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Abstract. The purpose of this paper is to prove that if on a commutative hypergroup an
exponential monomial has the property that the linear subspace of all sine functions in
its variety is one dimensional, then this exponential monomial is a linear combination of
generalized moment functions.
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1. Introduction

A hypergroup is a locally compact Hausdorff space X equipped with an involu-
tion and a convolution operation defined on the space of all bounded complex
regular measures on X. For the formal definition, historical background and
basic facts about hypergroups we refer to [1]. In this paper X denotes a locally
compact hypergroup with identity element o, involutionq, and convolution ∗.
In fact, the quadruple (X, o,q, ∗) is what we should call a hypergroup, but for
the sake of simplicity we shall call X a hypergroup. In this paper we shall
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consider commutative hypergroups only, hence we always suppose that X is a
locally compact commutative hypergroup.

Given x in X we denote the point mass with support the singleton {x} by
δx which is a probability measure on X, and so is δx ∗ δy whenever x, y are in
X. For a continuous function h : X → C the integral∫

X

h(t)d(δx ∗ δy)(t)

will be denoted by h(x ∗ y). Clearly, h(x ∗ y) is the mathematical expectation
of the random variable h on the probability space (X,B, δx ∗ δy), B being the
σ-algebra of all Borel subsets of X. Given y in X the function x �→ h(x ∗ y) is
the translate of h by y. A comprehensive monograph on the subject is [3].

A set of continuous complex valued functions on X is called translation
invariant, if it contains all translates of its elements. A linear translation in-
variant subspace of all continuous complex valued functions is called a variety,
if it is closed with respect to uniform convergence on compact sets. The small-
est variety containing the given function h is called the variety of h, and is
denoted by τ(h). Clearly, it is the intersection of all varieties including h. A
continuous complex valued function is called an exponential polynomial, if its
variety is finite dimensional. The simplest nonzero exponential polynomial is
the one having one dimensional variety: it consists of all constant multiples of
a nonzero continuous function. If we normalize that function by taking 1 at o
then we have the concept of an exponential. Recall that m is an exponential on
X if it is a non-identically zero continuous complex-valued function satisfying
m(x∗y) = m(x)m(y) for each x, y in X and s is an m-sine function on X if it is
a continuous complex-valued function fulfilling s(x∗y) = s(x)m(y)+m(x)s(y)
for each x, y in X.

By the commutativity of the hypergroup every nonzero finite dimensional
variety contains an exponential. In accordance with [4], an exponential poly-
nomial is called an m-exponential monomial if its variety contains only the
exponential m. Clearly, m is an m-exponential monomial. We define the de-
gree of exponential monomials as follows. Exponential monomials having one
dimensional variety have degree 0, and the degree of an exponential monomial
ϕ is n ≥ 1, if the degree of the exponential monomial x �→ ϕ(x∗y)−m(y)ϕ(x)
is n − 1. For instance, nonzero m-sine functions have degree 1.

For any nonnegative integer N the continuous function ϕ : X → C is called
a generalized moment function of order N, if there exist complex valued con-
tinuous functions ϕk : X → C such that ϕN = ϕ and

ϕk(x ∗ y) =
k∑

j=0

(
k

j

)
ϕj(x)ϕk−j(y)

holds for all k = 0, 1, . . . , N and for all x, y in X. We say that the functions
(ϕk)k∈{0,1,...,N} form a generalized moment function sequence of order N. For
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the sake of simplicity, in this paper we shall omit the adjective “generalized”
and we refer to moment functions and moment function sequences. We note
that in [2], a more general concept of moment function sequences was intro-
duced.

Observe that ϕ0 is an exponential on the hypergroup X. In this case we say
that ϕ0 generates the given moment function sequence of order N, and that
the moment functions in this sequence correspond to ϕ0. Clearly, a moment
function of order 1 corresponding to the exponential m is an m-sine function.
Given the exponential m, all m-sine functions form a linear space.

Important examples of exponential monomials are provided by the moment
functions. Clearly, every moment function corresponding to the exponential m
is an m-exponential monomial. In particular, if the order of a generalized
moment function is N , then it is an exponential monomial of degree at most
N .

Exponential monomials are the basic building blocks of spectral synthesis.
We say that a variety is synthesizable if all exponential monomials in the variety
span a dense subspace. We say that spectral synthesis holds for a variety if
every subvariety of it is synthesisable. If every variety on X is synthesisable,
then we say that spectral synthesis holds on X. Clearly, on every commutative
hypergroup, spectral synthesis holds for finite dimensional varieties.

