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Abstract. The classes of band-dominated operators and the subclass of operators in the
Wiener algebra W are known to be inverse closed. This paper studies and extends partially
known results of that type for one-sided and generalized invertibility. Furthermore, for the
operators in the Wiener algebra W invertibility, the Fredholm property and the Fredholm
index are known to be independent of the underlying space lp, 1 ≤ p ≤ ∞. Here this is
completed by the observation that even the kernel and a suitable direct complement of the
range as well as generalized inverses of operators in W are invariant w.r.t. p.
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1. Introduction

Consider the spaces lp = lp(Z) of two-sided infinite sequences x = (xi)i∈Z of
complex numbers equipped with the respective p-norms

‖x‖p = ‖(xi)‖p =

(∑
i∈Z

|xi|p
)1/p

for p ∈ [1,∞)

‖x‖∞ = ‖(xi)‖∞ = sup{|xi| : i ∈ Z} for p ∈ {0,∞},

where l0 denotes the subspace of l∞ of all sequences (xi) of entries tending to
zero as i → ±∞.

Roughly speaking, bounded linear operators A ∈ L(lp) on these lp can be
regarded as infinite matrices, and in view of this interpretation the definition of
band-dominated operators is straightforward and easily understood: As a start,
notice that every sequence a = (ai) ∈ l∞ defines an operator of multiplication
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aI : (xi) �→ (aixi) whose matrix representation is a diagonal matrix having the
numbers ai as entries along its main diagonal. Next, introduce the family of
shift operators Vα : (xi) �→ (xi−α) for every α ∈ Z. Now, all finite combinations∑

α aαVα of these generators are referred to as band operators and form a
(non-closed) algebra BO in the Banach algebra L(lp) of all bounded liner
operators on lp, resp. Taking the closure of this algebra in L(lp) clearly yields
a Banach algebra, which is denoted by Alp . Its elements are called band-
dominated operators. In particular, the infinite matrix representations of band
operators have only finitely many non-zero diagonals, i.e. have zero entries
except in a “band” of finite “bandwidth”, whereas band-dominated operators
may have infinitely many non-zero diagonals which decay towards zero away
from the main diagonal.

It is well known, that Alp is not only a Banach algebra, but forms a closed
universe also w.r.t. invertibility and the Fredholm property. More precisely, if
A ∈ Alp is invertible, resp. Fredholm, then its inverse and (at least some of)
its regularizers belong to Alp , too. Whenever p ∈ {0} ∪ (1,∞) this actually
holds for every regularizer (see e.g. [9,10]). A main observation of [11] is that
a semi-Fredholm operator A ∈ Alp is automatically Fredholm.

[3] recently studied whether Alp is also self-contained w.r.t. one-sided in-
vertibility. The affirmative (under certain mild restrictions) answer was then
applied to further related interesting classes of operators such as Wiener, E-
modulated and slant-dominated operators. In Sect. 2 of the present work we
repeat and extend this result on band-dominated operators from [3], in or-
der to present a more complete picture. In particular, all the cases when
p ∈ {0} ∪ [1,∞] can be treated equally here:

Theorem 1.1. Let A ∈ Alp . Then A is invertible from the left (resp. right)
if and only if its lower norm ν(A) = inf{‖Ax‖ : ‖x‖ = 1} (resp. ν(A∗)) is
positive. In this case there exists a left (right) inverse B in Alp which is also
a generalized inverse for A. The latter means that ABA = A and BAB =
B, such that I − AB is a projection parallel to the range im A, i.e. onto a
complement of im A, and I − BA is a projection onto the kernel ker A.

Note again that B is a Fredholm regularizer and the two projections are
compact (cf. [11]). For an introduction to generalized invertibility see e.g. [4,
Chapter 4].
The Wiener algebra Although BO is one and the same operator algebra in-
dependent of the underlying space lp, its closure, the algebra Alp of band-
dominated operators, depends on the choice of p. An important and fruitful
superset of BO which on the one hand is still p-invariant but on the other
hand also beautifully self-contained in many regards is the so called Wiener
algebra. It is defined as the closure of BO w.r.t. the norm ‖ · ‖W given by

‖A‖W :=
∑

k

‖ak‖∞ for A =
∑

k

akVk with all ak ∈ l∞.
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Equipped with ‖ · ‖W , W is a Banach algebra and it is well known that:
1. W is a subalgebra of Alp for every p with ‖A‖L(lp) ≤ ‖A‖W , i.e. Wiener

operators and their adjoints act as band-dominated operators on all lp

(cf. [9, Section 2.5]).
2. If A ∈ W is invertible on one lp-space then it is invertible on every lp-

space and the inverse A−1 belongs to W, i.e. W is inverse closed (cf. [9,
Theorem 2.5.2]).

