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Abstract. Assume that Ω ⊂ R
k is an open set, V is a real separable Banach space and

f1, . . . , fN : Ω → Ω, g1, . . . , gN : Ω → R, h0 : Ω → V are given functions. We are interested

in the existence and uniqueness of solutions ϕ : Ω → V of the linear equation ϕ =
∑N

k=1 gk ·
(ϕ ◦ fk) + h0 in generalized Orlicz spaces.
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1. Introduction

Throughout this paper we fix k,N ∈ N, an open set Ω ⊂ R
k, a real separable

Banach space (V, ‖ · ‖V ) and functions f1, . . . , fN : Ω → Ω, g1, . . . , gN : Ω → R

and h0 : Ω → V . We are interested in solutions ϕ : Ω → V of the linear equation
of the form

ϕ(x) =
N∑

n=1

gn(x)ϕ(fn(x)) + h0(x). (1)

Solutions of Eq. (1) have been studied by many authors in different classes
of functions (for more details see e.g. [12, Chapter XIII], [13, Chapter 6],
[2, Chapter 5], [1, Section 4] and the references therein). In this paper we are
interested in the existence and uniqueness of solutions of Eq. (1) in generalized
Orlicz spaces.

This paper is a continuation of investigations started by the authors in
[17], where solutions of Eq. (1) were studied in the space L1([0, 1],R). The
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motivation to study Eq. (1) in the space L1([0, 1],R) came from [20]. However,
the interest to consider it in much more general spaces is inspired by [15].

We denote by F the linear space of all functions ψ : Ω → V and fix a
subspace F0 of F . Then we define the operator P : F0 → F by

Pψ =
N∑

n=1

gn · (ψ ◦ fn), (2)

and we observe that it is linear and Eq. (1) can be written in the form

ϕ = Pϕ + h0. (3)

Note also that if Eq. (1) has a solution ϕ ∈ F0 such that Pϕ ∈ F0, then
h0 ∈ F0. Conversely, if h0 ∈ F0, then for every solution ϕ ∈ F0 of Eq. (1) we
have Pϕ ∈ F0. Therefore, if we want to look for solutions of Eq. (1) in F0,
then it is quite natural to assume that h0 ∈ F0 and

P (F0) ⊂ F0. (4)

We begin with the following counterpart of [17, Remark 1.2].

Remark 1.1. Assume that F0 is equipped with a norm, h0 ∈ F0 and the op-
erator P given by (2) satisfies (4) and is continuous. If the series

∞∑

n=0

Pnh0 (5)

converges, in the norm, to a function ϕ ∈ F0, then (3) holds.

From now on, the series (5) will be called the elementary solution of Eq.
(1) in F0, provided that it is a well-defined solution of Eq. (1) belonging to F0.
Let us note that it can happen that Eq. (1) has a solution in F0, however its
elementary solution in F0 can fail to exist (see [17, Example 1.4]). Following
[17] we are interested in assumptions guaranteeing that the elementary solution
of Eq. (1) in F0 exists, and moreover, that Eq. (1) has no other solutions in
F0. As it was mentioned at the beginning, in this paper we will focus on F0

when it is a generalized Orlicz space.
Our first result is a simple generalization of [17, Theorem 3.2], essentially

with the same proof.

Theorem 1.2. Assume that ‖ · ‖ is a complete norm in F0 and let h0 ∈ F0. If
the operator P given by (2) satisfies (4) and is a contraction with contraction
factor α, then the elementary solution of Eq. (1) in F0 exists, it is the unique
solution of Eq. (1) in F0 and ‖∑∞

k=m P kh0‖ ≤ αm

1−α‖h0‖.
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2. Preliminaries

Let (X,M, μ) and (Y,N , ν) be measure spaces. We say that G : X → Y sat-
isfies Luzin’s condition N if for every set N ⊂ Y of measure zero the set
G(N) is also of measure zero. When we integrate a function Φ: X → V , we
will use the Bochner integral (for details see e.g. [8, Sections 3.1 and 3.2]).
Recall that a function Φ: X → V is Bochner–measurable if it is equal al-
most everywhere to the limit of a sequence of measurable simple functions,
i.e., Φ(x) = limn→∞ Φn(x) for almost all x ∈ X, where each of the functions
Φn : X → V has a finite range and Φ−1

n ({v}) is measurable for every v ∈ V .
As we will work with Bochner–integrable solutions of Eq. (1), we need the
following observation.