2. The main result

The above notions suggest that generalized moment functions may play a
fundamental role in the theory of spectral analysis and spectral synthesis on
commutative hypergroups. In our former paper [2], we described generalized
moment functions on commutative groups using Bell polynomials, even in the
higher rank case. In fact, the notion of exponential monomials is not easy
to handle, compared to that of generalized moment functions: the functional
equations characterizing generalized moment functions are more convenient
than those for exponential monomials. Therefore it might be fruitful to know
in which situations can exponential monomials be expressed in terms of gen-
eralized moment functions. In this work we initiate the study of this problem
on commutative hypergroups. The statement below is the first step towards
this.

Theorem 2.1. Let X be a commutative hypergroup with identity o. Let m :
X → C be an exponential, and ϕ : X → C an m-exponential monomial. If the
linear subspace of the variety τ(ϕ) of ϕ consisting of all m-sine functions is
one dimensional, then τ(ϕ) is generated by generalized moment functions.

Proof. Suppose that ϕ0, ϕ1, . . . , ϕn is a basis of τ(ϕ), and ϕ0 = m, ϕ1 = s
is an m-sine function, ϕn = ϕ, and the degrees of these basis functions are
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increasing with respect to their subscripts. In other words, we suppose that
the mapping k �→ degϕk is increasing.

Then we can write for k = 1, 2, . . . , n + 1:

ϕn+1−k(x ∗ y) =
n+1∑
i=1

ck,i(y)ϕn+1−i(x) (2.1)

for each x, y in X. As the function k �→ deg ϕk is increasing, it follows that
the matrix ck,i(y) is upper triangular for each x (i.e. ck,i = 0 for k > i), and
ci,i = m for i = 1, 2, . . . , n + 1. Further

ϕn+1−k

(
(x ∗ y) ∗ z

)
=

n+1∑
i=1

ck,i(z)ϕn+1−i(x ∗ y)

=
n+1∑
i=1

n+1∑
j=1

ck,i(z)ci,j(y)ϕn+1−j(x),

and

ϕn+1−k

(
x ∗ (y ∗ z)

)
=

n+1∑
j=1

ck,j(y ∗ z)ϕn+1−j(x) =
n+1∑
j=1

ck,j(z ∗ y)ϕn+1−j(x).

Hence, by associativity

ck,j(z ∗ y) =
n+1∑
i=1

ck,i(z)ci,j(y)

for each y, z in X. If C : X �→ C
(n+1)(n+1) is the matrix function defined by

C(x) =
(
ci,j(x)

)
, then we have

C(x ∗ y) = C(x)C(y), and C(o) = I,

where I is the (n + 1) × (n + 1) identity matrix. Since

ci,i+1(x ∗ y) = m(x)ci,i+1(y) + ci,i+1(x)m(y),

it follows that ci,i+1 is an m-sine function for each i = 1, 2, . . . , n.
We prove the statement by induction on the dimension n of τ(ϕ). First we

consider the cases n = 1, 2, 3, 4 separately and then we prove the statement by
induction on n ≥ 4.

For n = 1 the statement is trivial, since a one dimensional variety consists
of the constant multiples of an exponential, which is a generalized moment
function.

For n = 2 the statement is obvious, because a two dimensional variety
consists of the linear combinations of an exponential m and an m-sine function,
which are generalized moment functions.

For n = 3 we have the system of equations

ϕ2(x ∗ y) = c1,1(y)ϕ2(x) + c1,2(y)ϕ1(x) + c1,3(y)ϕ0(x)
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ϕ1(x ∗ y) = c2,1(y)ϕ2(x) + c2,2(y)ϕ1(x) + c2,3(y)ϕ0(x)
ϕ0(x ∗ y) = c3,1(y)ϕ2(x) + c3,2(y)ϕ1(x) + c3,3(y)ϕ0(x),

where the c’s are continuous complex valued functions in τ(ϕ). Clearly, c2,1, c3,1,
c3,2 are zero, and we have c1,1 = c2,2 = c3,3 = m. Hence the above system can
be written as

ϕ2(x ∗ y) = c1,1(y)ϕ2(x) + c1,2(y)ϕ1(x) + c1,3(y)ϕ0(x)
ϕ1(x ∗ y) = c2,2(y)ϕ1(x) + c2,3(y)ϕ0(x)
ϕ0(x ∗ y) = c3,3(y)ϕ0(x).

If C(x) =
(
ci,j(x)

)
, then we have C(x ∗ y) = C(x)C(y), and we can write

C =

⎛
⎝m c1,2 c1,3

0 m c2,3

0 0 m

⎞
⎠ .

