
Aequat. Math. 95 (2021), 1301–1311
c© The Author(s) 2021

0001-9054/21/061301-11
published online November 9, 2021
https://doi.org/10.1007/s00010-021-00854-2 Aequationes Mathematicae

On linear functional equations modulo Z
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Abstract. In this paper, we consider the condition
∑n+1

i=0 ϕi(rix + qiy) ∈ Z for real valued
functions defined on a linear space V . We derive necessary and sufficient conditions for
functions satisfying this condition to be decent in the following sense: there exist functions

fi : V → R, gi : V → Z such that ϕi = fi + gi, (i = 0, . . . , n+1) and
∑n+1

i=0 fi(rix+ qiy) = 0
for all x, y ∈ V .
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Introduction

The topic of this paper is connected to linear functional equations of the form
n+1∑

i=0

fi(rix + qiy) = 0, (x, y ∈ V ) (1)

where V is a linear space, n is a positive integer, r0, . . . , rn+1 and q0, . . . , qn+1

are real numbers and f0, . . . , fn+1 : V → R are unknown functions.
It is easy to see that this class contains several fundamental functional

equations (e.g., the Cauchy, the Jensen, the square-norm, and the Pexider
equations) as a special case. Its investigation goes back (at least) to the be-
ginning of the twentieth century (cf., e.g., [9,26]). Its solutions, in a general
case, were determined by Székelyhidi [22,23]. A computer program presenting
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the solutions of functional equations of type (1) was described in [7] (cf., also,
[5,6,10,11]). Problems connected to class (1), its generalizations and its ap-
plications have been studied by several authors during the last more than 100
years. (Recent related results can be found, among others, in [13,15–17,24].)

In this paper, using the notation above, we consider linear functional equa-
tions modulo Z, i.e., we investigate the property

n+1∑

i=0

ϕi(rix + qiy) ∈ Z (x, y ∈ V ). (2)

Our aim is to describe the form of the functions satisfying (2). Our investiga-
tions were mainly motivated by results of J. A. Baker, K. Baron, J. Brzdȩk,
M. Sablik, P. Volkmann published in the papers [1,3,4,8], respectively, con-
nected to the Cauchy equation modulo Z, as well as, by studies of A. Lewicka
on polynomial functional equations modulo Z [20].

1. Preliminaries

In this section, we give some definitions and present some preliminary results
we need to formulate and to prove our statements.

We start with the well-known concept of the difference operator. In its
definition and in the remaining part of the paper V denotes a linear space over
Q (or R or C). Let f : V → R be a function, let, furthermore,

Δ0
yf(x) = f(x) (x, y ∈ V )

and, for a non-negative integer n,

Δn+1
y f(x) = Δn

yf(x + y) − Δn
yf(x) (x, y ∈ V ).

It is easy to prove that, with the notation above,

Δn
yf(x) =

n∑

k=0

(−1)n−k

(
n

k

)

f(x + ky) (x, y ∈ V ) (3)

for each non-negative integer n.
If n is a non-negative integer, a function f : V → R is said to be a polynomial

function of degree n (in another terminology a polynomial function of degree
at most n) if it satisfies

Δn+1
y f(x) = 0 (x, y ∈ V ), (4)

f is called a monomial function of degree n if it fulfils

Δn
yf(x) − n!f(y) = 0 (x, y ∈ V ). (5)



Vol. 95 (2021) On linear functional equations modulo Z 1303

Remark 1. A simple application of property (3) yields that Eqs. (4) and (5)
can be obtained with properly chosen functions f0, . . . , fn+1 and numbers
r0, . . . , rn+1 and q0, . . . , qn+1 in (1), thus, the classes of polynomial and mono-
mial equations are sub-classes of the set of linear functional equations of type
(1).

Remark 2. There is a notable connection between polynomial and monomial
functions. With the notation above, if ak : V → R, (k = 0, . . . , n) are monomial
functions of degree k, then the function f : V → R, defined by

f =
n∑

k=0

ak

is a polynomial function of degree n.
On the other hand, if f : V → R is a polynomial function of degree n, then

there exist monomial functions ak : V → R of degree k, (k = 0, . . . , n) such
thatfor the functions f0, . . . , fn+1 for the numbers r0, . . . , rn+1 and q0, . . . , qn+1

in (1)

f =
n∑

k=0

ak.

(cf., e.g. [18,19] and, in a general setting, [23]).