Lemma 2.1. Assume that (X,M, μ) is a complete σ–finite measure space. Let
F : X → X, H : X → V and G : X → R be measurable functions. If for all
sets N ⊂ X of measure zero the set F−1(N) is also of measure zero, then the
functions H ◦ F and G · (H ◦ F ) are measurable.

Proof. Let (Hn)n∈N be a sequence of measurable simple functions converging
pointwise to H except on a set N of measure zero. Fix n ∈ N. Then there are
points v1, . . . , vm ∈ V and a partition of V into measurable sets V1, . . . , Vm such
that Hn =

∑m
j=1 vjχVj

. Then Hn ◦ F =
∑m

j=1 vjχVj
◦ F =

∑m
j=1 vjχF −1(Vj).

By our assumptions, the set F−1(N) is of measure zero. Fix v ∈ V \ F−1(N).
Then F (v) �∈ N , and hence (Hn ◦ F )(v) converges to (H ◦ F )(v).

Assume now that (Gn)n∈N is a sequence of measurable simple functions
converging to G except on a set M of measure zero. Then (Gn · (Hn ◦ F ))n∈N

is a sequence of measurable simple functions converging to G · (H ◦ F ) except
on the set F−1(N) ∪ M . �

The next result we want to apply is a change of variable formula from [6].
To formulate this theorem, we need to introduce some definitions and notions.

Let F : Ω → R
k be measurable. We say that a linear mapping L : Rk → R

k

is an approximate differential of F at x0 ∈ Ω if for every ε > 0 the set
{

x ∈ Ω \ {x0} :
‖F (x) − F (x0) − L(x − x0)‖

‖x − x0‖ < ε

}

has x0 as a density point (see [24, Section 2], cf. [23, Chapter IX.12]). We say
that F is approximately differentiable at x0 if the approximate differential of F
at x0 exists. To simplify notation, we will denote the approximate differential
of a function F : Ω → R

k at x0 by F ′(x0). Moreover, if a function F : Ω → R
k

is almost everywhere approximately differentiable, then as usual we denote by
F ′ the function Ω 
 x �→ F ′(x), adopting the convention that F ′(x) = 0 for
every point x ∈ Ω at which F is not approximately differentiable. If E ⊂ Ω,
then the function NF (·, E) : Rk → N ∪ {∞} defined by

NF (y,E) = card(F−1(y) ∩ E)
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is called the Banach indicatrix of F .
We omit the proof of the next lemma, as it is the same as the version

included in [17] in the case where k = 1.

Lemma 2.2. (see [17, Lemma 2.1]) Assume that F1, F2 : Ω → R
k are functions

such that F1 = F2 almost everywhere. If F1 is approximately differentiable
almost everywhere, then so is F2. Moreover, whenever F1 or F2 is approxi-
mately differentiable at a point, so is the other function, and the approximate
derivatives agree at this point.

Now we are in a position to formulate the change of variable formula; JF

denotes the Jacobian of F .

Theorem 2.3. (see [6, Theorem 2]) Assume that F : Ω → R
k is a measurable

function satisfying Luzin’s condition N and is almost everywhere approximately
differentiable. If H : Rk → R is a measurable function, then for every measur-
able set E ⊂ Ω the following statements are true:

(i) The functions (H ◦ F )|JF | and HNF (·, E) are measurable;
(ii) If H ≥ 0, then

∫

E

(H ◦ F )(x)|JF (x)| dx =
∫

Rk

H(y)NF (y,E) dy; (6)

(iii) If one of the functions (H ◦ F )|JF | and HNF (·, E) is integrable (for
(H ◦ F )|JF | integrability is considered with respect to E), then so is the
other and (6) holds.

