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Abstract. We investigate convergence and invariance properties of the generalized Archimedes–
Borchardt algorithm. The main tool is reducing the problem to an appropriate Gauss iter-
ation process.

Mathematics Subject Classification. Primary 26E60, 26A18; Secondary 39B12.

Keywords. Mean, Parametrized mean, Archimedean process, Convergence of successive iter-

ates, Invariance of limit mean.

1. Introduction

Iterative procedures, among others those approximating various irrational num-
bers using some means, have been well-known for a long time. One of the
classical iterative algorithms is the Newton process

xk+1 =
1
2

(
xk +

a

xk

)
, k ∈ N0, (1.1)

being a formalization of the Babylonian method of extracting the square root
of a positive number a. Starting with an arbitrary positive x0 the sequence
(xk)k∈N0

is (strictly) decreasing and bounded, so convergent: it approximates
the number

√
a (see, for instance, [4] by Carlson). Putting yk := a/xk we see

that (1.1) is equivalent to

xk+1 =
1
2

(xk + yk) and 1/yk+1 =
1
2

(1/xk + 1/yk) , k ∈ N0,

or

xk+1 = A (xk, yk) and yk+1 = H (xk, yk) , k ∈ N0, (1.2)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-021-00816-8&domain=pdf
http://orcid.org/0000-0002-5866-0517


1292 J. Jarczyk, W. Jarczyk AEM

where A and H denote, respectively, the arithmetic and harmonic means (cf.
[8, p. 190] by Foster and Phillips, also [6] by Daróczy). It follows from the
definition of (yk)k∈N0

that it strictly increases to
√

a. Consequently,

yk < yk+1 < xk+1 < xk, k ∈ N0,

and

lim
k→∞

xk = lim
k→∞

yk =
√

a.

Clearly (1.2) is a particular case of the recurrent process

xk+1 = M (xk, yk) and yk+1 = N (xk, yk) , k ∈ N0, (1.3)

where M and N are means on an interval I. Here M : I2 → I is called a
(bivariate) mean on I provided it satisfies the inequalities

min{x, y} ≤ M(x, y) ≤ max{x, y}, x, y ∈ I.

Another important example of a recurrent algorithm (1.3) is that with
M = A and N = G, i.e. the arithmetic and geometric means, respectively:

xk+1 =
1
2

(xk + yk) and yk+1 = (xkyk)1/2
, k ∈ N0. (1.4)

Both these sequences have the common limit called the arithmetic-geometric
mean (medium arithmeticum-geometricum) of x0 and y0, denoted by A ⊗ G
(x0, y0). The algorithm (1.4) occured first in 1784 in the work [17] by Lagrange
in connection with reduction and evaluation of elliptic integrals (see also [18,
pp. 253–312, especially pp. 267, 272]). However, it was Gauss, who discovered
that this algorithm provides an iterative solution to the problem of rectifying
an arc of Bernoulli lemniscate. In particular, this gives a brief demonstration of
Fagnano’s duplication theorem from 1718, showing how to double a lemniscate
arc with a ruler and compass (cf. [23, pp. 1–7] by Siegel). In 1799 Gauss noted
(see [12, p. 542]) that

A ⊗ G
(
1,

√
2
)

=
π

2

(∫ π/2

0

1(
1 + sin2 ϑ

)1/2
dϑ

)−1

.

In general, the value of the arithmetic-geometric mean at an arbitrary point
(x0, y0) ∈ (0,+∞)2 was determined by Gauss in 1818:

A ⊗ G (x0, y0) =
π

2

(∫ π/2

0

1(
x2
0 cos2 ϑ + y2

0 sin2 ϑ
)1/2

dϑ

)−1

(cf. [10]), also [11, pp. 352–355]). For a systematic description of Gauss’ theory
we refer to the comprehensive article [5] by Cox. The reader interested in other
compound means like the arithmetic-geometric mean is referred to the book
[2] by Borweins.
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In 1800 Gauss suggested studying the process

xk+1 =
1
2

(xk + yk) and yk+1 = (xk+1yk)1/2
, k ∈ N0, (1.5)

which is superficially similar to (1.4). Apparently he realized that both (xk)k∈N

and (yk)k∈N
approach a common limit. Unexpectedly it is expressed not by

elliptic functions like in the case of (1.4) but by trigonometric or hyperbolic
functions (cf. [4]). As it follows from [12, pp. 234, 284] the same was known for
Pfaff at the very beginning of the 19th century. In 1880 algorithm (1.5) and its
fundamental properties were rediscovered by Borchardt [1] (see also [24] and
[4]). Since then it occasionally bears his name.