3. If A ∈ W is Fredholm on one lp-space then A is Fredholm on every lp-
space. In this case the Fredholm index is the same on all these spaces.
Moreover there exists a B ∈ W which is a Fredholm regularizer for A
on all lp (see [10, Theorem 3 and Corollary 25], as well as [1,2,6,7] for a
presentation of the history of these results).

Thus one can talk about A ∈ W, its invertibility, its Fredholm property, its
inverse A−1 and its adjoint A∗ independently of the underlying space lp, p ∈
{0} ∪ [1,∞]. This can be enriched by the following:

Theorem 1.2. Let A ∈ W. If A is left (resp. right) invertible on one lp then it
is left (right) invertible on all lp. In this case, there exists a B ∈ W which is
a one-sided inverse and also a generalized inverse for A on all spaces lp.

Theorem 1.2 appeared in large parts already in [3] and somehow triggered
the present work. Actually, one can push this further and show the following
in Sect. 3:

Theorem 1.3. Let A ∈ W be semi-Fredholm. Then
(a) ker A is the same on all lp and there is a subspace K which serves as

a complement of im A in all lp, resp. In particular, ker A and K are
subspaces of l1.

(b) There exists a generalized inverse B ∈ W, hence I − BA ∈ W is a
projection onto ker A and I − AB ∈ W is a projection parallel to im A.

Thus, besides 1. - 3. above, also one-sided invertibility, the kernel and the
cokernel of A ∈ W as well as suitable generalized inverses are independent of
the underlying space.
Generalized sequence spaces, the Hilbert space case and the Moore–Penrose
inverse In fact, the above mentioned properties 1. - 3. of W have been proved
in the cited literature for the much more general setting of Wiener operators
on the spaces lp(ZN ,X) of X-valued generalized sequences (xi)i∈ZN ⊂ X with
X being a Banach space, not necessarily finite dimensional. Also Theorems
1.1, 1.2 and 1.3 extend to this setting and remain true for Fredholm operators
A ∈ Alp , resp. A ∈ W. This is the goal of Sect. 4. In the Hilbert space case
a very particular generalized inverse, the Moore–Penrose inverse is available,
offers a deeper understanding and will be discussed in this last section as well.
Finally, a criterion for one-sided invertibility based on finite discretizations is
given.
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2. One-sided invertible band-dominated operators

Proposition 2.1. Let A ∈ Alp . The following are equivalent
1. A is invertible from the left.
2. A∗ is invertible from the right.
3. ν(A) > 0.

In this case there exists a left inverse B ∈ Alp which is also a regularizer and a
generalized inverse for A, s.t. I −AB is a compact projection parallel to im A.

Proof. If A is left invertible then ν(A) > 0 and if B is a left inverse to A then
B∗ is a right inverse to A∗. Further, if A∗ is right invertible then (A∗)∗ is
left invertible. Since the lower norms ν(A) and ν((A∗)∗) coincide (see e.g. [11,
Section 2.3]) we have 1. ⇒ 2. ⇒ 3. Now, let ν(A) > 0. Then, by [11, Corollary
2.3], A is semi-Fredholm and further, by [11, Theorem 4.3], it is Fredholm.
[10, Theorem 21] yields a generalized inverse B ∈ Alp , i.e. ABA = A and
BAB = B. This relation A(I − BA) = 0 together with ν(A) > 0 implies that
I − BA = 0, i.e. B is a left inverse.

Finally, (I − AB)2 = I − 2AB + ABAB = I − 2AB + AB = I − AB is
a projection with (I − AB)A = 0 and ABA = A, hence parallel to the range
im A onto a complement of im A (which is of finite dimension), thus I − AB
is compact. �

The analogous symmetric result reads as follows:

Proposition 2.2. Let A ∈ Alp . The following are equivalent
1. A is invertible from the right.
2. A∗ is invertible from the left.
3. ν(A∗) > 0.