Now we are ready to formulate the main assumption about the functions
that were fixed at the beginning of this paper. The assumption reads as follows.

(H) The functions f1, . . . , fN are measurable and almost everywhere approxi-
mately differentiable and satisfy Luzin’s condition N. For all n ∈ {1, . . . , N}
and sets M ⊂ R

k of measure zero the set f−1
n (M) is of measure zero.

There exists K ∈ N such that for every n ∈ {1, . . . , N} the set {x ∈ Ω :
card f−1

n (x) > K} is of measure zero. The functions g1, . . . , gN and h0

are measurable.

From now on, for all l ∈ {1, . . . , N} and distinct n1, . . . , nl ∈ {1, . . . , N} we
put

An1,...,nl
=

l⋂

i=1

fni
(Ω)

and denote its measure by ln1,...,nl
. Then we set

L = max{l ∈ {1, . . . , N} : ln1,...,nl
> 0 for some n1 < n2 < · · · < nl}.
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3. Lebesgue spaces

We begin our considerations on the existence and uniqueness of the elementary
solution of Eq. (1) in Lebesgue spaces Lp(Ω, V ) of vector-valued functions.
As the Lebesgue spaces of vector-valued functions are well known as natural
generalizations of the classical Lebesgue spaces of real-valued functions (see
e.g. [3] or [8, Chapter 3]), we will not define and describe them in details here.

Since we want to apply Theorem 1.2, we must know that the operator P
given by (2) has the properties assumed in this theorem. The next two lemmas
serve this purpose.

Lemma 3.1. Assume that (H) holds and let p ∈ [1,∞). If there exists a real
constant α ≥ 0 such that

|gn(x)|p ≤ αp

KNp
|Jfn

(x)| for all n ∈ {1, . . . , N} and almost all x ∈ Ω, (7)

then the operator P given by (2) satisfies P (Lp(Ω, V )) ⊂ Lp(Ω, V ) and is
continuous with

‖P‖ ≤ α. (8)

Proof. The proof is similar to that of [17, Lemma 3.1].
Fix h ∈ Lp(Ω, V ). First of all observe that applying assertion (i) of The-

orem 2.3 with F = fn and H = 1 we conclude that the function Nfn
(·,Ω) is

measurable for every n ∈ {1, . . . , N}. Hence the function ‖h(·)‖V Nfn
(·,Ω) is

also measurable for every n ∈ {1, . . . , N}. Next by Lemma 2.1 we see that the
function gn · (h ◦ fn) is measurable for every n ∈ {1, . . . , N}, which implies
that the function Ph is measurable as well. Then, using (7) and Theorem 2.3,
we obtain

‖gn · (h ◦ fn)‖p
Lp(Ω,V ) ≤

∫

Ω

|gn(x)|p‖(h ◦ fn)(x)‖p
V dx

≤ αp

Np

1
K

∫

Ω

‖(h ◦ fn)(x)‖p
V |Jfn

(x)| dx

=
αp

Np

1
K

∫

fn(Ω)

‖h(y)‖p
V Nfn

(y,Ω) dy

≤ αp

Np

∫

fn(Ω)

‖h(y)‖p
V dy ≤ αp

Np
‖h‖p

V .

This yields

‖Ph‖Lp(Ω,V ) ≤
N∑

n=1

‖gn · (h ◦ fn)‖Lp(Ω,V ) ≤ α‖h‖Lp(Ω,V )

and completes the proof. �
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Lemma 3.2. Assume that (H) holds. If

α =
N∑

n=1

‖gn‖L∞(Ω,R) < ∞, (9)

then the operator P given by (2) satisfies P (L∞(Ω, V )) ⊂ L∞(Ω, V ), it is
continuous and (8) holds.

