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On curves with circles as their isoptics

Waldemar Cieślak and Witold Mozgawa

Abstract. In the present paper we describe the family of all closed convex plane curves
of class C1 which have circles as their isoptics. In the first part of the paper we give a
certain characterization of all ellipses based on the notion of isoptic and we give a geometric
characterization of curves whose orthoptics are circles. The second part of the paper contains
considerations on curves which have circles as their isoptics and we show the form of support
functions of all considered curves.
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1. Introduction

In the present paper we consider the family M of all closed convex plane curves
of class C1. We denote by p a support function of the curve C ∈ M with respect
to the origin O. Then the curve C has the following parametrization

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π], (1.1)

where p′ denotes the derivative of the support function p, see [46] (Fig. 1).
Let us fix α ∈ (0, π). Let Cα be the locus of vertices of a fixed angle π − α

formed by two tangent lines of the curve C. The curve Cα will be called an
α-isoptic of C, see [1].

The curve Cα is given by the formula

zα(t) = p(t)eit +
p(t + α) − p(t) cos α

sin α
ieit for t ∈ [0, 2π], (1.2)

see [2,3].
With each curve C ∈ M we associate a certain family C∗ consisting of lines

constructed in the following way.
We fix a chord of the curve C such that its tangents at points A,B ∈ C

intersect. Let us denote by U the intersection point of these tangents and by S
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Figure 1. α-isoptic Cα of C

Figure 2. A line belonging to the family C∗

the midpoint of the segment AB. The line passing through U and S belongs to
the family C∗. Moreover, given an angle α ∈ (0, π) denote by C∗

α the subfamily
of C∗ such that �AUB = π − α (Fig. 2).

In the first part of the paper we give the following characterization of
ellipses.
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Theorem 1.1. Let α ∈ (0, π) be a fixed angle such that α
π is a rational number

and α �= π
2 . A curve C ∈ M is an ellipse if and only if all lines from C∗

α are
concurrent.

In the second part of the paper using some considerations from the previous
sections we find curves with special isoptics called orthoptics. We recall a
definition of an orthoptic curve. A π

2 -isoptic of the curve C is said to be an
orthoptic of C. The ellipses give an example of curves whose orthoptics are
circles. We present there a certain characterization of a class of curves with
circles as their orthoptics. Moreover, we find explicitly a support function of
a curve C ∈ M, different from a circle, which has a circle as its isoptic. These
curves were considered in a very interesting paper [32] and in a paper [37] by
the second author.

We would like to emphasize that all the papers in the bibliography, that is
[1–10,12–45,47,49–56], with the exception of Santaló’s and Su’s books, [46,48],
and the paper by Cyr, [11], present a wide spectrum of results in isoptics theory
and are included here for the interested reader to have a complete overview of
isoptics theory.

2. Some property of ellipses

In this section we prove the simple part of Theorem 1.1, namely:
If C is an ellipse then all lines of the family C∗ intersect in the center of

this ellipse.

Proof. Using the properties of affine transformations the ellipse C can be trans-
formed into a circle and for the circle the mentioned property is very easy to
establish. �

3. Some characterization of ellipses

We will now deal with the second part of Theorem 1.1, namely:
If C ∈ M and all lines of the family C∗

α are concurrent then C is an ellipse.

Proof. The proof of this fact is divided into steps.
Step 1. Let C ∈ M and all lines of the family C∗

α be concurrent. This common
point O we take as the origin of the coordinate system and the support function
p in the Eq. (1.1) is determined with respect to this point.