It follows that c1,2, c2,3 are m-sine functions, hence c1,2 = α1,2s, c2,3 = α2,3s.
Then C(x) has the following form:

C =

⎛
⎝m α1,2s c1,3

0 m α2,3s
0 0 m

⎞
⎠ .

As the first row of C generates τ(ϕ), m, c1,2, c1,3 are linearly independent.
It follows that α1,2 �= 0. By the equation for ϕ1(x∗y) above, it follows c2,3 = s,
hence α2,3 = 1 �= 0. We have

c1,3(x ∗ y) = m(x)c1,3(y) + α1,2α2,3s(x)s(y) + c1,3(x)m(y),

and we conclude that c1,1,
1

α1,2
c1,2,

2
α1,2α2,3

c1,3 form a generalized moment func-
tion sequence. This proves our statement for n = 3.

Now we prove the statement for n = 4. In that case the above notation will
be modified as

ϕ3(x ∗ y) = c1,1(y)ϕ3(x) + c1,2(y)ϕ2(x) + c1,3(y)ϕ1(x) + c1,4(x)ϕ0(x)
ϕ2(x ∗ y) = c2,2(y)ϕ2(x) + c2,3(y)ϕ1(x) + c2,4(y)ϕ0(x)
ϕ1(x ∗ y) = c3,3(y)ϕ1(x) + c3,4(y)ϕ0(x)
ϕ0(x ∗ y) = c4,4(y)ϕ0(x),

and

C =

⎛
⎜⎜⎝

m α1,2s c1,3 c1,4

0 m α2,3s c2,4

0 0 m α3,4s
0 0 0 m

⎞
⎟⎟⎠ ,
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where the c’s are continuous complex valued functions in τ(ϕ). Here again, the
functions in the first row generate τ(ϕ), hence they are linearly independent.
Consequently, α1,2 �= 0. On the other hand,

c1,3(x ∗ y) = m(x)c1,3(y) + α1,2α2,3s(x)s(y) + c1,3(x)m(y),

hence α2,3 �= 0: otherwise c1,3 is an m-sine function, a constant multiple of
s, which contradicts the linear independence of the functions in the first row.
Finally, the equation for ϕ1(x ∗ y) gives that α3,4 �= 0. We conclude that the
functions

c1,1,
1!

α1,2
c1,2,

2!
α1,2α2,3

c1,3,
3!

α1,2α2,3α3,4
c1,4

form a generalized moment function sequence, which proves our statement for
n = 4.

Suppose that the statement has been proved if the dimension is not greater
than n ≥ 4, and now we prove it for dimension n + 1. Our previous notation
in this general situation takes the form

ϕn(x ∗ y) = c1,1(y)ϕn(x) + c1,n(y)ϕ1(x) + · · · + c1,n+1(y)ϕ0(x)
...

ϕ2(x ∗ y) = cn−1,n−1(y)ϕ2(x) + cn−1,n(y)ϕ1(x) + cn−1,n+1(y)ϕ0(x)
ϕ1(x ∗ y) = cn,n(y)ϕ1(x) + cn,n+1(y)ϕ0(x)
ϕ0(x ∗ y) = cn+1,n+1(y)ϕ0(x),

and

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m α1,2s c1,3 . . . c1,n c1,n+1

0 m α2,3s . . . c2,n c2,n+1

...
... m . . . . . . . . .

0 0 0
. . . cn−2,n cn−2,n+1

0 0 0 . . . m αn,n+1s
0 0 0 . . . 0 m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the fact that the functions in the first row generate τ(ϕ) we infer that
they are linearly independent. The case of dimension n can be applied for the
variety spanned by ϕ0, ϕ1, . . . , ϕn−1 to deduce that α1,2, α2,3, . . . , αn−1,n are
different from zero. Finally, the equation for ϕ1(x ∗ y) above shows that

ϕ1(x ∗ y) = cn,n(y)ϕ1(x) + cn,n+1(y)ϕ0(x),

that is

s(x ∗ y) = m(y)s(x) + αn,n+1s(y)m(x),
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which implies αn,n+1 = 1 �= 0. Consequently, all the α’s are nonzero. Then we
let f0 = m and for k = 1, 2, . . . , n

fk =
k!

α1,2α2,3 · · · αk,k+1
c1,k+1.

We show that f0, f1, . . . , fn form a generalized moment function sequence
of order X. We have

fk(x ∗ y) =
k!

α1,2 · · · αk,k+1
c1,k+1(x ∗ y) =

k!
α1,2 · · · αk,k+1

k+1∑
j=1

c1,j(x)cj,k+1(y)

=
k!