If we change the Borchardt algorithm by replacing the arithmetic mean in
the first equality by the harmonic one, then we will come to the process

xk+1 =
2

1/xk + 1/yk
and yk+1 = (xk+1yk)1/2

, k ∈ N0. (1.6)

Also here both sequences (xk)k∈N
and (yk)k∈N

tend to a common limit. In
particular, starting with x0 = 2

√
3 and y0 = 3 we obtain the algorithm attrib-

uted to Archimedes (see [13], also [9,22]) for estimating the number π. For a
longer and comprehensive story about the Archimedean approximations to π
the reader is referred to the book [2] by Borweins.

Observe that sequences (xk)k∈N
, (yk)k∈N

satisfy the Borchardt process if
and only if the sequences (1/xk)k∈N

, (1/yk)k∈N
satisfy the Archimedean one.

Thus we need consider only one of these two algorithms, for instance algorithm
(1.5).

Both processes: Borchardt’s (1.5) as well as Archimedes’ (1.6) are particular
cases of the algorithm

xk+1 = M (xk, yk) and yk+1 = N (xk+1, yk) , k ∈ N0, (1.7)

where M and N are bivariate means on an interval I and x0, y0 ∈ I. Observe
that if M is one of the means A,G,H on I = (0,+∞), then M is strict:

min{x, y} < M(x, y) < max{x, y}, x, y ∈ I, x �= y,

symmetric:

M(x, y) = M(y, x), x, y ∈ I,

and continuous. Foster and Philips [9, Theorem] gave a simple argument for
the following convergence property of the Archimedes–Borchardt algorithm:

Theorem FP. If x0, y0 are points of an interval I and M,N : I2 → I are con-
tinuous, strict and symmetric means, then the sequences (xk)k∈N

and (yk)k∈N
,

defined by (1.7), converge monotonically to a common limit.

For a discussion about some other examples of the Archimedes–Borchardt
process (1.7) see, for instance, [8].
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2. Reduction to generalized Gauss algorithm

In the present paper we study the generalized Archimedes–Borchardt algo-
rithm and prove a convergence result extending Theorem FP. Given an inter-
val I of reals and a positive integer p a function M : Ip → I is called a mean
(in p variables) on I when

min {x1, . . . , xp} ≤ M(x1, . . . , xp) ≤ max {x1, . . . , xp}
for all (x1, . . . , xp) ∈ Ip (see, for instance, [3]). It is said to be strict when

min {x1, . . . , xp} < M(x1, . . . , xp) < max {x1, . . . , xp} ,

whenever (x1, . . . , xp) ∈ Ip and min {x1, . . . , xp} < max {x1, . . . , xp}. If

M (x1, . . . , xp) = M
(
xσ(1), . . . , xσ(p)

)
for all x1, . . . , xp ∈ I and every permutation σ of the set {1, . . . , p}, then the
mean M is called symmetric.

Given means M1, . . . ,Mp : Ip → I and points x0,1, . . . , x0,p ∈ I consider
the recurrent process

xk+1,1 = M1 (xk,1, . . . , xk,p) , k ∈ N0,

xk+1,i = Mi (xk+1,1, . . . , xk+1,i−1, xk,i, . . . , xk,p) , i = 2, . . . , p, k ∈ N0, (2.1)

which extends both algorithms (1.5) and (1.7). Our aim is to prove, among
others, the following result.

Theorem 2.1. If x0,1, . . . , x0,p are points of an interval I and M1, . . . ,Mp :
Ip → I are continuous strict means, then the sequences (xk,1)k∈N

, . . . ,
(xk,p)k∈N

, defined by (2.1), converge to a common limit. The convergence is
uniform with respect to the initial point x0 = (x0,1, . . . , x0,p) running through
any compact subset of the set Ip.

As we see Theorem 2.1 considerably generalizes the convergence part of
Theorem FP. The generalization comes in three respects:

(i) two bivariate means have been replaced here by p means in p variables;
(ii) the convergence is uniform with respect to x0,1, . . . , x0,p on each compact

subset of the cube Ip;
(iii) the assumption of symmetricity turned out to be superfluous.

However, Theorem 2.1 says nothing about the monotonicity of the se-
quences considered there, unlike Theorem FP. So the problem below seems
to be of interest.

Problem 2.2. Are sequences (2.1), under the assumptions of Theorem 2.1 (and
possibly the symmetry of the means M1, . . . ,Mp), monotonic?
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We prove Theorem 2.1 by reducing the Archimedes–Borchardt process (2.1)
to an appropriate Gauss algorithm. At first we need an auxiliary result.

In what follows, given an interval I and mappings M1, . . . ,Mp : Ip → I,
we recurrently define functions N1, . . . , Np : Ip → I by

N1(x) = M1(x),
Ni(x) = Mi (N1(x), . . . , Ni−1(x), xi, . . . , xp) , i = 2, . . . , p, (2.2)

for each x = (x1, . . . , xp) ∈ Ip.