Each point zα(t) of a fixed α-isoptic determines a chord of the curve C
joining the points z(t) and zα(t). The midpoint of that chord we denote by
s(t). The formula (1.1) yields

2s(t) =z(t) + z(t + α) = (p(t) + p(t + α) cos α − p′(t + α) sin α)eit

+ (p′(t) + p(t + α) sin α + p′(t + α) cos α)ieit.
(3.1)
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From our assumptions the points O, s(t), zα(t) lie on the same line (Fig.3),
that is we have

det[s(t), zα(t)] = 0. (3.2)

Thus substituting the formulae (1.2) and (3.1) into (3.2) we get the following
equation for the support function p, namely

(p2(t + α) − p2(t)) cos α − (p(t + α)p′(t + α) + p(t)p′(t)) sin α = 0. (3.3)

Substituting p =
√

f we get a simpler condition for f than (3.3)

2(f(t + α) − f(t)) cos α − (f ′(t + α) + f ′(t)) sin α = 0. (3.4)

Step 2.

Now, we develop the function f in the Fourier series. Let

f(t) =
a0

2
+

∞∑

n=1

(an cos nt + bn sin nt). (3.5)

From the formula (3.5) we obtain

f ′(t) =
∞∑

n=1

(nbn cosnt − nan sinnt),

f(t + α) =
a0

2
+

∞∑

n=1

[(an cosnα + bn sinnα) cosnt + (bn cosnα − an sinnα) sinnt] ,

f ′(t + α) =
∞∑

n=1

[n(bn cosnα − an sinnα) cosnt − n(an cosnα + bn sinnα) sinnt] .

Figure 3. Points z(t), z(t + α), zα(t), s(t)
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Hence we get
f(t + α)− f(t)

=
∞∑

n=1

[(an(cosnα − 1) + bn sinnα) cosnt + (−an sinnα + bn(cosnα − 1)) sinnt] ,

f ′(t + α) + f ′(t)

=
∞∑

n=1

[n(−an sinnα + bn(1 + cosnα) cosnt − n(an(1 + cosnα) + bn sinnα) sinnt] .

The above relations substituted into (3.4) yield the following system of equa-
tions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[2(cos nα − 1) cos α + n sin nα sin α]an

+[2 sin nα cos α − n(1 + cos nα) sin α]bn = 0
[−2 cos α sin nα + n(1 + cos nα) sin α]an

+[2(cos nα − 1) cos α + n sin nα sin α]bn = 0.

(3.6)

Since the determinant of this system is equal to

[2(cos nα − 1) cos α + n sin nα sin α]2 + [2 sin nα cos α − n(1 + cos nα) sin α]2,

for the existence of a non-zero solution, the following system of equations must
be satisfied {

2(cos nα − 1) cos α + n sin nα sin α = 0,

2 sin nα cos α − n(1 + cos nα) sin α = 0,
(3.7)

hence
⎧
⎪⎪⎨

⎪⎪⎩

cos nα =
4 cos2 α − n2 sin2 α

4 cos2 α + n2 sin2 α
,

sin nα =
4n sin α cos α

4 cos2 α + n2 sin2 α
.

(3.8)

Now, arguing as Jerónimo-Castro, Rojas-Tapia, Velasco-Garćıa and Yee-
Romero in [22], we prove that f has only the coefficients a0, a2 and b2.

From the first equation of (3.7) we obtain that

n sin nα sin α = 2(1 − cos nα) cos α,

2n sin
nα

2
cos

nα

2
sin α = 4

(
sin

nα

2

)2

cos α,

which gives
n

2
tan α = tan

nα

2
. (3.9)

Now, we will prove that there is no integer number n > 2 such that the
Eq. (3.9) is fulfilled. In order to do this, we shall prove two lemmas. The first
lemma below is inspired by Lemma 3 in [22].
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Lemma 3.1. Suppose α ∈ (
0, π

2

) ∪ (
π
2 , π

)
. If there exists a natural number

n > 2 such that the Eq. (3.9) is satisfied then

(n + 2) sin
(n − 2)α

2
= (n − 2) sin

(n + 2)α
2

.

Proof. We know that for any complex number z ∈ C \ {(
k + 1

2

)
π : k ∈ Z

}
, it

holds that

tan z = i
e−iz − eiz

eiz + e−iz
.

