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When are maps preserving semi-inner products linear?

Pawe�l Wójcik

Abstract. We observe that every map between finite-dimensional normed spaces of the same
dimension that respects fixed semi-inner products must be automatically a linear isometry.
Moreover, we construct a uniformly smooth renorming of the Hilbert space �2 and a con-
tinuous injection acting thereon that respects the semi-inner products, yet it is non-linear.
This demonstrates that there is no immediate extension of the former result to infinite
dimensions, even under an extra assumption of uniform smoothness.
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1. Introduction

It is an easy consequence of the polarisation identity that unitary maps be-
tween Hilbert spaces, that is, maps preserving the inner product, are auto-
matically linear. Since inner-product spaces are characterised by the inextri-
cable connection between the norm and the inner product, the aforementioned
fact does not have a canonical interpretation in the non-Hilbertian setting.
Nonetheless, natural approaches to extending Uhlhorn’s version of Wigner’s
theorem on symmetry transformations [5] are available in the Banach-space
setting, for example, in terms of Birkhoff–James orthogonality [1] or semi-inner
products [3]. In the present paper we focus on the latter approach.

Lumer [4] and Giles [2] proved that reminiscences of inner products are
available in arbitrary normed spaces as for every normed space X one may
find a pairing [ · | · ] thereon (a semi-inner product) that assumes scalar values,
is linear in the first variable, anti-homogeneous in the second variable, and the
following form of the Cauchy–Schwarz inequality holds:

∣
∣[x|y]

∣
∣ � ‖x‖ · ‖y‖ (x, y ∈ X)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-021-00829-3&domain=pdf
http://orcid.org/0000-0001-8527-012X


670 P. Wójcik AEM

with [x|x] = ‖x‖2. In particular, for each w ∈ X, [ · |w] ∈ X∗.
Semi-inner products are, in general, non-unique: a normed space X has

a unique semi-inner product if and only if it is smooth, that is every non-
zero vector x ∈ X admits a unique norming functional, that is, a norm-one
functional ϕx ∈ X∗ such that 〈ϕx, x〉 = ‖x‖. In the case where X is smooth,
we have

[x|y] = ‖y‖ · 〈ϕy, x〉 (x, y ∈ X). (1)

We observed in [6, Theorem 7] that if X is a non-Hilbertian finite-dimensional
space with dim X � 3 that is smooth, then there exists a space V of dimension
dim X−1 and a non-linear map f : V → X that preserves semi-inner products.
The map f may even be discontinuous.

The first result demonstrates that for X and Y having equal finite di-
mensions, without any additional hypotheses, a semi-inner product preserving
function between X and Y must be a linear isometry.

Theorem 1. Let X and Y be normed spaces with fixed semi-inner products
[ · | · ]X and [ · | · ]Y , respectively. Suppose that f : X → Y is a function such
that

[f(x)|f(y)]Y = [x|y]X (x, y ∈ X). (2)

If either
(a) X and Y have the same finite dimension, or
(b) X has a Schauder basis (ei) and (f(ei)) is a Schauder basis of Y ,
then f is a linear isometry.

The proof will be presented in the subsequent section. We highlight Theo-
rem 1 as clause (a) appears to be optimal in the case where no further assump-
tions on f are imposed in the light of the following blatant counterexample of
an analogous statement in infinite dimensions.

Theorem 2. There exists a uniformly smooth renorming X of the Hilbert space
�2 and a non-linear injection f : X → X such that

[f(x)|f(y)] = [x|y] (x, y ∈ X). (3)

Moreover, f may be chosen to be either continuous or discontinuous.

Since X is smooth, the choice of the semi-inner product is unambiguous.
Regrettably, Theorem 2 refutes a side result from a recent paper by Ilǐsević
and Turnšek [3, Proposition 2.4(ii)], where it was claimed that if X is a smooth
Banach space and f : X → X is a (possibly non-surjective) map satisfying (3),
then f is necessarily a linear isometry. Their proof contains a flaw as explained
in Remark 6. However, the main results in [3] are dealing with surjective func-
tions between smooth normed spaces which satisfy the Wigner equation. It can
be easily verified (see [3, Proposition 2.4(i)]) that, even in arbitrary normed
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spaces, the additional assumption of surjectivity forces semi-inner product pre-
serving functions to be linear.