In this case there exists a right inverse B ∈ Alp which is also a regularizer and
a generalized inverse for A, s.t. I − BA is a compact projection onto ker A.

Proof. If B is a right inverse to A then B∗ is a left inverse to A∗. The latter
implies that ν(A∗) > 0. Now, let ν(A∗) > 0. Then [11, Corollary 2.3 and
Theorem 4.3] apply to A and show again that A is Fredholm. [10, Theorem
21] yields a generalized inverse B ∈ Alp . Since (I − AB)A = 0 and A is
surjective, we find that I − AB = 0, i.e. B is a right inverse. The rest easily
follows as above. �

This finishes the proof of Theorem 1.1.

Remark 1. For all p ∈ {0} ∪ (1,∞), Alp includes the ideal of all compact
operators (cf. [7,9,10]). This implies that if there is one regularizer B ∈ Alp

then all regularizers are band-dominated in these cases. To check this let C ∈
L(lp) s.t. I − CA is compact. Then C = B + (CA − I)B + C(I − AB) ∈ Alp .
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3. Operators in the Wiener class

We continue with the highly interesting operators A in the Wiener class W
which, as already mentioned in the introduction, have a couple of proper-
ties independent of the underlying space. However, in some situations and for
some parts of the proofs it is useful to indicate on which lp-space A ∈ W is
considered. This is done by the notation A = Ap in what follows.

3.1. One-sided invertibility

Lemma 3.1. If A, Ã ∈ W coincide on one lp then they coincide on all lp.

Proof. For n ∈ N let Pn denote the canonical projection which truncates (xi) ∈
lp by the rule

Pn : (xi) �→ (. . . , 0, x−n, . . . , x0, . . . , xn, 0, . . .)

and Qn:=I − Pn. Assume that A = Ã on lp and (A − Ã)x �= 0 for an x ∈ lr.
Then there is an m ∈ N such that Pm(A − Ã)x �= 0, i.e. Pm(A − Ã) �= 0. Since
for arbitrary band-dominated operators ‖Pm(A − Ã)Qn‖ → 0 as n → ∞ (cf.
[9, Theorem 2.1.6]), there exists an n with Pm(A − Ã)Pn �= 0 and Pnx �= 0.
Consequently, (A − Ã)Pnx �= 0 for the element Pnx ∈ lp, a contradiction. �

We continue with the proof of Theorem 1.2 which states that W is one-sided
inverse closed:

Proof. Let A = Ap ∈ W be left invertible on lp and let D ∈ Alp be a left inverse
given by Theorem 1.1. Further, choose a band operator C with ‖D−C‖‖A‖ <
1/2. Then

‖I − CA‖ = ‖I − DA + (D − C)A‖ ≤ ‖D − C‖‖A‖ < 1/2,

i.e. CA = I − (I − CA) is invertible by a Neumann series argument. Since
CA ∈ W, also (CA)−1 ∈ W. Thus, B = (CA)−1C ∈ W is a left inverse of A
as BA = (CA)−1CA = I. Moreover ABA = AI = A and BAB = IB = B,
i.e. B is a generalized inverse.

This Wiener operator B and the equation BA = I, hence the left invert-
ibility of A, translate to all lp-spaces by the previous lemma. The case of right
invertible A is analogous. �

Notice that in general not all one-sided inverses of A ∈ W belong to W:
For example, let P = χZ+I be the projection which maps

(. . . , x−n, . . . , x−1, x0, x1, . . . , xn, . . .) �→ (. . . , 0, . . . , 0, x0, x1, . . . , xn, . . .)

and Q = I − P . For A = Q + V1P ∈ W the operator B which is defined by
x = (xi) �→ Bx:=Qx + PV−1x + x0y, with y:=((|n| + 1)−1)n∈Z ∈ l2 \ l1 is a
left inverse on l2 which does not belong to W.
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Remark 2. As already mentioned in the introduction, the study and the results
of the present work are related to the results on Alp and W obtained in [3].
More precisely, the following was already shown there by different methods:

• Alp with 1 < p < ∞ is one-sided inverse closed [3, Corollary 3.7].
• The characterization of one-sided invertibility of A ∈ Alp , 1 < p < ∞ in

terms of its lower norm [3, Theorem 3.9].
• W is one-sided inverse closed [3, Theorem 3.10].
• The p-invariance (1 < p < ∞) of one-sided invertibility of A ∈ W [3,

Corollary 3.11].