Proof. If is enough to observe that

‖Ph‖L∞(Ω,V ) ≤
N∑

n=1

‖gn(h ◦ fn)‖L∞(Ω,V ) ≤ α‖h‖L∞(Ω,V )

for every h ∈ L∞(Ω, V ). �

It is well known that Lebesgue spaces of real-valued functions are Banach
spaces (see e.g. [5, Theorem 6.6]). It turns out that the same is true in the case
of vector-valued functions with Banach target spaces, basically with the same
proof as in the real-valued case (see e.g. [8, Section 3.2]). Therefore, applying
Theorem 1.2 jointly with Lemmas 3.1 and 3.2 we obtain the following result.

Theorem 3.3. Assume that (H) holds, that p ∈ [1,∞] and that h0 ∈ Lp(Ω, V ).
Let (7) be satisfied with some α ≥ 0 in the case where p ∈ [1,∞) and (9) be
satisfied in the case where p = ∞. If α < 1, then the elementary solution of
Eq. (1) in Lp(Ω, V ) exists, it is the unique solution of Eq. (1) in Lp(Ω, V ) and

∥
∥
∥
∥
∥

∞∑

k=m

P kh0

∥
∥
∥
∥
∥

Lp(Ω,V )

≤ αm

1 − α
‖h0‖Lp(Ω,V ).

The next results concerns the space C(F, V ) of all continuous functions from
a compact set F ⊂ R

k to V equipped with the supremum norm
‖ · ‖sup. Although it is not a Lebesgue space, we will formulate a counterpart
of Theorem 3.3 for it. The reason is that its proof is based on the following
lemma, the proof of which is the same as the proof of Lemma 3.2.

Lemma 3.4. Assume (H) and let F ⊂ Ω be a non-empty compact set. If for
every n ∈ {1, . . . , N} the functions fn and gn are continuous on F with
fn(F ) ⊂ F , and if

α =
N∑

n=1

‖gn‖sup < ∞ (10)

then the operator P given by (2) satisfies P (C(F, V )) ⊂ C(F, V ), is continuous
and (8) holds.

Again, since C(F, V ) with the supremum norm is a Banach space (see e.g.
[3, Introduction]), it follows that Theorem 1.2 jointly with Lemma 3.4 gives
the following result.
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Theorem 3.5. Assume that (H) holds and let F ⊂ Ω be a non-empty compact
set, let h0 be continuous on F , let for every n ∈ {1, . . . , N} the functions fn

and gn be continuous on F with fn(F ) ⊂ F , and let (10) be satisfied. If α < 1,
then the elementary solution of Eq. (1) in C(F, V ) exists, it is the unique
solution of Eq. (1) in C(F, V ) and

∥
∥
∥
∥
∥

∞∑

k=m

P kh0

∥
∥
∥
∥
∥

sup

≤ αm

1 − α
‖h0‖sup.

4. Generalized Orlicz spaces

In this section we will focus on generalized Orlicz spaces (called also Musielak–
Orlicz spaces) with values in Banach spaces. Such spaces are a known gener-
alization of the classical Orlicz spaces, and hence they are more general than
Lebesgue spaces. Generalized Orlicz spaces were introduced in the case of real
valued function in [18] and then generalized also to functions taking values in
vector spaces in [10]. There are many results obtained on generalized Orlicz
spaces (see e.g. [7,16,19,25] and the references therein). For the convenience
of the readers, following [10,11], we recall some basic definitions and facts for
our needs.

Denote by B(V ) the σ-algebra of all Borel subsets of V and by Lk(Ω) the
σ-algebra of all Lebesgue measurable subsets of Ω.