Our notation and terminology are standard. We consider normed spaces
over the field K of real or complex numbers. A normed space X is strictly
convex if the unit sphere of X does not contain non-trivial line segments. We
denote by 〈·, ·〉 the duality pairing between a normed space X and its dual
X∗. When X is an inner-product space, we denote by 〈·|·〉 the underlying
inner product. A normed space is uniformly smooth, if for every ε > 0 there
exists δ > 0 such that if x, y ∈ X are vectors such that ‖x‖ = 1 and ‖y‖ � δ
then ‖x+y‖+‖x−y‖ � 2+ε‖y‖. Uniformly smooth spaces are, in particular,
smooth. For the sake of completeness, we record the following simple property
of smooth spaces.

Lemma 3. Let X be a smooth normed space. If u,w ∈ X are non-zero vectors
and ‖u + w‖ = ‖u‖ + ‖w‖, then ϕu = ϕw.

Proof. Let u,w ∈ X be vectors with ‖u + w‖ = ‖u‖ + ‖w‖. It is clear that
‖u + w‖ = ϕu+w(u + w). So, it follows that

‖u‖ + ‖w‖ = ‖u + w‖ = ϕu+w(u + w) = ϕu+w(u) + ϕu+w(w)
� |ϕu+w(u) + ϕu+w(w)| � |ϕu+w(u)| + |ϕu+w(w)|
� ‖u‖ + ‖w‖.

Thus ϕu+w(u) + ϕu+w(w) = ‖u‖ + ‖w‖. Moreover, we know that |ϕu+w(u)| �
‖u‖ and |ϕu+w(w)| � ‖w‖. This clearly forces ϕu+w(u) = ‖u‖ and ϕu+w(w) =
‖w‖. On the other hand, both ϕu(u) = ‖u‖ and ϕw(w) = ‖w‖ hold. Since X
is smooth, we get ϕu+w = ϕu and ϕu+w = ϕw. Hence ϕu = ϕw. �

2. Proofs of Theorems 1 and 2

We start by proving Theorem 1. For the sake of brevity, we shall use the symbol
[ · | · ] for (fixed) semi-inner products both in X and Y , hoping it will not lead
to unnecessary confusion. In order to prove the theorem, it suffices to show
that f is linear.

Proof of Theorem 1. We will prove clause (b) first. Suppose that (ei) is a
Schauder basis of X and (f(ei)) is a Schauder basis of Y . The proof of the case
where X is finite-dimensional (so that a Schauder basis is just an ordinary alge-
braic basis) is mutatis mutandis the same, so we will keep writing infinite series
bearing in mind that the proof works equally well for the finite-dimensional
case with ∞ replaced by dim X).

We will show that for any scalars β1, β2, . . .

f

( ∞∑

i=1

βiei

)

=
∞∑

i=1

βif(ei)
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as long as the series
∑∞

i=1 βiei converges in X.
Fix x ∈ X. Since (f(ei))∞

i=1 is a basis, there are uniquely determined scalars
β1, β2, . . . ∈ K such that

f(x) =
∞∑

i=1

βif(ei).

Let xm =
∑m

i=1 βiei. It is enough to show that xm → x as m → ∞. Let us
define the numbers εm := ‖f(x) − ∑m

i=1 βif(ei)‖. Clearly, εm → 0 as m → ∞.
For every unit vector u ∈ X, we have 1 = ‖u‖ = ‖f(u)‖. Thus, for every m we
have

∣
∣
∣
∣
∣

[

f(x) −
m∑

i=1

βif(ei)
∣
∣
∣f(u)

] ∣
∣
∣
∣
∣
�

∥
∥
∥f(x) −

m∑

i=1

βif(ei)
∥
∥
∥ · ‖f(u)‖ � εm · 1.

Using the linearity of semi-inner products in the first variable, it follows that
∣
∣
∣
∣
∣
[f(x)|f(u)] −

[
m∑

i=1

βif(ei)
∣
∣
∣f(u)

] ∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
[f(x)|f(u)] −

m∑

i=1

βi [f(ei)|f(u)]

∣
∣
∣
∣
∣
� εm.

Combining the above inequality with (2) yields
∣
∣
∣
∣
∣
[x|u] −

m∑

i=1

βi [ei|u]

∣
∣
∣
∣
∣
� εm.

