρt. We denote this table
by Tρ,ρt

because we will use it. The part of Tρ,ρt
under the middle line is the

part of ρ and ρt on set Θ which is the complete relation on Θ∗.

Example 16. In the paper [8], we find several examples of whether an Eq. (1) is
solvable for given strictly increasing continuous functions (Example 19). Now,
we can add examples where the given functions can be strictly decreasing
continuous function as well.

(a) We take the equation

f(−√
x + 1) = −

√
f(x) + 1
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where p(x) = −√
x+1 and q(x) = −√

x + 1 are strictly decreasing continuous
functions and ask about the solvability of the equation.

In Example 15 (a), we have determined char(−√
x + 1) = {∞1,∞2}.

Now, we still need to know char(−√
x + 1).

Like in Example 15 (a), we come to the relation (q2(a1), q2(b1)) = (a1, b1))
where (a1, b1) = dom(q2).

In Theorem 14, this condition together with the solvability of the equation
q(x) = x for I

()
q correspond to the characteristic char(q) = {∞1,∞2}.

Since the table Tρ,ρt
represents the relation ρ (and its subrelation ρt) it is

simple to turn to this table now. In our case, in the 7-th row for char(p) =
{∞1,∞2} (denoted by 12) and (coincidentally) in the 7-th column for char(q)=
{∞1,∞2} (12), we find the value ′+′ of ρ (of course, in the diagonal of Tρ,ρt

)
and thus, the given equation is solvable.

When considering an equation f(p(x))) = q(f(x)) from the point of view
of its solvability using char(p) and char(q), the solvability of the equation
f(q(x)) = p(f(x)) (with the given functions interchanged) can be decided
simultaneously.

In our case, the situation is trivial because char(q) = char(p), i.e. (char(q),
char(p)) ∈ ρ too and so the equation f(−√

x + 1) = −√
f(x) + 1 is solvable.

(b) Now, we investigate the solvability of the equation

f

(√
x

1 − x

)

= −
√

f(x) + 1.

The function p(x) =
√

x
1−x is strictly increasing and its characteristic

char(p) = {ω−,∞2} can be found in [8], Example 17 (d). The function q(x) =
−√

x + 1 was considered just now in (a). Its characteristic is char(q) =
{∞1,∞2}

Therefore for char(p), we look at the 6-th row and, for char(q), at the 7-th
column of the table Tρ,ρt

and find the value ’+’. It means that (char(p), char(q))
∈ ρ and so the considered equation is solvable.

The equation f(−√
x + 1)=

√
f(x)

1−f(x) with the given functions interchanged
has the ordered pair of functions (q(x), p(x)) now. Hence, we look for q(x) in
the 7-th row and for p(x) in the 6-th column of the table Tρ,ρt

and find the
value ’(+)’. Thus, (char(q), char(p)) ∈ ρt holds which means that this equation
is solvable, but only trivially.

(c) None of the following equations is non trivially solvable.

f(± ln x) = ± arctan f(x), f(± arctan x) = ± ln f(x)

f(ln x) = ef(x), f(ex) = ln f(x)

Indeed, this is the case because char(ln x) = {ω−} (by [8], Example 17
(c)), char(− ln x) = {ω−,∞2} (by Example 15 here), char(arctan x) = char
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(− arctan x) = {ω,∞2} (by [7], Example 19 and Example 15 here) and char
(ex) = {ω} (by [7], Example 19).

And further, the values of relation ρ for the corresponding ordered pairs of
these characteristics can be found in the table Tρ,ρt

.
Moreover, we see that all equations in the first row are solvable trivially

except f(± arctan x) = ln f(x).
Let p, q be given strictly monotonous continuous functions, such that

char(p), char(q) ∈ {{ω}, {ω−}, {∞1}} ∪ Θ∗ holds. In this case Ip �= ∅ and
Iq �= ∅ hold. Then, using the table Tρ,ρt

, we see that we can decide whether
(char(p), char(q)) ∈ ρ or (char(p), char(q)) /∈ ρ is satisfied.