Definition 4.1. [see [10, Definitions 2.1.1, 2.1.2 and 2.1.3]; cf. [11, Section 0]]
A function Φ: V × Ω → [0,∞] is said to be an N -function if:

(i) Φ is B(V ) ⊗ Lk(Ω)–measurable,
(ii) Φ(·, x) is even, convex, continuous at zero and lower semicontinuous for

almost all x ∈ Ω,
(iii) Φ(0, x) = 0 for almost all x ∈ Ω,
(iv) there exist functions α, β : Ω → (0,∞) such that Φ(v, x) ≥ α(x) for all

v ∈ V and almost all x ∈ Ω with ‖v‖V ≥ β(x).

From now on the symbol Φ is reserved for N -functions only.
Denote by MV the set of all measurable functions h : Ω → V ; as usual, two

functions from MV that differ only on a set of measure zero will be considered
as equal. Assume that M is a given non-empty subset of MV such that

IΦ(h) =
∫

Ω

Φ(h(x), x) dx < ∞ for every h ∈ M.

Denote by LΦ
M(Ω, V ) the set of all functions h ∈ M for which there exists a

sequence (hn)n∈N of functions belonging to linM, i.e. the smallest linear space
spanned by M, such that

lim
n→∞ IΦ(ξ(hn − h)) = 0 for every ξ > 0. (11)
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It turns out that LΦ
M(Ω, V ) is a linear space; indeed it is enough to note that

IΦ(ξ(αhn − h̃n − (αh − h̃))) ≤ 1
2IΦ(2|α|ξ(hn − h)) + 1

2IΦ(2ξ(h̃n − h̃)) for all
h, h̃, hn, h̃n ∈ MV , α ∈ R and ξ > 0. The linear space LΦ

M(Ω, V ) is called a
generalized Orlicz space (or a Musielak–Orlicz space).

Typical generalized Orlicz spaces are variable exponent Lebesgue spaces
Lp(·)(Ω, V ), generated by N -functions of the form Φ(v, x) = ‖v‖p(x)

V with
measurable functions p : Ω → [1,∞), and double phase spaces (containing
Lp(Ω, V ) + Lq(Ω, V ) spaces), generated by N -functions of the form Φ(v, x) =
‖v‖p

V + α(x)‖v‖q
V with measurable functions α : Ω → (0,∞) and real numbers

p, q ∈ [1,∞). Additional interesting examples of generalized Orlicz spaces can
be found in [7].

Theorem 4.2. [see [10, Theorem 2.4]] The formula

‖h‖LΦ
M(Ω,V ) = inf

{

λ > 0 :
∫

Ω

Φ
(

h(x)
λ

, x

)

dx ≤ 1
}

defines a complete norm in LΦ
M(Ω, V ).

Let us note that in the above theorem the assumption about the continuity
at zero of Φ(·, x) in condition (ii) of Definition 4.1 can be omitted. However, we
will need this assumption to simplify our results. For the same reason we will
work only with the generalized Orlicz spaces LΦ

MV
(Ω, V ), denoted throughout

this paper by LΦ(Ω, V ). The norm introduced in Theorem 4.2 is called the
Luxemburg norm.

From [10, Proposition 2.2] if follows that LΦ(Ω, V ) = linM, which cor-
relates the generalized Orlicz space with the original one introduced in [21].
Moreover, [10, Proposition 2.3] yields IΦ(h) < ∞ for every h ∈ LΦ(Ω, V ),
which jointly with the continuity at zero of the function Φ(·, x) leads to the
following observation.

Theorem 4.3. [see [22, Theorem 1.13]] We have h ∈ LΦ(Ω, V ) if and only if
one of the following two equivalent conditions hold:
(i) there exists a sequence (hn)n∈N of functions from lin{h̃ ∈ MV : IΦ(h̃) <

∞} satisfying (11),
(ii) there exists ξ > 0 such that IΦ(ξh) < ∞.

After the short introduction to the generalized Orlicz space, we pass to our
investigations.