Consequently,
∣
∣
∣
∣
∣

[

x −
m∑

i=1

βiei

∣
∣
∣u

] ∣
∣
∣
∣
∣
� εm,

which means that
∣
∣ [x − xm|u]

∣
∣ � εm. Since

{

[ · |w] ∈ X∗ : ‖w‖ = 1, w ∈ X
}

is a 1-norming subset in the dual ball of X∗, we can conclude that we have
‖x − xm‖ � εm, so xm → x. We have thus proved that f(

∑∞
i=1 βiei) =

∑∞
i=1 βif(ei). In particular, f is linear, hence also isometric because it pre-

serves the semi-inner products.
Now, in order to prove clause (a), it is enough to show that f maps linearly

independent sets to linearly independent sets.
Let n = dimX. Fix a basis {b1, . . . , bn} for X. We claim that the set

{f(b1), . . . , f(bn)} is linearly independent in Y . To see this, suppose that
∑n

k=1 αkf(bk) = 0. It follows from (2) that
∥
∥
∥
∥
∥

n∑

k=1

αkbk

∥
∥
∥
∥
∥

2

=

[
n∑

k=1

αkbk

∣
∣
∣

n∑

k=1

αkbk

]

=
n∑

k=1

αk

[

bk

∣
∣
∣

n∑

k=1

αkbk

]

=
n∑

k=1

αk

[

f(bk)
∣
∣
∣f

(
n∑

k=1

αkbk

)]
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=

[
n∑

k=1

αkf(bk)
∣
∣
∣f

(
n∑

k=1

αkbk

)]

=

[

0
∣
∣
∣f

(
n∑

k=1

αkbk

)]

= 0.

Hence
∑n

k=1 αkbk = 0. Since the vectors b1, . . . , bn are linearly independent,
we have α1 = . . . = αn = 0. This means that the vectors f(b1), . . . , f(bn)
are linearly independent too. Consequently, {f(b1), . . . , f(bn)} is a basis for Y .
Thus we may apply (b), and the proof is complete. �

Before we prove Theorem 2, we need to introduce the main building block
that we shall use to construct the sought renorming of �2.

Let (Z, ‖ · ‖o) be a two-dimensional normed space that is smooth but not
strictly convex. Then there are distinct vectors u,w ∈ Z such that the line
segment joining u and w lies in the unit sphere SZ of Z. Without loss of
generality, we may assume that Z = K

2 as a vector space and u = (−c, 1),
w = (c, 1) for some real number 0 < c < 1. Thus (0, 1) ∈ SZ . Moreover,
without loss of generality we may assume that (1, 0) ∈ SZ .

Lemma 4. Let x1 ∈ K and η ∈ (0, c). Then ‖(ηx1, x1)‖o = |x1|.
Proof. Since 0 < η < c, we have η+c

2c ∈ [0, 1] and

(η, 1) =
(

1 − η + c

2c

)

u +
η + c

2c
w ∈ conv{u,w} ⊆ SZ .

Thus (η, 1) ∈ SZ , i.e., ‖(η, 1)‖o = 1. Since (0, 1) ∈ SZ , ‖(0, 1)‖o = 1. Therefore
‖(ηx1, x1)‖o = |x1| · ‖(η, 1)‖o = |x1| · 1 = |x1|. �

Proof of Theorem 2. We shall consider the space X = K ⊕2 �2(Z), the �2-sum
of infinitely many copies of Z and the one-dimensional space. The norm in X
is thus given by

‖x‖ :=
√

|x1|2 +
∑∞

k=1

∥
∥(x2k, x2k+1)

∥
∥
2

o
, (4)

where x =
(

x1, (x2, x3), (x4, x5), (x6, x7), . . .
) ∈ X.

The space X is uniformly smooth because Z is smooth (uniformly smooth
as it is finite-dimensional) and uniform smoothness passes to �2-sums of infin-
itely many copies of a uniformly smooth space [7, Corollary 4.9]. Since Z is
isomorphic to the two-dimensional Hilbert space, X is isomorphic to �2(�22),
which is isometric to �2.

For a number η ∈ (0, c), let hη : X → X be a linear map given by

hη (x1, (x2, x3) , (x4, x5) , . . .) := (0, (ηx1, x1) , (x2, x3) , (x4, x5) , . . .) . (5)
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Applying Lemma 4 to (4) we deduce that hη is a linear isometry. Consequently,
as in [3, Corollary 2.5 (ii)⇒(i)],

[hη(x)|hη(y)] = [x|y] (x, y∈X, η ∈ (0, c)) . (6)

Combining (1) with (6) we may rearrange (6) as
∥
∥hη(y)

∥
∥

o
· 〈ϕhη(y), hη(x)〉 = [x|y] (x, y ∈ X, η ∈ (0, c)) . (7)

Moreover, putting y in place of x in (6) we get

‖hη(y)‖o = ‖y‖o

(

η ∈ (0, c)
)

. (8)

We are now ready to construct the sought non-linear map that preserves
semi-inner products.