According to Remark 2, monomial functions are a kind of ‘building blocks’
for polynomial functions. As L. Székelyhidi proved (cf. [22], furthermore, [23,
26]), this property, under some circumstances, is also valid for solutions of
general linear functional equations of type (1).

Theorem 1. Let V be a linear space, n be a non-negative integer and let
r0, . . . , rn+1, q0, . . . , qn+1 be rational numbers satisfying the property

riqj �= rjqi (i, j = 0, . . . , n + 1, i �= j). (6)

The functions f0, . . . , fn+1 : V → R solve functional equation (1), if and only
if,

fi =
n∑

k=0

a
(i)
k , (i = 0, . . . , n + 1) (7)

where a
(i)
k : V → R (i = 0, . . . , n + 1, k = 0, . . . , n) are monomial functions of

degree k such that
n+1∑

i=0

rji q
k−j
i a

(i)
k (x) = 0 (x ∈ V, k = 0, . . . , n, j = 0, . . . , k).

As it was mentioned in the Introduction, in this paper, we investigate func-
tions satisfying property (2). Our study was inspired by several articles (e. g.
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[1,3,4] and [8]), on the Cauchy equation modulo Z (in another terminology
Cauchy’s congruence), i.e., on the condition

ϕ(x + y) − ϕ(x) − ϕ(y) ∈ Z (x, y ∈ V ), (8)

where v is a linear space and ϕ : V → R is a function.
According to Baker [1], a function ϕ : V → R is called a decent solution of

(1) (or a decent solution of Cauchy’s congruence), if it satisfies (1) and there
exist functions f : V → R and g : V → Z, such that f is a solution of Cauchy’s
functional equation

f(x + y) − f(x) − f(y) = 0 (x, y ∈ V )

and ϕ is of the form ϕ = f +g. (Further connected results can be found, among
others, in the papers [2,14,21].)

Motivated by the investigations above, in the case when V is a linear space,
n is a non-negative integer and ϕ : V → R is a function, A. Lewicka considered
the property

Δn+1
y ϕ(x) ∈ Z (x, y ∈ V ), (9)

which she called polynomial congruence of degree n (cf. [20]). Analogously to
the case connected to the Cauchy equation, a function ϕ : V → R is said to be
a decent solution of the polynomial congruence of degree n if it satisfies (9) and
there exist functions f : V → R and g : V → Z, such that f is a polynomial
function of degree n and ϕ = f + g [20].

In her paper [20], A. Lewicka proved, among others, the following 3 Theo-
rems.

Theorem 2. Let V be a linear space, n be a non-negative integer and assume
that ϕ : V → R fulfils the polynomial congruence of degree n. Then the following
conditions are equivalent:

(a) The function ϕ is a decent solution of the polynomial congruence of degree
n.

(b) For every v ∈ V , there exists a polynomial pv of degree smaller than n+1
with real coefficients such that ϕ(ξv) − pv(ξ) ∈ Z for all ξ ∈ Q.

(c) For every vector v ∈ V , there exist ε > 0 and a polynomial pv of degree
smaller than n + 1 with real coefficients such that ϕ(ξv) − pv(ξ) ∈ Z for
all ξ ∈ Q ∩ (0, ε).

(d) For every vector v ∈ V , there exist ε > 0 and a polynomial pv of degree
smaller than n + 1 with real coefficients such that ϕ̃(ξv) − p̃v(ξ) ∈ Z for
all ξ ∈ Q ∩ (0, ε).

(e) For every vector v ∈ V , there exist ε > 0 and α ∈ [0, 1] such that for
every ξ ∈ Q ∩ (0, ε) we have ϕ̃(ξv) ∈ (

α, α + 1
2n+1

)
.

(f) For every vector v ∈ V , there exists ε > 0 such that the function ξ �
Q → ϕ̃(ξv) is monotone on Q ∩ (0, ε).
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Theorem 3. Let V be a linear space and let E ⊆ X such that intH(E) �= ∅.
If ϕ : V → R fulfils the polynomial congruence of degree n so that ϕ(x) ∈
Z + (−α, α) for x ∈ E with some 0 < α < 1

2n+1(2n+1−1) , then ϕ is a decent
solution of the polynomial congruence of degree n. Moreover, ϕ = f + g, where
f is a continuous polynomial function of degree n and g is an integer valued
function.