α1,2 · · · αk,k+1

k∑
j=0

α1,2 · · · αj,j+1

j!
fj(x)cj+1,k+1(y)

=
k∑

j=0

k!
j!

1
αj+1,j+2 · · · αk,k+1

fj(x)cj+1,k+1(y)

=
k∑

j=0

k!
j!

1
αj+1,j+2 · · · αk−1,k

fj(x)
cj,k(y)
αj,j+1

=
k∑

j=0

k!
j!

1
αj,j+1 · · · αk−1,k

fj(x)cj,k(y)

=
k∑

j=0

k!
j!

1
αj,j+1 · · · αk−2,k−1

fj(x)
cj−1,k−1(y)

αj−1,j

=
k∑

j=0

k!
j!

1
αj−1,j · · · αk−2,k−1

fj(x)cj−1,k−1(y).

Continuing this process we arrive at

fk(x ∗ y) =
k∑

j=0

k!
j!

1
α2,3α3,4 · · · αk−j,k−j+1

fj(x)
c1,k−j+1(y)

α1,2

=
k∑

j=0

k!
j!(k − j)!

(k − j)!
α1,2α2,3 · · · αk−j,k−j+1

fj(x)c1,k−j+1(y)

=
k∑

j=0

(
k

j

)
fj(x)fk−j(y),

which proves the statement. �

One may ask how restrictive is the condition that the sine functions in
a variety form a one dimensional linear space. Of course, this requirement
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is quite restrictive, but still there are large, important classes of commuta-
tive hypergroups having this property. This condition means a kind of “one-
dimensionality”‘ of the hypergroup. These classes include all polynomial hy-
pergroups in one variable, Sturm–Liouville hypergroups, etc., where, in fact,
every finite dimensional variety has this property. For instance, on polynomial
hypergroups we can apply our result as follows.

Corollary 2.2. Let X be a polynomial hypergroup associated with the sequence
of polynomials

(
Pn

)
n∈N

. Then every complex valued function on N (i.e. every
complex sequence) is the pointwise limit of linear combinations of generalized
moment functions on X.

Proof. By Theorem 6.7. in [3], spectral synthesis holds on every polynomial
hypergroup. This means that, in every variety the exponential polynomials
span a dense subspace. If f : N → C is any function, then we can apply this
result for the variety τ(f) of f . Consequently, to prove our statement it is
enough to show that for each exponential m on X, all m-sine functions form a
one dimensional linear space. Let m be an exponential on X. By Theorem 2.2.
in [3], there exists a complex number λ such that m(n) = Pn(λ) holds for each
n in N. On the other hand, by Theorem 2.5. in [3], every m-sine function s on
X has the form s(n) = cP ′

n(λ) with some complex number c. It follows that
all m-sine functions form a one dimensional linear space, hence by Theorem
2.1, our statement follows. �

The following result can be obtained on Sturm–Liouville hypergroups. Here
R0 denotes the set of nonnegative reals.

Corollary 2.3. Let X = (R0, A) be the Sturm–Liouville hypergroup associated
with the Sturm–Liouville function A : R0 → R. Let V be a synthesizable variety
on X. Then every function in V is the uniform limit on compact sets of linear
combinations of generalized moment functions on X.

Proof. Applying a similar argument to that in the previous theorem it is
enough to show that for each exponential on X, the linear space of all m-
sine functions in the variety of an arbitrary m-exponential monomial is one-
dimensional.

By Theorem 4.2. in [3], the function m : R0 → C is an exponential if and
only if it is twice continuously differentiable and there exists a complex number
λ such that

m′′(x) +
A′(x)
A(x)

m′(x) = λm(x) (2.2)

holds for x > 0, further m(0) = 1, m′(0) = 0. Suppose that m satisfies (2.2).
Then, by Theorem 4.5. in [3], the function s : R0 → C is an m-sine function
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if and only if it is twice continuously differentiable and there exists a complex
number c such that

s′′(x) +
A′(x)
A(x)

s′(x) − λs(x) = cm(x) (2.3)

holds for x > 0, further s(0) = 0, s′(0) = 0. Let s0 be the unique twice
continuously differentiable function satisfying

s′′
0(x) +

A′(x)
A(x)

s′
0(x) − λs0(x) = m(x) (2.4)

for x > 0, and s0(0) = 0, s′
0(0) = 0. It is known that this problem has a unique

solution, hence s0 is unique. On the other hand, if s is any m-sine function,
then there is a unique c such that s satisfies the problem (2.3). However, cs0
also satisfies (2.3), hence we infer s = cs0, and the proof is complete. �
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