We are now ready to generalize Lemma 3.1 to generalized Orlicz spaces.

Lemma 4.4. Assume that (H) holds. If there exists a real constant α ≥ 0 such
that

Φ(Ph(x), x) ≤ 1
KL

N∑

n=1

Φ(αh(fn(x)), fn(x))|Jfn
(x)|

for all h ∈ LΦ(Ω, V ) and almost all x ∈ Ω,

(12)
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then the operator P given by (2) satisfies P (LΦ(Ω, V )) ⊂ LΦ(Ω, V ), it is con-
tinuous and (8) holds.

Proof. Fix h ∈ LΦ(Ω, V ). As in the proof of Lemma 3.1 we conclude that
the functions Ph and Nfn

(·,Ω) are measurable for every n ∈ {1, . . . , N}. Ac-
cording to [9, Theorem 2 in Appendix 2 on page 68] (see also [22, page 323];
cf. [7, Theorem 2.5.4]) we deduce that both functions Φ(h(·), ·)Nfn

(·,Ω) and
Φ(Ph(·), ·) are also measurable for every n ∈ {1, . . . , N}. Then using (12) and
Theorem 2.3, we obtain

‖Ph‖LΦ(Ω,V ) = inf
{

λ > 0 :
∫

Ω

Φ
(

Ph(x)
λ

, x

)

dx ≤ 1
}

≤ inf

{

λ > 0 :
1

KL

N∑

n=1

∫

Ω

Φ
(α

λ
h(fn(x)), fn(x)

)
|Jfn

(x)| dx≤1

}

= inf

{

λ > 0 :
1

KL

N∑

n=1

∫

Ω

Φ
(α

λ
h(y), y

)
Nfn

(y,Ω) dy ≤ 1

}

≤ inf

{

λ > 0 :
1
L

N∑

n=1

∫

fn(Ω)

Φ
(α

λ
h(y), y

)
dy ≤ 1

}

≤ inf

{

λ > 0 :
∫

⋃N
n=1 fn(Ω)

Φ
(α

λ
h(y), y

)
dy ≤ 1

}

≤ α inf
{

η > 0 :
∫

Ω

Φ
(

h(y)
η

, y

)

dy ≤ 1
}

= α‖h‖LΦ(Ω,V ),

which completes the proof. �

Note that in condition (12) all functions in the space LΦ(Ω, V ) are involved,
which makes it a bit difficult to check. However, we can formulate a simple
condition that involves no function of the space LΦ(Ω, V ) and implies (12).

Remark 4.5. If

Φ(v, x) = Φ(v, fn(x)) for all n ∈ {1, . . . , N} and almost all x ∈ Ω (13)

and

|gn(x)| ≤ α min
{ |Jfn

(x)|
KL

,
1
N

}

for all n ∈ {1, . . . , N} and

almost all x ∈ Ω,

(14)

then (12) holds.

Proof. First observe that if α = 0, then (14) gives Ph(x) = 0 for almost all
x ∈ Ω, and hence (12) holds. Therefore, we can assume that α > 0.
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Fix x ∈ Ω such that Φ(0, x) = 0 and Φ(·, x) is convex and even. Then for
all v1, v2 ∈ V and a, b ∈ R with |a| + |b| ≤ 1 we have

Φ(av1 + bv2, x) = Φ(|a| sgn(a)v1 + |b| sgn(b)v2 + (1 − |a| − |b|)0, x)

≤ |a|Φ(sgn(a)v1, x) + |b|Φ(sgn(b)v2, x) + (1 − |a| − |b|)Φ(0, x)

= |a|Φ(v1, x) + |b|Φ(v2, x).