3.2. On kernels and cokernels

Let’s continue with the study of the kernels of Fredholm operators A ∈ W.

Proposition 3.2. Let A ∈ W be right invertible. Then the kernels ker A coincide
on all lp.

Proof. Recall that A = A1 is Fredholm on l1 and set K:= ker A1 and k:= dim K.
Since A = Ap is right invertible and Fredholm on all lp and the index of Ap is
the same on all lp, we find that dim kerAp = k on all lp. So, since K ⊂ l1 ⊂ lp

for all p, the assertion follows. �

Proposition 3.3. Let A ∈ W be left invertible. Then there is a finite dimen-
sional subspace K ⊂ l1 which serves as a complement of im A in all lp, resp.

Proof. A = Ap is Fredholm on all lp and has a left inverse/generalized inverse
B ∈ W by Theorem 1.2. In particular, ApB is a projection onto imAp and
I − ApB projects onto a complement K of im Ap in lp. Now, the relation
B(I − ApB) = B − BApB = 0 gives: K is the kernel of B. Prop. 3.2 applied
to B and K shows that K is independent of p and is included in l1. �

Thus, we get the following picture for one-sided invertible A ∈ W:

Corollary 3.4. Let A ∈ W be one-sided invertible. Then ker A ⊂ l1 is the
same on all lp and there is a finite dimensional space K ⊂ l1 which serves as
complement of im A in all lp, resp.

Clearly the next question is, whether this extends and holds for Fredholm
operators A ∈ W in general. Here comes the proof of the affirmative answer
which was already stated in Theorem 1.3a):

Proof. By [10, Lemma 24] we can choose a Fredholm operator Sk ∈ W with
indSk = k = − ind(A). Then ASk ∈ W is Fredholm of index 0 and, by [10,
Corollary 12], there is a decomposition ASk = W +S with an invertible W and
a compact S of finite rank which fulfills ‖S−PnSPn‖ → 0 as n → ∞. Since the
set of invertible operators is open we find for sufficiently large n that W̃ :=W +
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(S − PnSPn) is still invertible. Since PnSPn in the decomposition ASk =
W̃+PnSPn belongs to W, also W̃ ∈ W hence W̃−1 ∈ W. This gives AB = I+T
with B:=SkW̃−1 ∈ W and a finite rank operator T :=PnSPnW̃−1 ∈ W. By
completely analogous arguments starting with SkA one gets B̂A = I + T̂ , with
B̂ ∈ W and a finite rank operator T̂ ∈ W with T̂ = T̂Pn (without loss of
generality with the same n). Next, define Ṽ = V2n+1 and further P̃ : (xi) �→
(χM (i)xi) where M :={i ∈ Z : i ≥ −n},

U :=(I − P̃ ) + P̃ Ṽ −1 and U�:=(I − P̃ ) + Ṽ P̃ . (1)

Then UU� = I, U�U = I − Pn, and imT ⊂ im Pn = ker U as well as im U� =
ker Pn ⊂ ker T̂ .

We get UABU� = I, thus UA ∈ W is Fredholm and right invertible, hence
ker(UA) ⊂ l1 is independent of p by Proposition 3.2. We particularly conclude
that ker A∞ ⊂ ker(UA∞) ⊂ l1. Therefore this kerA∞ is included in kerAp

for every p. Since the converse inclusion is obvious, we find that kerAp is the
same for every p.