Theorem 4. Let V be a linear space and let ϕ : V → R be a solution of the
polynomial congruence of degree n. Assume that one of the following two hy-
potheses is valid
(a) X = R

m with some positive m and ϕ is Lebesgue measurable,
(b) X is a real Fréchet space and ϕ is a Baire measurable function.

Then ϕ is a decent solution of the polynomial congruence of degree n. Moreover,
ϕ = f + g with f being a continuous polynomial function of degree n and g
being an integer-valued and Lebesgue (resp. Baire) measurable function.

Similarly to the statements formulated in Remark 1, it is easy to see that
property (9) can be obtained with properly chosen functions f0, . . . , fn+1 and
numbers r0, . . . , rn+1 and q0, . . . , qn+1 in (2). This means that, for each non-
negative integer n, a solution of the polynomial congruence of degree n also
satisfies a certain linear congruence of type (2).

Based on this fact, we may introduce the following generalization of the
concepts above. If V is a linear space, n is a non-negative integer, r0, . . . , rn+1

and q0, . . . , qn+1 are rational numbers, the functions ϕ0, . . . , ϕn+1 : V → R are
called decent solutions of (2), if they satisfy (2), furthermore, there exist func-
tions f0, . . . , fn+1 : V → R and g0, . . . , gn+1 : V → Z, such that f0, . . . , fn+1

are solutions of (1) and ϕi = fi + gi for i = 0, . . . , n + 1.
It is easy to see that, if ϕi = fi + gi, such that fi : V → R, gi : V → Z

and f0, . . . , fn+1 satisfy (1), then the system of functions ϕ0, . . . , ϕn+1 fulfils
(2). In the remaining part of the paper, we investigate the question, which
conditions imply that functions, satisfying (2) are its decent solutions.

We note that, as a consequence of G. Godini’s example in [12], generally, it
is not true that each function fulfilling (1) is a decent solution of (1) (cf., also,
[25]). Since the Cauchy equation is a special case of (1), it is also not always
true that functions satisfying (2) are decent.

2. Main results

We start our investigations with the examination of the connection between
polynomial congruences and linear congruences. Our first theorem reads as
follows.

Theorem 5. Let V be a linear space, n be a non-negative integer, let r0, . . . , rn+1

and q0, . . . , qn+1 be rational numbers with the property (6) and assume that
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the functions ϕ0, . . . , ϕn+1 : V → R satisfy (2). Then each of the functions
ϕ0, . . . , ϕn+1 fulfils the polynomial congruence of degree n.

Proof. At first, we show that ϕn+1 satisfies (9).
Assume that rn+1 �= 0 and qn+1 �= 0. Taking arbitrary u,w ∈ V and writing

x = u−w
rn+1

and y = w
qn+1

in (2), we get

ϕn+1(u) +
n∑

i=0

ϕi

(
ri

rn+1
u +

(
qi

qn+1
− ri

rn+1

)

w

)

∈ Z (u,w ∈ V ). (10)

Denote Ri = ri
rn+1

and Qi = qi
qn+1

− ri
rn+1

for i ∈ {0, . . . , n}. Then Ri, Qi ∈
Q, Ri, Qi �= 0, RiQj �= RjQi for i, j ∈ {0, . . . , n}, i �= j and

ϕn+1(u) +
n∑

i=0

ϕi (Riu + Qiw) ∈ Z (u,w ∈ V ). (11)

By property (6), rn+1 and qn+1 cannot be 0 simultaneously. If qn+1 = 0 and
rn+1 �= 0, then put x = u

rn+1
, y = w in (2) to get (11) with Ri = r+i

rn+1
, Qi = qi.

Replacing u by u + s and w by w + t, we obtain

ϕn+1(u + s) +
n∑

i=0

ϕi ((Riu + Qiw) + (Ris + Qit)) ∈ Z (u,w, s, t ∈ V ).

(12)
Substracting the left hand side of (11) from the left hand side of (12), we
obtain

Δsϕn+1(u) +
n∑

i=0

ΔRis+Qitϕi (Riu + Qiw) ∈ Z (u,w, s, t ∈ V ). (13)

Writing t = −Rn

Qn
s in (13), we get

Δsϕn+1(u) +
n−1∑

i=0

ΔRiQn−RnQi
Qn

s
ϕi (Riu + Qiw) ∈ Z (u,w, s ∈ V ). (14)

Considering this for the function Δsϕn+1 instead of ϕn+1 and for ΔRiQn−RnQi
Qn

s
ϕi

instead of ϕi for i ∈ {0, . . . , n − 1}, we obtain

Δs′,sϕn+1(u) +
n−2∑

i=0

ΔRiQn−1−Rn−1Qi
Qn−1

s′,RiQn−RnQi
Qn

s

ϕi (Riu + Qiw) ∈ Z (u,w, s, s′ ∈ V ). (15)

A continuation of this argumentation yields that

Δn+1
s ϕn+1(u) ∈ Z (u, s ∈ V ).