By the assumptions of the lemma tan α and tan nα
2 are simultaneously

finite. The condition of the lemma in these terms is
e−i n

2 α − ei n
2 α

ei n
2 α + e−i n

2 α
=

n

2
· e−iα − eiα

eiα + e−iα
.

From this equality, after some simplifications, we obtain

(n + 2)
(
ei(n−2

2 )α − e−i(n−2
2 )α

)
= (n − 2)

(
ei(n+2

2 )α − e−i(n+2
2 )α

)
.

Since sin z = 1
2i

(
eiz − e−iz

)
, we have

(n + 2) sin
(n − 2)α

2
= (n − 2) sin

(n + 2)α
2

.

�

The following lemma is due to V. Cyr.

Lemma 3.2. ([11], Lemma 3) If α ∈ (
0, π

2

)∪(
π
2 , π

)
is such that α

π is a rational
number, and k and m are integer numbers such that sin mα �= 0 then

sin kα

sin mα

is either −1, 0, 1 or irrational.

Using Lemmas 3.1 and 3.2 we prove the following lemma inspired by Lemma
5 in [22].

Lemma 3.3. If α ∈ (
0, π

2

) ∪ (
π
2 , π

)
is such that α

π is a rational number then
there is no integer number n > 2 such that

n

2
tan α = tan

nα

2
.

Proof. Suppose α
π is a rational number and there is an integer number n > 2

such that n
2 tan α = tan nα

2 . This condition implies, by Lemma 3.1, that

sin (n−2)α
2

sin (n+2)α
2

=
n − 2
n + 2

.
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From this condition we have that sin (n+2)α
2 �= 0. Moreover, since n > 2, we

have that the fraction
n − 2
n + 2

is different from −1, 0, 1, hence by Lemma 3.2 we

have that

sin (n−2)α
2

sin (n+2)α
2

must be an irrational number, which is a contradiction since n−2
n+2 cannot be

an irrational number. We conclude that there is no integer number n > 2 such
that n

2 tan α = tan nα
2 if α

π is a rational number. �

Now, if α
π is a rational number (different from 1

2 ), from Lemma 3.3 we have
that there is no integer number n > 2 such that n

2 tan α = tan nα
2 . It only

remains to analyze the cases n = 1 and n = 2. When n = 1, the only solution
of the Eq. (3.8) is α = 0, which is not a permitted value. For n = 2, the Eq.
(3.8) become identities and so a2 and b2 can be chosen arbitrarily.

Finally, the function f must be of the following form

f(t) =
a0

2
+ a2 cos 2t + b2 sin 2t,

where a0 > 2
√

a2
2 + b22, since it has to have a positive value.

The case α = π
2 will be analyzed in Theorem 4.1 below.

Step 3.
We consider the function

p(t) =
√

a0

2
+ a2 cos 2t + b2 sin 2t, (3.10)

such that

a0 > 2
√

a2
2 + b22. (3.11)

First we note that the condition (3.11) guarantees that a0
2 +a2 cos 2t+b2 sin 2t >

0. On the other hand we have 4p3(p+ p′′) = a2
0 − 4a2

2 − 4b22 > 0. The condition
p + p′′ > 0 guarantees that p is a support function. In this part of the proof
we show that the function p is a support function of an ellipse. To this aim we
consider a conic given by the equation

Ax2 + 2Bxy + Cy2 = −F. (3.12)

Putting

a = −A

F
, b = −B

F
, c = −C

F

we rewrite the Eq. (3.12) in the form

ax2 + 2bxy + cy2 = 1, (3.13)

which is an ellipse if and only if ac − b2 > 0. This ellipse has its center at
(0, 0) so it is always a rotated ellipse in the canonical position. After some
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straightforward calculations one gets a support function of this ellipse with
respect to the origin O in the form

p̃(t) =

√
c

ac − b2
cos2 t − 2b

ac − b2
sin t cos t +

a

ac − b2
sin2 t. (3.14)

We are going to show that p = p̃. We can find unique coefficients a, b, c with
ac − b2 > 0 giving the support function (3.14) of an ellipse. It is easy to see
that

p(t) =

√
1
2
(a0 + 2a2) cos2 t + 2b2 sin t cos t +

1
2
(a0 − 2a2) sin2 t. (3.15)

Comparing the coefficients in (3.15) and (3.14) we get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (a0 + 2a2) =

c

ac − b2
,

b2 =
−b

ac − b2
,

1
2 (a0 − 2a2) =

a

ac − b2
.