Further UB̂AU� = I, hence AU� ∈ W is Fredholm and left invertible
and K̂ ⊂ l1 shall denote the common p-invariant complement of the ranges
im AU� given by Proposition 3.3. Now consider im A1 which is a superset of
im A1U

�, set K1:= im A1 ∩ K̂ and fix a decomposition K̂ = K1 ⊕ K. Then
im A1 = im A1U

� ⊕ K1, thus l1 = im A1 ⊕ K. For arbitrary p, we still have
lp = im ApU

� ⊕ K̂ and imAp covers im ApU
� and a subspace Kp:= im Ap ∩ K̂

of K̂. From imA1 ⊂ im Ap we conclude K1 ⊂ Kp. Since neither the index of
Ap nor its kernel dimension depend on p, by the above, the codimension of
im Ap is p-invariant as well, so that these spaces Kp actually coincide with K1.
Thus K serves as a complement for all im Ap. �

3.3. On generalized inverses

Having proved the p-invariance of the kernel and a complement of the range
im A of A ∈ W, we finally turn to some corresponding p-invariant projections
in W onto these spaces and a generalized inverse of A in W. We start with an
auxiliary result:

Lemma 3.5. Let R be a bounded linear operator on l0 such that its range im R
is a subspace of l1 ⊂ l0 of finite dimension. Then R ∈ W.

Proof. Choose a basis y1, . . . , ym in imR. Then for every x there is a unique
decomposition Rx =

∑m
j=1 αjyj . Further choose functionals f1, . . . , fm on im R

with fk(yj) = δjk, where δjk denotes the the Kronecker delta,1 and extend

1An elegant way to find yj and fk is Auerbachs lemma [8, B.4.8].
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them to l0 as gk:=fk ◦ R. Then, for all x,

m∑
k=1

gk(x)yk =
m∑

k=1

fk(Rx)yk =
m∑

k=1

fk

⎛
⎝ m∑

j=1

αjyj

⎞
⎠ yk =

m∑
k=1

αkyk = Rx.

Thus we have a representation/decomposition of R as a finite sum, where
the functionals gk can be interpreted as dual products with certain sequences
(g(k)i )i∈Z ∈ l1. To check that R ∈ W it suffices to show that the summands
of the form G : x �→ g(x)y, with g = (gi) and y = (yi) of l1-type, belong to
W: The entries of the canonical matrix representation of G are bounded by
|yi||gj |, hence the elements on the kth diagonal are bounded by (|yi||gi+k|)i,
resp. Consequently, the Wiener norm ‖G‖W can be estimated as follows:∑

k

sup
i

|yi||gi+k| ≤
∑

k

∑
i

|yi||gi+k| =
∑

i

|yi|
∑

k

|gi+k| = ‖y‖1‖g‖1

which yields the assertion. �

Now we can close this section with the proof of Theorem 1.3b):

Proof. Consider A = A0 on l0. In view of Theorem 1.3a) we have ker A0 ⊂ l1

and a complement K ⊂ l1 of im A0 in l0. Choose a projection P1 from l0

onto K parallel to imA0 and a projection P2 onto ker A0.2 As in the proof of
Lemma 3.5 there are representations for P1, P2 ∈ W

P1x =
k∑

j=1

fj(x)yj and P2x =
l∑

j=1

gj(x)zj

with k = dim coker A, l = dim ker A and fj , gj , yj , zj of l1-type. Then the
operator R

Rx:=
min{k,l}∑

j=1

gj(x)yj

is compact, belongs to W by Lemma 3.5 and has full rank min{k, l}.
Since gj ◦ P2 = gj and P1yj = yj we have R = P1R = RP2 = P1RP2.

By construction, A + R is Fredholm with dim ker(A + R) = 0 if k ≥ l (resp.
dim coker(A + R) = 0 if k ≤ l), thus A + R is one-sided invertible. Let D be a
generalized inverse (and hence one-sided inverse) in W for A + R which exists
by Theorem 1.2 and define B:=(I −P2)D(I −P1) ∈ W. Since A = (I −P1)A =
A(I−P2) = (I−P1)A(I−P2) and 0 = (I−P1)R = R(I−P2) = (I−P1)R(I−P2)

2For the existence of projections onto finite dimensional subspaces see e.g. [8, B.4.9f].
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it follows

ABA = A(I − P2)D(I − P1)A = (A + R)(I − P2)D(I − P1)(A + R)

= (I − P1)(A + R)D(A + R)(I − P2)

= (I − P1)(A + R)(I − P2) = (I − P1)A(I − P2) = A,

BAB = (I − P2)D(I − P1)A(I − P2)D(I − P1)

= (I − P2)D(I − P1)(A + R)(I − P2)D(I − P1).