�
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Due to Theorem 1, we can characterize decent solutions of (2) in terms of
decent solutions of polynomial congruences.

Theorem 6. Let V be a linear space, n be a non-negative integer, let r0, . . . , rn+1

and q0, . . . , qn+1 be rational numbers satisfying (6) and assume that
ϕ0, . . . , ϕn+1 : V → R fulfil (2). The functions ϕ0, . . . , ϕn+1 are decent so-
lutions of (2), if and only if, each of the functions ϕ0, . . . , ϕn+1 is a decent
solution of the polynomial congruence of degree n.

Proof. Assume that ϕi = fi + gi, for i = 0, . . . , n + 1 with some functions
f1, . . . , fn+1 : V → R and g1, . . . , gn+1 : V → Z, such that f1, . . . , fn+1 solve
(1). Then Theorem 1 implies that each of the functions fi is of the form (7),
thus, it is a polynomial function of degree n. Therefore, each of the functions
ϕi is a decent solution of the polynomial congruence of degree n.

Now, assume that ϕi = fi+gi for i = 0, . . . , n+1, where f1, . . . , fn+1 : V →
R and g1, . . . , gn+1 : V → Z such that f1, . . . , fn+1 are polynomial functions of
degree n. According to Remark 2, there exist monomial functions a

(i)
k : V → R

of degree k, (i = 0, . . . , n + 1, k = 0, . . . , n), such that

fi =
n∑

k=0

a
(i)
k .

Taking an arbitrary ξ ∈ Q and putting x = ξu, y = ξw for u,w ∈ V in (2), we
obtain

n+1∑

i=0

ϕi(ξ(riu + qiw)) ∈ Z (u,w ∈ V ),

thus,
n+1∑

i=0

fi(ξ(riu + qiw)) ∈ Z (u,w ∈ V ).

On the other hand,
n+1∑

i=0

fi(ξ(riu + qiw)) =
n+1∑

i=0

(
n∑

k=0

a
(i)
k (ξ(riu + qiw))

)

=
n∑

k=0

ξk

(
n+1∑

i=0

a
(i)
k (riu + qiw)

)

(u,w ∈ V ).

Since the equation above is valid for all rational numbers ξ, we get that
n+1∑

i=0

a
(i)
k (riu + qiw) = 0 (u,w ∈ V, k = 1, . . . , n)

and
n+1∑

i=0

a
(i)
0 (riu + qiw) ∈ Z (u,w ∈ V ).
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Therefore,
n+1∑

i=0

fi(ξ(riu + qiw)) =
n+1∑

i=0

a
(i)
0 (riu + qiw) (u,w ∈ V ).

Writing f̂i = fi and ĝi = gi for i = 0, . . . , n, furthermore,

f̂n+1 = fn+1 −
n+1∑

i=0

a
(i)
0 (riu + qiw) (u,w ∈ V )

and

ĝn+1 = gn+1 +
n+1∑

i=0

a
(i)
0 (riu + qiw), (u,w ∈ V )

we obtain that ϕi = f̂i + ĝi and ĝi : V → Z for i = 0, . . . , n + 1 and

n+1∑

i=0

f̂i(ξ(riu + qiw)) =

n+1∑

i=0

fi(ξ(riu + qiw)) −
n+1∑

i=0

a
(i)
0 (riu + qiw) = 0 (u, w ∈ V ),

which proves that ϕ0, . . . , ϕn+1 are decent solutions of (2). �

Using Theorems 2 and 6, we can prove the following statement.

Corollary 1. Let V be a linear space, n be a non-negative integer,
let r0, . . . , rn+1 and q0, . . . , qn+1 be rational numbers satisfying (6) and assume
that
ϕ0, . . . , ϕn+1 : V → R fulfil (2). Then the following conditions are equivalent.
(a) The functions (ϕ0, . . . , ϕn+1) are decent solutions of (2).
(b) For each v ∈ V and i ∈ {0, . . . , n+1}, there exist a polynomial piv ∈ Rn[X]

and ε > 0, such that ϕi(ξv) − piv(ξ) ∈ Z for ξ ∈ Q ∩ (0, ε).
(c) For each v ∈ V , there exist ε > 0 and α ∈ R, such that ϕ̃i(ξv) ∈ (α, α +

1
2n+1 ) for ξ ∈ Q ∩ (0, ε).