Proposition 2.3. Let N1, . . . , Np : Ip → I be given by (2.2). Then:
(i) if M1, . . . ,Mp are means, then so are N1, . . . , Np;
(ii) if the means M1, . . . ,Mp are strict, then so are N1, . . . , Np;
(iii) if the functions M1, . . . ,Mp are continuous, then so are N1, . . . , Np;
(iv) for every point x0 = (x0,1, . . . , x0,p) ∈ Ip the sequences (xk,i)k∈N0

, i =
1, . . . , p, satisfy process (2.1) if and only if

xk+1,i = Ni (xk,1, . . . , xk,p) , i = 1, . . . , p, k ∈ N0. (2.3)

Proof. (i) and (ii). Assume that M1, . . . ,Mp are means. Then, of course, so
is N1. If i ∈ {2, . . . , p} and N1, . . . , Ni−1 are means, then taking any x =
(x1, . . . , xp) ∈ Ip we have

Ni(x) = Mi (N1(x), . . . , Ni−1(x), xi, . . . , xp)
≤ max {N1(x), . . . , Ni−1(x), xi, . . . , xp} ≤ max {x1, . . . , xp}

and, similarly, Ni(x) ≥ min {x1, . . . , xp}.
Assume that, in addition, the means M1, . . . ,Mp are strict. Clearly N1 is

strict. Fix any x = (x1, . . . , xp) ∈ Ip with min {x1, . . . , xp} < max {x1, . . . , xp}.
Take any i ∈ {2, . . . , p} such that N1, . . . , Ni−1 are strict. If

N1(x) = . . . = Ni−1(x) = xi = . . . = xp,

then we have

Ni(x) = Mi (N1(x), . . . , Ni−1(x), xi, . . . , xp) = N1(x),

and thus, since

min {x1, . . . , xp} < N1(x) < max {x1, . . . , xp} ,

we get

min {x1, . . . , xp} < Ni(x) < max {x1, . . . , xp} . (2.4)

Otherwise

min {N1(x), . . . , Ni−1(x), xi . . . , xp} < max {N1(x), . . . , Ni−1(x), xi, . . . , xp} ,

and thus, as Mi is strict, we have

Ni(x) = Mi (N1(x), . . . , Ni−1(x), xi, . . . , xp)
< max {N1(x), . . . , Ni−1(x), xi, . . . , xp} ≤ max {x1, . . . , xp}



1296 J. Jarczyk, W. Jarczyk AEM

and, similarly, Ni(x) > min {x1, . . . , xp}. Thus we again come to (2.4).
(iii) This is obvious according to definition (2.2).
(iv) Fix an arbitrary point (x0,1, . . . , x0,p) ∈ Ip and assume that the se-

quences (xk,i)k∈N0
, i = 1, 2 . . . , p, satisfy (2.1). Then, by the first equalities of

(2.1) and (2.2),

xk+1,1 = M1 (xk,1, . . . , xk,p) = N1 (xk,1, . . . , xk,p)

for all k ∈ N0. Taking any i ∈ {2, . . . , p} and assuming inductively that (2.3)
holds for all j = 1, . . . , i − 1, we see that again (2.1) and (2.2) give

xk+1,i = Mi (xk+1,1, . . . , xk+1,i−1, xk,i, . . . , xk,p)
= Mi (N1 (xk,1, . . . , xk,p) , . . . , Ni−1 (xk,1, . . . , xk,p) , xk,i, . . . , xk,p)
= Ni (xk,1, . . . , xk,p)

for all k ∈ N0.
The converse implication can be obtained similarly. �

The simple observation described in Proposition 2.3 (iv) shows that the
investigation of the Archimedes–Borchardt process (2.1) can be reduced to
the generalized Gauss algorithm (2.3) which is relatively well-studied (see [15,
Sect. 2 and the references therein], also [7]). Notice that equalities (2.3) are
equivalent to the condition

xk = (N1, . . . , Np)
k (x0) , k ∈ N0.

Here, as usual, xk = (xk,1, . . . , xk,p) and the symbol (N1, . . . , Np)
k denotes the

k-th iterate of the mapping (N1, . . . , Np) : Ip → Ip. So the sequence (xk)k∈N0
,

satisfying algorithm (2.1), is the sequence of successive iterates of the mapping
(N1, . . . , Np) given recurrently by formulas (2.2) and starting from the point
x0. Observe, however, that at first glance no iteration nature is associated to
the Archimedes–Borchardt algorithm (2.1).

To prove Theorem 2.1 we will make use of the following result.

Theorem M. Let I be an interval and let N1, . . . , Np : Ip → I be continuous
means such that the equalities

min {N1(x), . . . , Np(x)} = min {x1, . . . , xp} (2.5)

and

max {N1(x), . . . , Np(x)} = max {x1, . . . , xp} (2.6)

together imply x1 = . . . = xp for all x = (x1, . . . , xp) ∈ Ip. Then there exists a
continuous mean L : Ip → I such that

lim
k→∞

(N1, . . . , Np)
k = (L, . . . , L)
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uniformly on every compact subset of Ip; moreover, L is the unique continuous
(N1, . . . , Np)-invariant mean:

L ◦ (N1, . . . , Np) = L.

