Aequationes Mathematicae

Correction to: One-sided invertibility of discrete operators with bounded coefficients

Luis Eduardo Flores-Zapotitla and Yuri I. Karlovich

Correction to: Aequat. Math. https://doi.org/10.1007/s00010-020-00773-8

6. Addendum

By the sufficiency in Theorem 3.12, the left (resp., right) invertibility of the operators $A \in \{A_E, \tilde{A}_E, A_{E_m}, \tilde{A}_{E_m}\}$ on the spaces l^p $(1 follows from the invertibility of the operator <math>A^{\diamond}A$ (resp., AA^{\diamond}). The Fredholmness of such operators A is not necessary for their one-sided invertibility (for example, the right invertible operator $A_{E_m} = E_m$ is not Fredholm for |m| > 1). On the other hand, the invertibility criterion for the operators $B \in \{A^{\diamond}A, AA^{\diamond}\}$ presented in Theorem 3.15 is also valid if $B \in \mathcal{W}_p$ and $A \notin \mathcal{W}_p$.

As a result, Theorems 4.4, 4.5, 5.4, 5.5 can be essentially reinforced by excluding the Fredholm condition for the operators $A_E, \tilde{A}_E, A_{E_m}, \tilde{A}_{E_m}$, respectively, and applying the invertibility criterion from Theorem 3.15.

The modified theorems have the following form.

Theorem 6.1. The operator A_E given by (4.2) and satisfying (4.3) is left invertible on the space l^p for $p \in (1, \infty)$ if for $B = A_E^{\diamond}A_E$ and all sufficiently large $n \in \mathbb{N}$ the operators $B_n^{\pm} = P_n^{\pm}BP_n^{\pm}$ are invertible on the spaces $P_n^{\pm}l^p$, respectively, and the $(2n-1) \times (2n-1)$ matrix $B_{n,0}$ defined for $B = A_E^{\diamond}A_E$ by (3.33) is invertible. The operator A_E given by (4.2) and satisfying (4.3) and condition (A) is right invertible on the space l^p for $p \in (1, \infty)$ if for $B = A_E A_E^{\diamond}$ and all sufficiently large $n \in \mathbb{N}$ the operators $B_n^{\pm} = P_n^{\pm}BP_n^{\pm}$ are invertible on the space $P_n^{\pm}l^p$, respectively, and the $(2n-1) \times (2n-1)$ matrix $B_{n,0}$ defined

🕲 Birkhäuser

The original article can be found online at https://doi.org/10.1007/s00010-020-00773-8.

for $B = A_E A_E^{\diamond}$ by (3.33) is invertible. Under these conditions, one of the left (resp., right) inverses of the operator A_E is given by $A_E^L = (A_E^{\diamond} A_E)^{-1} A_E^{\diamond}$ (resp., by $A_E^R = A_E^{\diamond} (A_E A_E^{\diamond})^{-1}$).

Theorem 6.2. The operator \widetilde{A}_E given by (4.2) and satisfying (4.3) is left invertible on the space l^p for $p \in (1, \infty)$ if for $B = \widetilde{A}_E^{\diamond} \widetilde{A}_E$ and all sufficiently large $n \in \mathbb{N}$ the operators $B_n^{\pm} = P_n^{\pm} B P_n^{\pm}$ are invertible on the spaces $P_n^{\pm} l^p$, respectively, and the $(2n-1) \times (2n-1)$ matrix $B_{n,0}$ defined for $B = \widetilde{A}_E^{\diamond} \widetilde{A}_E$ by (3.33) is invertible. The operator \widetilde{A}_E given by (4.2) and satisfying (4.3) and condition (B) is right invertible on the space l^p for $p \in (1,\infty)$ if E is a permutation operator and for $B = \widetilde{A}_E \widetilde{A}_E^{\diamond}$ and for all sufficiently large $n \in \mathbb{N}$ the operators $B_n^{\pm} = P_n^{\pm} B P_n^{\pm}$ are invertible on the spaces $P_n^{\pm} l^p$, respectively, and the $(2n-1) \times (2n-1)$ matrix $B_{n,0}$ defined for $B = \widetilde{A}_E \widetilde{A}_E^{\diamond}$ by (3.33) is invertible. Under these conditions, one of the left (resp., right) inverses of the operator \widetilde{A}_E is given by $\widetilde{A}_E^L = (\widetilde{A}_E^{\diamond} \widetilde{A}_E)^{-1} \widetilde{A}_E^{\diamond}$ (resp., by $\widetilde{A}_E^R = \widetilde{A}_E^{\diamond} (\widetilde{A}_E \widetilde{A}_E^{\diamond})^{-1}$).