If D is a left (resp. right) inverse for A + R then the latter coincides with

(I − P2)D(A + R)(I − P2)D(I − P1) = (I − P2)D(I − P1) = B (or

(I − P2)D(I − P1)(A + R)D(I − P1) = (I − P2)D(I − P1) = B, resp.)

This finishes the proof of Theorem 1.3b). �

4. Generalization to lp(ZN ,X)

4.1. lp(ZN ,X) with a Banach space X

We now turn our attention to the generalizations of the above concepts and
results to the spaces lp(ZN ,X) of Banach space valued generalized sequences
(xi)i∈ZN ⊂ X, where N ∈ N and X is a Banach space. The p-norms are
naturally extended as

‖x‖p = ‖(xi)‖p =

( ∑
i∈ZN

‖xi‖p
X

)1/p

for p ∈ [1,∞)

‖x‖∞ = ‖(xi)‖∞ = sup{‖xi‖X : i ∈ Z
N} for p ∈ {0,∞}.

Clearly in this setting the operators of multiplication are of the form aI with
bounded a = (ai)i∈ZN , where ai ∈ L(X), the shifts are Vα : (xi) �→ (xi−α)
for every α ∈ Z

N , and then the definitions of Alp and W are identical. The
definition of Pn is naturally extended by Pn = χ[−n,n]N I.

As long as N = 1 and X is of finite dimension, nothing changes, and reusing
the above arguments verbatim still gives Theorems 1.1, 1.2 and 1.3. Essen-
tially, the argument which gets lost in the more general situation is the au-
tomatic Fredholm property of semi-Fredholm band-dominated operators from
[11]. However, supposing additionally that A is Fredholm, the proofs in Sects.
2 and 3.1 still work and immediately yield:

Theorem 4.1. Let A ∈ Alp be Fredholm. Then the assertions of Theorem 1.1
hold.

Theorem 4.2. Let A ∈ W be Fredholm. Then the assertions of Theorem 1.2
hold.
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For the extension of Theorem 1.3 for Fredholm A ∈ W one starts as in
Sect. 3.2 in order to find the relations AB = I + T and B̂A = I + T̂ with
B, B̂ ∈ W and finite rank operators T, T̂ ∈ W such that im T ⊂ im Pn and
ker Pn ⊂ ker T̂ .

Only the definitions of U and U� require a modification. For this introduce
the operators Cj : lp(ZN ,X) → X, (xi) �→ xj , as well as Dj : X → lp(ZN ,X)
which map x ∈ X to (xi) with xj = x and xi = 0 for all i �= j. Further define
the set H:={−n, . . . , n}N ⊂ Z

N and two subspaces of X by

X1:= span
( ⋃

j∈H

Cj(im T )
)
, X2:=

⋂
j∈H

ker T̂Dj .

Note that X1 is of finite dimension and X2 of finite codimension in X. Choose
a decomposition X = Y ⊕ X2 and further X = Y ⊕ ((X1 ∩ X2) ⊕ Z) with Z
being of finite codimension. Thus there is a bounded finite rank projection R
of X parallel to Z onto Y ⊕ (X1 ∩ X2). Next, set α:=(2n + 1, 0, . . . , 0) ∈ Z

N ,
define the shift Ṽ = Vα and the projection P̃ : (xi) �→ (χM (i)Rxi) where

M :={α = (αk) ∈ Z
N : α1 ≥ −n, |αk| ≤ n, k = 2, . . . , N}.

Now set U :=(I − P̃ ) + P̃ Ṽ −1 and U�:=(I − P̃ ) + Ṽ P̃ . Then, again, UU� = I,
U�U = I − PnP̃ , U is Fredholm, and imT ⊂ im PnP̃ = ker U as well as
im U� = ker PnP̃ ⊂ ker T̂ . The rest of the proof in Sects. 3.2 and 3.3 remains
unchanged and thus

Theorem 4.3. Let A ∈ W be Fredholm. Then the assertions of Theorem 1.3
hold.