(d) For each v ∈ V , there exists ε > 0 such that the function Q � ξ →
ϕ̃i(ξv) ∈ [0, 1) is monotone on Q ∩ (0, ε).

Proof. According to Theorem 2, each of the conditions (b), (c) and (d) is
equivalent to the decency of each of the functions ϕ0, . . . , ϕn+1 as solutions
of the polynomial congruence of degree n, which implies the decency of the
functions ϕ0, . . . , ϕn+1 as solutions of (2) (cf. Theorem 6). �

Finally, we formulate and prove two corollaries of our theorems as well
as some results of Lewicka [20] on solutions of linear congruences satisfying
certain regularity properties.

Corollary 2. Let V be a linear space, n be a non-negative integer, let r0, . . . , rn+1

and q0, . . . , qn+1 be rational numbers satisfying (6) and assume that
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ϕ0, . . . , ϕn+1 : V → R fulfil (2). If there exists a set Ev,i ⊆ R for every v ∈ V
and i ∈ {0, . . . , n + 1} such that intH(Ev,i) �= ∅ and

ϕi(ξv) ∈ Z +
(

− 1
2n(2n−2 − 1)

,
1

2n(2n−2 − 1)

)

(ξ ∈ Ev,i),

then ϕ0, . . . , ϕn+1 are decent solutions of (2).

Proof. Since ϕ0, . . . , ϕn+1 fulfil (2), Theorem 5 yields that each of the func-
tions above satisfy (9). Thus, according to Theorem 3, each of the functions
ϕ0, . . . , ϕn+1 is a decent solution of (9). Therefore, as a consequence of Theo-
rem 6, we obtain that ϕ0, . . . , ϕn+1 are decent solutions of (2). �

Corollary 3. Let V be a linear space, n be a non-negative integer,
let r0, . . . , rn+1 and q0, . . . , qn+1 be rational numbers satisfying (6) and assume
that ϕ0, . . . , ϕn+1 : V → R fulfil (2). If each of the functions ϕ0, . . . , ϕn+1 is ei-
ther Lebesgue measurable or Baire measurable or Q-radial continuous at some
point, then ϕ0, . . . , ϕn+1 are decent solutions of (2).

Proof. Since ϕ0, . . . , ϕn+1 fulfil (2), from Theorem 5 it follows that each of
these functions fulfils (9). Thus, according to Theorem 4, each of the functions
ϕ0, . . . , ϕn+1 is a decent solution of (9). Therefore, Theorem 6 implies that
ϕ0, . . . , ϕn+1 are decent solutions of (2). �
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[8] Brzdȩk, J.: The Cauchy and Jensen differences on semigroups. Publ. Math. Debrecen
48(1–2), 117–136 (1996)
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[14] Jab�lońska, E.: On the Cauchy difference of functions bounded modulo Z on “large” sets.

Aequationes Math. 95(2), 301–308 (2021)
[15] Kiss, G., Laczkovich, M.: Linear functional equations, differential operators and spectral

synthesis. Aequationes Math. 89, 301–328 (2015)
[16] Kiss, G., Vincze, Cs.: On spectral analysis in varieties containing the solutions of inho-

mogeneous linear functional equations. Aequationes Math. 91(4):663–690 (2017)
[17] Kiss, G., Vincze, Cs.: On spectral synthesis in varieties containing the solutions of

inhomogeneous linear functional equations. Aequationes Math. 91(4):691–723 (2017)
[18] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequali-

ties, Volume 489 of Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach. Państwowe
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Faculty of Informatics
University of Debrecen
Egyetem tér 1
Debrecen 4032
Hungary
e-mail: gilanyi@inf.unideb.hu

Agata Lewicka
Faculty of Science and Technology
University of Silesia
Bankowa 14
40-007 Katowice
Poland
e-mail: agata.nowak@us.edu.pl

Received: August 12, 2021

Revised: October 23, 2021

Accepted: October 24, 2021


	On linear functional equations modulo mathbbZ
	Abstract
	Introduction
	1. Preliminaries
	2. Main results
	References