Theorem 6.3. Let $p \in (1, \infty)$ and $m \in \mathbb{Z} \setminus \{0\}$. Then the slant-dominated discrete Wiener-type operator A_{E_m} is left (resp., right) invertible on the space l^p if for $B = A_{E_m}^{\diamond} A_{E_m}$ (resp., for $B = A_{E_m} A_{E_m}^{\diamond}$) and for all sufficiently large $n \in \mathbb{N}$ the operators $B_n^{\pm} = P_n^{\pm} B P_n^{\pm}$ are invertible on the spaces $P_n^{\pm} l^p$, respectively, and the $(2n-1) \times (2n-1)$ matrix $B_{n,0}$ given by (3.33) for B = $A_{E_m}^{\diamond} A_{E_m}$ (resp., for $B = A_{E_m} A_{E_m}^{\diamond}$) is invertible. Under these conditions, one of the left (resp., right) inverses of the operator A_{E_m} is given by $A_{E_m}^L =$ $(A_{E_m}^{\diamond} A_{E_m})^{-1} A_{E_m}^{\diamond}$ (resp., by $A_{E_m}^R = A_{E_m}^{\diamond} (A_{E_m} A_{E_m}^{\diamond})^{-1}$).

Theorem 6.4. Let $p \in (1,\infty)$ and $m \in \mathbb{Z} \setminus \{0\}$. Then the slant-dominated discrete Wiener-type operator \widetilde{A}_{E_m} is left (resp., right) invertible on the space l^p if for $B = \widetilde{A}_{E_m}^{\diamond} \widetilde{A}_{E_m}$ (resp., for $B = \widetilde{A}_{E_m} \widetilde{A}_{E_m}^{\diamond}$) and for all sufficiently large $n \in \mathbb{N}$ the operators $B_n^{\pm} = P_n^{\pm} B P_n^{\pm}$ are invertible on the spaces $P_n^{\pm} l^p$, respectively, and the $(2n-1) \times (2n-1)$ matrix $B_{n,0}$ given by (3.33) for $B = \widetilde{A}_{E_m}^{\diamond} \widetilde{A}_{E_m}$ (resp., for $B = \widetilde{A}_{E_m} \widetilde{A}_{E_m}^{\diamond}$) is invertible, where |m| = 1 in the case of right invertibility. Under these conditions, one of the left (resp., right) inverses of the operator \widetilde{A}_{E_m} is given by $\widetilde{A}_{E_m}^L = (\widetilde{A}_{E_m}^{\diamond} \widetilde{A}_{E_m})^{-1} \widetilde{A}_{E_m}^{\diamond}$ (resp., by $\widetilde{A}_{E_m}^R = \widetilde{A}_{E_m}^{\diamond} (\widetilde{A}_{E_m} \widetilde{A}_{E_m}^{\diamond})^{-1}$).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luis Eduardo Flores-Zapotitla and Yuri I. Karlovich Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas Universidad Autónoma del Estado de Morelos Av. Universidad 1001, Col. Chamilpa C.P. 62209 Cuernavaca Morelos Mexico e-mail: luis.flores@uaem.edu.mx

Yuri I. Karlovich e-mail: karlovich@uaem.mx