4.2. lp(ZN ,X) with a Hilbert space X

If X is a Hilbert space then l2(ZN ,X) is a Hilbert space. Let A ∈ L(l2) have
closed range. Then a particular generalized inverse, the Moore–Penrose inverse
A+ exists uniquely, and there are several ways to characterize it (see e.g. [5]):

For example, A+ is determined by the four Moore–Penrose equations

A+AA+ = A+, AA+A = A, (AA+)� = AA+, (A+A)� = A+A. (2)

Here A� denotes the Hilbert space adjoint - which coincides with the formal
adjoint∑

k

V−ka�
kI for every band-dominated A =

∑
k

akVk ∈ Al2 .

Equivalently, A+ is the desired Moore–Penrose inverse of A if and only if
AA+ is the orthogonal projection onto imA and I − A+A is the orthogonal
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projection onto kerA. Furthermore, it is also given by the following uniform
limits

A+ = lim
δ↘0

(A�A + δI)−1A� = lim
δ↘0

A�(AA� + δI)−1. (3)

They particularly simplify if A is left (or right) invertible: if ν(A) > 0 then
(whenever ‖x‖ = 1)

‖A�Ax‖ = ‖A�Ax‖‖x‖ ≥ (A�Ax, x) = (Ax,Ax) = ‖Ax‖2 ≥ (ν(A))2,

i.e. ν(A�A) > 0. Together with (A�A)� = A�A this yields invertibility. Thus,
(A�A)−1A� (or A�(AA�)−1, respectively) exists and equals A+. More gener-
ally, for all operators A with closed range, due to e.g. [5, Theorem 2.1.5], the
following holds

A+ = (A�A)+A� = A�(AA�)+. (4)

If A ∈ Al2 is semi-Fredholm, i.e. has closed range and finite dimensional
kernel (resp. cokernel) then C = A�A (resp. C = AA�) is Fredholm and C+

is a regularizer for C hence belongs to Al2 by Remark 1. Equation (4) yields
A+ ∈ Al2 , which extends Theorems 1.1 and 4.1:

Theorem 4.4. Let A ∈ Al2 be semi-Fredholm. Then the assertions of Theorem
1.1 hold for B = A+ ∈ Al2 .

Now, let A ∈ W be semi-Fredholm. Then C = A�A ∈ W (resp. C =
AA� ∈ W) is Fredholm, Theorem 4.3 yields a generalized inverse D ∈ W for
C and shows that kerC ⊂ l1. Let R be the orthogonal projection onto kerC.
Then RC = R�C� = (CR)� = 0. This implies that imC ⊂ im(I − R). As
dim coker C = dim kerC� = dim ker C = dim imR = dim coker(I − R) even
im C = im(I − R). With an orthonormal basis (yk) of ker C ⊂ l1 we get

Rx =
∑

〈Rx, yk〉yk =
∑

〈x,R�yk〉yk =
∑

〈x,Ryk〉yk =
∑

〈x, yk〉yk.

As in the proof of Lemma 3.5 it follows that R ∈ W. Define another generalized
inverse B:=(I − R)D(I − R) ∈ W of C. Indeed,

BCB = (I − R)D(I − R)C(I − R)D(I − R)

= (I − R)DCD(I − R) = (I − R)D(I − R) = B

CBC = C(I − R)D(I − R)C = CDC = C.

Notice that C − CBC = 0 yields ker(I − CB) ⊃ im C = im(I − R), hence
(I − CB)(I − R) = 0 which implies I − R = CB(I − R) = CB, due to
the definition of B. Furthermore, im(I − BC) ⊂ ker C = ker(I − R), hence
(I − R)(I − BC) = 0 which implies I − R = (I − R)BC = BC. Consequently
I − CB = I − BC = R, thus C+ = B ∈ W and, with Eq. (4):

Theorem 4.5. If A ∈ W is semi-Fredholm then A+ ∈ W. Furthermore, A+ is
a generalized inverse on every lp(ZN ,X) and yields projections I − A+A ∈ W
onto ker A and AA+ ∈ W onto im A.
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In summary, if X is a Hilbert space, Theorem 1.1 for band-dominated
operators on l2(ZN ,X), as well as Theorems 1.2 and 1.3 for Wiener class
operators on lp(ZN ,X) remain true with the particular generalized inverse
B = A+ and without imposing the additional condition ‘A is Fredholm’ as in
Sect. 4.1.