But the relation for char(p) and char(q) can be decided easily in two other
cases without the table as well. Namely, by means of Lemma 6 and Corol-
lary 11. The two cases are the following.

Corollary 17. Let p, q be strictly monotonous continuous functions. Then the
following hold.

(a) If Ip = ∅ and Iq �= ∅, then (char(p), char(q)) ∈ ρ is satisfied.
(b) If Ip �= ∅ and Iq = ∅, then (char(p), char(q)) /∈ ρ is satisfied.

Indeed, both assertions are consequences of the definition of relation ρ (cf.
Fig. 2) and the assertions in Lemma 6 (a) and Corollary 11 (b) and (c).

Recall the denotation I
()
p = Ip ∩ (a, b) for any function p defined on (a, b).

By the definition of Ip, if p is strictly decreasing, then I
()
p = Ip holds. For a

strictly monotonous continuous function p, the condition I
()
p �= ∅ is equivalent

to the existence of a fixed point of p. The solvability of Eq. (1) where both
given functions p, q are without any fixed point, (i.e. if they have components
of finite type only) is not investigated further.

Now, we can summarize our results in a quite short algorithm.
It would be easy to formulate an algorithm for the computations of this

section in a pseudo programming language. But we refrain from writing it in
detail and describe it in the form of some steps. This will have two parts.

In the first part, given two strictly monotonous continuous functions p, q,
we realize the first considerations using Corollary 17. We consider the four
different cases for computations depending on whether Ip = ∅ or not and
Iq = ∅ or not. And in the second part, we process the computations in the
(most common) case Ip �= ∅ and Iq �= ∅.

Algorithm 18. Solvability of f(p(x)) = q(f(x)).
Input: strictly monotonous continuous functions p, q.
Output: f(p(x)) = q(f(x)) is ’not solvable’/’solvable trivially’/’solvable’.
The first part.

1. (To decide whether Ip = ∅ or not:)
denote (a, b) = dom(p),
decide the solvability of p(x) = x and
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if p is increasing and I
()
p = ∅,

then determine whether p(a) = a or p(b) = b or not.
2. (To decide whether Iq = ∅ or not:)

denote (c, d) = dom(q) and
do the same for q as for p in step 1.
(In programming, use the same sub-procedure.)

3 . Write the answer

answer =

⎧
⎪⎪⎨

⎪⎪⎩

′solvable/solvable trivially ′ if Ip = ∅ and Iq �= ∅
′not solvable ′ if Ip �= ∅ and Iq = ∅
′use the second part ′ if Ip �= ∅ and Iq �= ∅
′use a paperandpencil method ′ if Ip = ∅ and Iq = ∅.

The second part.
1. (For the computation of char(p), do:)

1.1. If p is strictly decreasing, then
compute p2 with the computation of dom(p2);
further, put

r =
{

p if p is increasing
p2 if p is decreasing

and denote

(a, b) =
{

dom(p) if p is increasing
dom(p2) if p is decreasing .

1.2. (The function r defined on (a, b) is strictly increasing.)
Compute r(a), r(b) and
compare (r(a), r(b)) and (a, b) for their relationship =,⊂,⊃ or ||.
Further, find solutions of r(x) = x until two, if they exist and
check the cardinalities |I()

r | and |Ir| = |I()
r | + |Ir ∩ {a, b}| for 0, 1 or > 1.

1.3. Find the corresponding characteristic char(r) in the list in Theorem 14.
Put char(p) = char(r).

2. (For the computation of char(q), do:)
In steps 2.1 to 2.3 do the same for q as in steps 1.1 to 1.3 for p.
(By programming, use the same sub-procedure.)

3. Find the value v for the pair (char(p), char(q)) in the table Tρ,ρt
.

4. Write the answer

answer =

⎧
⎨

⎩

′not solvable ′ if v = −
′solvable trivially ′ if v = (+)
′solvable ′ if v = + .