For this, we fix a function γ : [0,∞) → [0,∞) with γ(0) = 0 such that
0 < γ(t) < c (t ∈ (0,∞)) and γ is not constant on (0,∞). Next we choose a
function η : X → [0, c) by

η(x) := γ
(‖x‖)

(x ∈ X).

Then, we define a map f : X → X by the formula

f (x1, (x2, x3) , (x4, x5) , . . .) := (0, (η(x)x1, x1) , (x2, x3) , (x4, x5) , . . .) .

Then we may recognise that

f(x) = hη(x)(x) (x ∈ X). (9)

Consequently, f fails to be linear. However, in the case where
• γ is continuous and non-constant on (0,∞), f is continuous;
• γ is discontinuous on (0,∞), f is discontinuous too.
We claim that for all x, y ∈ X we have [f(x)|f(y)] = [x|y]. For this, fix

x, y ∈ X and consider the associated maps hη(y), hη(x) : X → X. Applying
again Lemma 4 to (4) and (5), we conclude that

∥
∥hη(y)(y) + hη(x)(y)

∥
∥

o
=

∥
∥hη(y)(y)

∥
∥

o
+

∥
∥hη(x)(y)

∥
∥

o
.

It follows from Lemma 3 that ϕhη(y)(y) = ϕhη(x)(y), i.e.,

〈ϕhη(y)(y), w〉 = 〈ϕhη(x)(y), w〉 (w ∈ X). (10)

Consequently,

[f(x)|f(y)]
(1)
=

∥
∥f(y)

∥
∥

o
·〈ϕf(y), f(x)〉 (9)

=
∥
∥hη(y)(y)

∥
∥

o
·〈ϕhη(y)(y), hη(x)(x)〉

(10)
=

∥
∥hη(y)(y)

∥
∥

o
·〈ϕhη(x)(y), hη(x)(x)〉

(8)
= ‖y‖o ·〈ϕhη(x)(y), hη(x)(x)〉
(8)
=

∥
∥hη(x)(y)

∥
∥

o
·〈ϕhη(x)(y), hη(x)(x)〉 (7)

= [x|y] .

This shows that f : X → X is indeed a non-linear map preserving semi-inner
products. �



Vol. 96 (2022) When are maps preserving semi-inner products linear? 675

Remark 5. In the above construction one may consider the �p-sums for p ∈
(1,∞) instead of the �2-sum. This will lead to a renorming of �p on which one
may find a non-linear injection preserving the (unique) semi-inner products.

Remark 6. In the proof of [3, Proposition 2.4], the authors postulated the
following inclusion:

{

ξϕf(z) ∈ X∗ : z ∈ X, ξ ∈ C
} ⊇ {ξϕf(z) ◦ f ∈ X∗ : z ∈ X, ξ ∈ C}, (11)

where ϕf(z) ◦ f = ϕz (see [3, p. 1265, third line from the bottom]), which fails
already in the Hilbert-space setting.

To see this, let us consider the Hilbert space �2. The only semi-inner product
on �2 is the inner product 〈·|·〉 itself. We consider the unilateral shift on �2,
which is a non-surjective isometry f : �2 → �2; it is given by the formula

f(x) = f (x1, x2, x3, . . .) = (0, x1, x2, x3, . . .)
(

x = (xj)∞
j=1 ∈ �2

)

.

It is easy to see that 〈f(x)|f(y)〉 = 〈x|y〉 and for z ∈ �2 \ {0} we have

ξ
(

ϕf(z) ◦ f
)

(·) (1)
=

ξ

‖f(z)‖ 〈f(·)|f(z)〉 =
ξ

‖z‖ 〈·|z〉 .

Therefore
{

ξϕf(z) ◦ f ∈ (

�2
)∗ : z ∈ �2, ξ ∈ C

}

=
(

�2
)∗. On the other hand,

{

ξϕf(z) ∈ (

�2
)∗ : z ∈ �2, ξ ∈ C

}

=
{

ξ

‖f(z)‖ 〈·|f(z)〉 ∈ (

�2
)∗ : z ∈ �2, ξ ∈ C

}

=
{

〈·|f(w)〉 ∈ (

�2
)∗ : w ∈ �2

}

=
{

〈·|w〉 ∈ (

�2
)∗ : w = (0, w1, w2, . . .) ∈ �2

}

�
(

�2
)∗

which refutes (11).
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