(3.16)

Hence we have immediately
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a0

2
=

a + c

2(ac − b2)
,

a2 =
c − a

2(ac − b2)
,

b2 =
−b

ac − b2
.

(3.17)

Note that

ac − b2 =
4

a2
0 − 4a2

2 − 4b22
.

Thus support functions given by the formula (3.10), where a0 > 2
√

a2
2 + b22

describe only ellipses. �

4. Curves whose orthoptics are circles

In this section we will consider a subfamily M (
π
2

)
of the family M defined as

follows

M
(π

2

)
= {C ∈ M : Cπ

2
is a circle}. (4.1)

Let a curve C ∈ M (
π
2

)
be given by (1.1). We denote by s(t) the midpoint

of the segment with ends at z(t) and z
(
t + π

2

)
. We present here a certain

geometric characterization of the family M (
π
2

)
.

Theorem 4.1. A curve C ∈ M belongs to M (
π
2

)
if and only if for each fixed t

the points s(t), zπ
2
(t) and the origin O lie on the same line.
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Proof. Note that

2 det[zπ
2
(t), s(t)] = det

[
zπ

2
(t), z(t) + z

(
t +

π

2

)]

= det
[
p(t)eit + p

(
t +

π

2

)
ieit, p(t)eit + p′(t)ieit

+p
(
t +

π

2

)
ieit − p′

(
t +

π

2

)
eit

]

= p(t)p′(t) + p
(
t +

π

2

)
p′

(
t +

π

2

)

=
1
2

(
p2(t) + p2

(
t +

π

2

))′
=

1
2

(|zπ
2
(t)|2)′

,

i.e.

4 det[zπ
2
(t), s(t)] =

(|zπ
2
(t)|2)′

. (4.2)

From (4.2) it follows that s(t), zπ
2
(t), O lie on the same line if and only if the

orthoptic is a circle. �

Let us consider a class F of all positive valued Fourier series of the form

a0

2
+

∞∑

k=0

[a2+4k cos(2 + 4k)t + b2+4k sin(2 + 4k)t]. (4.3)

We recall that the support function p of C ∈ M (
π
2

)
satisfies the following

equation

p2(t) + p2
(
t +

π

2

)
= r2, (4.4)

where r is the radius of the orthoptic, see [32].
We develop the function p2 in the Fourier series

p2(t) =
a0

2
+

∞∑

n=0

[an cos nt + bn sin nt]. (4.5)

Using the calculations from Step 2 we get

p2(t) + p2
(
t +

π

2

)

= a0 +
∞∑

n=0

[(
an

(
cos

nπ

2
+ 1

)
+ bn sin

nπ

2

)
cos nt

+
(
−an sin

nπ

2
+ bn

(
cos

nπ

2
+ 1

))
sin nt

]
.

Hence we have r2 = a0 and
nπ

2
= π+2kπ, that is n = 2+4k for k = 0, 1, 2, . . .

Finally the Fourier series of p2 belongs to F .
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In the paper [32] there was given an example of a support function of a
curve C ∈ M whose orthoptic is a circle, namely

p(t) =
√

a sin2 3t + b cos2 9t + c.