4.3. A further criterion for one-sided invertibility based on finite matrices

Here we finally return to the classical situation X = C once more. The previous
formulas reveal a result which is already known from [3]:

Corollary 4.6. A ∈ W is left (right) invertible if and only if A�A (resp. AA�)
is invertible.

This opens the door for a subsequent study and a characterization of one-
sided invertibility in terms of finite matrices. Consider C = A�A on l2 and its
compressions Cn = PnCPn to the finite dimensional subspaces im Pn. These
Cn can be regarded as finite square matrices acting on finite vectors with the
Euclidean norm.

Proposition 4.7. For A ∈ W, C = A�A is invertible if and only if its compres-
sions (PnCPn) to the spaces im Pn are uniformly invertible.

Proof. From e.g. [12] it is well known that if these Cn are invertible and their
inverses have uniformly bounded norms (this is sometimes called stability of the
sequence (Cn)) then C is invertible. Actually, this can also be seen directly.
Recall that ‖Qnx‖ → 0 on l2 as n → ∞, assume that ν(C) = 0 and fix
ε > 0. Choose x, ‖x‖ = 1 s.t. ‖Cx‖ ≤ ε and n so large that ‖Qnx‖ ≤ ε/‖C‖.
Then, ν(Cn) ≤ ‖Cnx‖ ≤ ‖Pn‖‖CPnx‖ ≤ ‖Cx‖ + ‖C‖‖Qnx‖ ≤ 2ε. Since
ε was chosen arbitrarily this yields lim infn ν(PnCPn) = 0 contradicting the
uniform invertibility. Thus, the self-adjoint C is left invertible hence invertible.
Conversely, let C be invertible. Then for every x ∈ im R, ‖x‖ = 1, with R being
an arbitrary self-adjoint projection, we have

‖RCRx‖ = ‖RA�Ax‖ = ‖RA�Ax‖‖x‖
≥ (R�A�Ax, x) = (Ax,ARx) = ‖Ax‖2 ≥ (ν(A))2,

hence the restriction RCR is bounded below and due to its self-adjointness
even invertible on imR with a bound on ‖(RCR)−1‖ which is independent of
R. Applying this to all R = Pn we get the uniform invertibility of the operators
Cn. �

The uniform invertibility of a sequence of matrices w.r.t. the norm ‖ · ‖2,
particularly if they are self-adjoint, can be characterized and checked by various
tools. E.g. it means that there exists c > 0 such that all eigenvalues of all
PnCPn are larger than c. In fact, as these matrices are positive, one only has
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to consider the smallest eigenvalues. This is also equivalent to having a c > 0
such that ν(PnCPn) ≥ c for all n. Another equivalent characterization is the
uniform boundedness of the condition numbers of all these matrices.

Band-dominated operators A, and in particular A ∈ W, fulfill both
‖PnAQ2n‖ → 0 and ‖Q2nAPn‖ → 0 as n → ∞ (cf. e.g. [9, Theorem 2.1.6]).
Hence ‖PnA�P2nAPn − PnA�APn‖, ‖PnAP2nA�Pn − PnAA�Pn‖ tend to 0,
which with Proposition 4.7 and Corollary 4.6 gives the following characteriza-
tion of one-sided invertibility:

Theorem 4.8. Let A ∈ W. Then A is left (resp. right) invertible if and only
if the sequence of positive matrices (PnA�P2nAPn) (resp. (PnAP2nA�Pn)) is
uniformly invertible w.r.t. the Euclidean norm.

Unlike the criterion in [3, Theorem 3.14] the remarkable advantage of these
matrices is that their construction only requires finitely many entries from the
infinite matrix A, resp., hence their invertibility can effectively be checked by
finite computations and e.g. one of the above mentioned tools for p = 2.

We point out that the results of this final Sect. 4.3 apply to A ∈ W on all
lp with p ∈ {0} ∪ [1,∞]. Moreover, they actually hold on l2 with literally the
same proofs for all band-dominated A in the superset Al2 of W.

Further notice that the “uniform” in the conditions on the compressions is
essential as the simple final example

A:=aI with a = (. . . , 1, 1, 1, 1/2, 1/3, 1/4, . . . , 1/n, . . .) ∈ l∞(Z)

obviates.
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