Example 19. Consider Algorithm 18 in more detail.
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(a) Let us leave the equation f(−√
x + 1) = ln (f(x) + 1) to a computer

which contains a program with Algorithm 18.
As input, it gets the functions p(x) = −√

x + 1 and q(x) = ln (x + 1).
Then in the first part of the algorithm,
in 1., it decides that p(x) = x is solvable, and since p is not increasing

nothing more. The result is Ip �= ∅. Then
in 2., it does the same for q and the result is Iq �= ∅;
in 3. the answer is ’use the second part’ and the run goes to the second

part of the algorithm.
In the second part of the algorithm,
in 1., i.e. in the 1. block with the following steps,
in 1.1., it recognizes that p is strictly decreasing and thus, it applies its

computation on p2; here it finds a, b such that (a, b) = dom(p2),
in 1.2., it computes p2(a), p2(b) and compares (p2(a), p2(b)) and (a, b) with

respect to their relation =,⊂,⊃ or ||; the result is ’=’ (cf. Example 16 (a));
further here, it determines that |Ip2 | > 1, and

in 1.3., it finds that the corresponding characteristic value for p in the list
of Theorem 14 is (∞1,∞2), and

in 2., i.e. in the 2. block with the following steps,
in 2.1., it recognizes that q is strictly increasing and thus, it applies its

computation on q directly; here it finds a, b such that (a, b) = dom(q),
in 2.2., it computes q(a), q(b) and compares (q(a), q(b)) and (a, b) with re-

spect to their relation =,⊂,⊃ or ||; the result is ’⊃’; further here, it determines
that |Iq2 | > 1 (cf. [8], Example 17 (e)),

in 2.3., it finds that the corresponding characteristic value for q in the list
of Theorem 14 is (ω−,∞1,∞2), and, in the last steps,

in 3., 4,, it finds in Tρ,ρt
(r. 7, c. 10) the value ’+’ and writes ’solvable’.

(b) In (a), we have seen an example of strictly monotonous continuous
functions p, q for which Ip �= ∅ and Iq �= ∅ is satisfied. The two possibilities
Ip �= ∅ and Iq = ∅ or Ip �= ∅ and Iq = ∅ are simple because the output-answer
already appears in the first part of the algorithm.

What remains is the case Ip = ∅ and Iq = ∅ which refers to ’a paper and
pencil method’. This is because an investigation of computations of char(p)
for a function p with Ip = ∅ was still left out. By Corollaries 6 and 11, we have
that char(p) ⊆ N2+ holds. Since the set of strictly monotonous continuous
functions with this property is pretty limited, let us help ourselves in the way
shown in the following example.

As can be seen soon, it can only concern strictly increasing functions. So
let us take for example p(x) = −e−√

x and q(x) = arctan(ln(x)).
It can be seen as well, all iterations (components) of this kind of functions

form strictly decreasing sequences. So we can consider their lengths by starting
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with ever larger numbers. Here, we determine char(arctan(ln(x))) = {2, 3, 4}.
It is even easier for char(−e−√

x) = {2}.
Thus, by relation ρ, the equation

f(−e−√
x) = arctan(ln(f(x)))

is solvable and the other one, f(arctan(ln(x))) = −e−
√

f(x), is not.
In future considerations, it is obvious to focus on solutions of the equation

f(p(x) = q(f(x)) for given p, q if they exist - and their constructions, which is
pretty tedious (s. [7]). Because usually there are uncountably many of them, it
is advantageous to limit these to given p, q with special properties or boundary
value conditions. An other natural topic, would be to continue the investiga-
tions of the solvability of f(p(x) = q(f(x)) for given continuous p, q which
are piecewise monotonous or then mainly, if they are polynomials or rational
functions.
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[11] Matkowski, J., Wójcik, P.: Sandwich results for periodicity and conjugacy. Aequat.
Math. 94, 38–391 (2020)

[12] Neuman, F.: On transformations of differential equations and systems with deviating
argument. Czechoslovak Math. J. 31(106), 87–90 (1981)

[13] Neuman, F.: Transformations and canonical forms of functional differential equations.
Proc. Roy. Soc. Edinburg Sect. 68, 349–357 (1990)
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