The description of the generalized Gauss algorithm and its limit behaviour,
presented in Theorem M, originates in the research of Matkowski in his paper
[21] (see also [19,20] and, for some further details, [15, Section 2]). In some ear-
lier publications Matkowski assumed that at most one of the means N1, . . . , Np

is not strict (see [19] for the case p = 2, also [20] where a gap from [19] was
filled). The remark below shows how to easily comply with the assumptions
imposed on the means N1, . . . , Np in Theorem M.

Remark 2.4. If at most one of means N1, . . . , Np : Ip → I is not strict, then
for every x = (x1, . . . , xp) ∈ Ip equalities (2.5) and (2.6) together imply x1 =
. . . = xp.

Proof. The only mean in one variable is the identity function, so the assertion
clearly holds when p = 1. So assume that p ≥ 2. We may also assume that the
means N1, . . . , Np−1 are strict. Take any x ∈ Ip such that equalities (2.5) and
(2.6) hold and suppose that x1 = . . . = xp is false. Then min {x1, . . . , xp} <
max {x1, . . . , xp} hence

min {x1, . . . , xp} < Ni(x) < max {x1, . . . , xp} , i = 1, . . . , p − 1.

Thus (2.5) and (2.6) imply

Np(x) = min {x1, . . . , xp} and Np(x) = max {x1, . . . , xp} ,

which is impossible. Consequently, x1 = . . . = xp contrary to the supposition.
�

Theorem M has been extended in a number of directions. Notice that,
among others, its versions for parametrized means and random means were
proved in [14] and [16], respectively.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Take any point x0 = (x0,1, . . . , x0,p) ∈ Ip and let
(xk)k∈N0

with xk = (xk,1, . . . , xk,p) be a sequence defined by recurrences (2.1)
where M1, . . . ,Mp : Ip → I are continuous strict means. Define functions
N1, . . . , Np : Ip → I by equalities (2.2). According to Proposition 2.3 they are
continuous strict means and the sequence (xk)k∈N0

satisfies equalities (2.3).
Thus, by Remark 2.4 and Theorem M, there exists a mean L on I such that

xk = (N1, . . . , Np)
k (x0) −→ (L, . . . , L) (x0)

uniformly on every compact subset of Ip with respect to x0. Consequently,
L (x0) is the limit of each of the sequences (xk,i)k∈N0

, i = 1, . . . , p. �
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Theorem M, used as the main tool in the above proof of Theorem 2.1, de-
mands weaker assumptions regarding the means N1, . . . , Np than the strictness
of the means M1, . . . ,Mp assumed in Theorem 2.1. So the following question
arises naturally.

Problem 2.5. Does the assertion of Theorem 2.1 remain true if we assume
that:

(i) at most one of the means M1, . . . ,Mp is not strict?
(ii) for every x = (x1, . . . , xp) ∈ Ip the equalities

min {M1(x), . . . ,Mp(x)} = min {x1, . . . , xp}
and

max {M1(x), . . . ,Mp(x)} = max {x1, . . . , xp}
together imply x1 = . . . = xp?

3. Invariants

When passing from geometry to analysis we often make use of calculations
based on algorithms. Then some invariants associated with them turn out to be
important and useful. Notice the following result which is another consequence
of Proposition 2.3, Remark 2.4 and Theorem M.

Theorem 3.1. Let x0,1, . . . , x0,p be points of an interval I and M1, . . . ,Mp con-
tinuous strict means on I. Let N1, . . . , Np : Ip → I be given by equalities (2.2).
Then the common limit L of the sequences (xk,1)k∈N

, . . . , (xk,p)k∈N
, defined by

(2.1), is the unique continuous (N1, . . . , Np)-invariant mean:

L ◦ (N1, . . . , Np) = L. (3.1)

It is usually difficult to find the form of the invariant mean L (cf., for
instance, [4,22][8]). Remember that even in such a seemingly simple case of the
classical Gauss algorithm (1.4) the unique continuous (A,G)-invariant mean
is defined using an elliptic integral. In the case of the generalized Archimedes–
Borchardt algorithm the situation seems to be even more complicated as the
mean L existing on account of Theorem 2.1 is invariant with respect to the
auxiliary sequence (N1, . . . , Np), not to the original sequence (M1, . . . ,Mp). In
such a way we come to the next problem ending this note.

Problem 3.2. Find a class of processes (2.1) for which the common limit L
of the sequences (xk,1)k∈N

, . . . , (xk,p)k∈N
can be determined using invariant

equation (3.1).
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