This jointly with (14), the non-negativity of Φ, and (13) gives

Φ(Ph(x), x) = Φ

(
N∑

n=1

gn(x)h(fn(x)), x

)

≤ 1
α

N∑

n=1

|gn(x)|Φ(αh(fn(x)), x)

≤ 1
KL

N∑

n=1

Φ(αh(fn(x)), x) |Jfn
(x)|

=
1

KL

N∑

n=1

Φ(αh(fn(x)), fn(x))|Jfn
(x)|

for almost all x ∈ Ω. �

Combining Lemma 4.4 and Theorems 4.2 and 1.2, we obtain the following
result.

Theorem 4.6. Assume that (H) holds and let h0 ∈ LΦ(Ω, V ). If (12) holds with
a real constant α ∈ [0, 1), then the elementary solution of Eq. (1) in LΦ(Ω, V )
exists, it is the unique solution of Eq. (1) in LΦ(Ω, V ) and

∥
∥
∥
∥
∥

∞∑

k=m

P kh0

∥
∥
∥
∥
∥

LΦ(Ω,V )

≤ αm

1 − α
‖h0‖LΦ(Ω,V ).

We now introduce an interesting and widely studied class of N -functions.

Definition 4.7. (see [14, Definitions 2.2]) A non-decreasing left-continuous and
convex function Ψ: [0,∞) → [0,∞] is said to be a Young function, if

lim
t→0+

Ψ(t) = Ψ(0) = 0 and lim
t→∞ Ψ(t) = ∞.

From now on the symbol Ψ is reserved for Young functions only.
It is easy to check that if Ψ is a strictly increasing Young function, then

the formula

Φ(v, x) = Ψ(‖v‖V )

defines an N -function. Therefore, we see that every function Ψ produces an
Orlicz space of the form

LΨ(Ω, V ) =
{

h ∈ MV :
∫

Ω

Ψ(ξ‖h(x)‖V ) dx < ∞ with some ξ > 0
}

.
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This space equipped with the Luxemburg norm

‖h‖LΨ(Ω,V ) = inf
{

λ > 0 :
∫

Ω

Ψ
(‖h(x)‖V

λ

)

dx ≤ 1
}

is complete by Theorem 4.2 (cf. [14, Definition 2.7]). Note that in general the
set S = {h ∈ MV :

∫
Ω

Ψ(‖h(x)‖V ) dx < ∞} is not a vector space (for an easy
example see e.g. [4, page 96]), however assuming an additional property on Ψ
the set S becomes a vector space (see e.g. [4, Theorem 3.4.13]).

Summarizing, we formulate the following result for the Orlicz spaces LΨ(Ω, V ).

Corollary 4.8. Assume that (H) holds and let h0 ∈ LΨ(Ω, V ). If (14) is satis-
fied with a real constant α ∈ [0, 1), then the elementary solution of Eq. (1) in
LΨ(Ω, V ) exists, it is the unique solution of Eq. (1) in LΨ(Ω, V ) and

∥
∥
∥
∥
∥

∞∑

k=m

P kh0

∥
∥
∥
∥
∥

LΨ(Ω,V )

≤ αm

1 − α
‖h0‖LΨ(Ω,V ).

Proof. It is enough to apply Theorem 4.6 and Remark 4.5 noting that Eq. 13
holds as Ψ does not depend on x. �

Finally note that since for every p ∈ (1,∞) the mapping “[0,∞) 
�→ tp”
is a Young function, it follows that Corollary 4.8 extends Theorem 3.3 in the
case where p ∈ (1,∞); cf. [4, Remark 3.4.18].
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[3] Cembranos, P., Mendoza, J.: Banach Spaces of Vector-Valued Functions. Lecture Notes
in Mathematics, vol. 1676. Springer, Berlin (1997)

[4] Edmunds, D.E., Desmond Evans, W.: Hardy Operators, Function Spaces and Embed-
dings. Springer Monographs in Mathematics, Springer, Berlin (2004)

[5] Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Pure and
Applied Mathematics (New York), 2nd edn. Wiley, New York (1999)

[6] Haj�lasz, P.: Change of variables formula under minimal assumptions. Colloq. Math.
64(1), 93–101 (1993)
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