Note that here we have

p2(t) = a sin2 3t + b cos2 9t + c =
a

2
(1 − cos 6t) +

b

2
(1 + cos 18t) + c

=
1
2
(a + b + 2c) +

a

2
cos 6t +

b

2
cos 18t,

which is in line with (4.3)(Fig.4).
On the other hand with respect to (4.4) we may take p(t) = r cos h(t)

and p
(
t + π

2

)
= r sin h(t). These formulas imply that the Fourier series of

the function h belongs to F , where a0 = π
2 . We note here that Green in [19]

introduced a curve C ∈ M with the support function p(t) = cos
(

π
4 + k sin 2t

)

where k is sufficiently small. We will develop this idea in a general setting in
the next section.

From the above considerations it follows that all curves of the family M (
π
2

)

can be constructed using the Fourier series of the class F . To this aim we
formulate the following theorem.

Theorem 4.2. Let f ∈ F . Each function
(a) p(t) =

√
f(t),

(b) p(t) = cos f(t),

Figure 4. Circle of radius
√

45 is the orthoptic of the curve

C with p(t) =
√

45
2 + cos 6t
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(c) p(t) = sin f(t),
such that p(t) > 0 and p(t) + p′′(t) > 0 is a support function of some curve
C ∈ M (

π
2

)
, and conversely.

5. Curves whose isoptics are circles

In this section we extend the results from the previous section to the general
case. Our goal is to describe all curves C ∈ M possessing a circle as one of
its isoptics. Note that such curves were called curves of generalized constant
width in the paper [37].

Now, we will consider a subfamily M(α, r) of M defined as follows

M(α, r) = {C ∈ M : Cα is a circle of radius r}. (5.1)

We fix a curve C ∈ M(α, r). From Theorem 3.1 of [37] we know that the
Steiner centroid O of C and the center of the circle coincide. Thus we assume
that the origin of the coordinate system is chosen at O, so the center of this
circle is (0, 0). Taking formula (1.2) into account we see that there should be

⎧
⎨

⎩
p(t) = r sin h(t),
p(t + α) − p(t) cos α

sin α
= r cos h(t),

(5.2)

for some non-constant 2π-periodic function h. Thus substituting the first for-
mula into the second one we get

sin h(t + α) = sin(h(t) + α).

Thus either h(t + α) − h(t) = α or h(t + α) + h(t) = π − α. The first case is
impossible since the Fourier expansion of the left hand side has no constant
term and this implies α = 0. If we substitute the Fourier expansion of h(t) =
a0
2 +

∞∑
n=0

[an cos nt + bn sin nt] into the second formula then we obtain

a0 +
∞∑

n=0

[(an cos nα + bn sin nα + an) cos nt

+(bn cos nα − an sin nα + bn) sin nt] = π − α.

Then we have

a0 = π − α (5.3)

and {
(cos nα + 1)an + sin nα · bn = 0,

− sin nα · an + (cos nα + 1)bn = 0,
(5.4)

where the determinant of this system of equations is equal to 2(1 + cos nα).
Thus in order to have the non-zero solutions cosnα should be equal to −1, so
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α = 1+2k
n π, for a natural k, such that 0 < 1+2k

n < 1. Thus the possible angles
α are rational multiples of π, and α = l

j π, where l, j = 1, 2, . . ., l < j and l is
odd. Then l

j = 1+2k
n and n = j 1+2k

l for k = 0, 1, 2, . . ., so

h(t) =
π − α

2
+

∞∑

k=0

(aj(1+2k) cos j(1 + 2k)t + bj(1+2k) sin j(1 + 2k)t).

Moreover, the coefficients of this series should be such that p(t) = r sin h(t) > 0
and p(t) + p′′(t) > 0. Summing up our considerations we have the following
theorem.

Theorem 5.1. Let α = l
j π be an angle, where l is odd, l and j are relatively

prime, l < j and l, j = 1, 2, . . .. Then each function

p(t) = r sin

(
π − α

2
+

∞∑

k=0

(aj(1+2k) cos j(1 + 2k)t + bj(1+2k) sin j(1 + 2k)t)

)
,

(5.5)

such that p(t) > 0 and p(t) + p′′(t) > 0 is a support function of some curve
C ∈ M(α, r), and conversely.
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