
Aequat. Math. 95 (2021), 677–697
c© The Author(s) 2020
0001-9054/21/040677-21
published online December 30, 2020
https://doi.org/10.1007/s00010-020-00768-5 Aequationes Mathematicae

A survey on composition operators on some function spaces

Emma D’Aniello and Martina Maiuriello

Abstract. We investigate some types of composition operators, linear and not, and conditions
for some spaces to be mapped into themselves and for the operators to satisfy some good
properties.

Mathematics Subject Classification. Primary 47H30, 47B33, Secondary 26A15, 26A21, 26A16,
26A45.

Keywords. Composition operators, Superposition operators, Function spaces.

1. Introduction

The following non-linear operators, Cf , x �→ f ◦ x and Sh, x(·) �→ h(·, x(·))
called, respectively, the (autonomous) composition operator and the (non-
autonomous) superposition operator, have been widely studied. They espe-
cially appear in the process of solving certain non-linear integral equations.
For instance, in [4] and [5], the authors show that existence and uniqueness
results for solutions of non-linear integral equations of Hammerstein–Volterra
type

x(t) = g(t) + λ

∫ t

0

k(t, s)f(x(s))ds, (t ≥ 0),

x(t) = g(t) + λ

∫ t

0

k(t, s)h(s, x(s))ds, (t ≥ 0)

and of Abel-Volterra type

x(t) = g(t) +
∫ t

0

k(t, s)f(x(s))
|t − s|ν ds, (0 ≤ t ≤ 1)

are closely related to existence and uniqueness results for solutions of operator
equations involving Cf and Sh. Also, for example, in [29], it is proved, for the
integral equation of Volterra type in the Henstock setting, that the existence
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of a continuous solution depends, among other conditions, on the property of
mapping continuous functions into Henstock-integrable functions, satisfied by
the involved non-autonomous superposition operator; in [15], the authors pro-
vide, in the Henstock-Kurzweil-Pettis setting, existence and closure results for
integral problems driven by regulated functions, both in single- and set-valued
cases ([14]). Hence, in many fields of non-linear analysis and its applications
(in particular to integral equations), the following problem becomes of interest:

Given a class X of functions, find conditions on (and eventually charac-
terise) the functions under which the generated operators map the space X into
itself.

The case of the operator Sh is called in the literature Superposition Operator
Problem ([8,10,11]) or, sometimes, Composition Operator Problem ([4,6]) since
it is also considered for the autonomous case Cf and, in this simpler form as
well, it is sometimes unexpectedly difficult. In addition to the action spaces of
the non-linear operators Cf and Sh, boundedness and continuity are properties
which have also been the object of several studies: many results analysing such
properties for composition operators on function spaces, among which Lip,
Lipγ , BV , BVp, AC and W 1,p, appeared in the last decades (see, for instance,
the papers cited throughout this note).

This note is intended to serve as a survey on the state of the art of some
aspects and to describe some further properties of the non-linear operators Sh

and Cf (left composition operator), and the linear operator Tf : x �→ x◦f (right
composition operator), discuss them and give examples. Clearly, the theory is
wide and far from being complete.

This note is organised into four sections, including the introduction.
In Sect. 2, we briefly introduce the investigated function spaces, and we

recall some main properties.
In Sect. 3, we analyse the non-linear operators Cf and Sh. First, we in-

vestigate them on Lipschitz spaces and some spaces of functions of bounded
variation, providing the main results in the literature with examples. Then, we
focus on spaces of Baire functions. In particular, we show that when the oper-
ator Cf maps the space of Baire functions into itself, then it is automatically
continuous. We also characterise the non-linear operator Sh which transforms
Baire one functions into maps of the same type, and we show how to construct
a function h easily which is not even Baire one but such that the associated
operator Sh maps the space of Baire functions into itself.

Sect. 4 is devoted to the linear composition operator Tf . We start by inves-
tigating Lipschitz spaces and some spaces of functions of bounded variation.
In particular, our study shows that, unlike the case of left compositors, not
all the investigated spaces have the same type of right compositors. Then, we
study the linear operator Tf on the space of Baire one functions and we de-
velop some parallel results on the space of Baire two functions. Unlike the case
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of left Baire compositors which are the same for Baire classes of any order, and
in particular for Baire one functions and Baire two functions, we show that
it is not the case when we consider right composition. Namely, we show that
right Baire one compositors do not coincide with right Baire two compositors.

2. Preliminary definitions

In this section, we collect some basic notations, definitions and results, which
will be needed in the sequel.

By Lip([a, b]) and Lipγ([a, b]), we denote, respectively, the space of all Lips-
chitz functions on [a, b], and the space of all γ-Lipschitz (or Hölder continuous)
functions on [a, b], endowed with the usual norms

‖f‖Lip = f(a) + Lip(f) and ‖f‖Lipγ
= f(a) + Lipγ(f),

with

Lip(f) = sup
x,y∈[a,b]

x�=y

|f(x) − f(y)|
|x − y| and Lipγ(f) = sup

x,y∈[a,b]
x�=y

|f(x) − f(y)|
|x − y|γ .

2.1. p-variation, Jordan variation, Riesz variation

Definition 2.1.1. Let f be a real valued function defined on H ⊆ R. For p > 0
we denote by Vp(f,H) the p-variation of f on H, that is the least upper bound
of the sums

n∑
i=1

|f(bi) − f(ai)|p,

where {[ai, bi]}i=1,..,n is an arbitrary finite system of non-overlapping intervals
with ai, bi ∈ H, i = 1, ..., n.

If H has a minimal as well as a maximal element, then Vp(f,H) is the
supremum of the sums

n∑
i=1

|f(ti) − f(ti−1)|p,

where min(H) = t0 < t1 < · · · < tn = max(H) and ti ∈ H, i = 0, ..., n.
From now on, in this paragraph, we consider f as a function defined on a

closed interval of the real line, that is f : [a, b] → R.

Definition 2.1.2. We define BVp([a, b]) = {f : [a, b] → R : Vp(f, [a, b]) < +∞},
i.e. BVp([a, b]) is the space of functions of p-bounded variation on [a, b].
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Definition 2.1.3. When p = 1, the variation V1(f, [a, b]) is the Jordan variation,
V (f, [a, b]), of f on [a, b]. In particular, the space BV1([a, b]) = {f : [a, b] →
R : V (f, [a, b]) < +∞} is the space of functions of bounded Jordan variation
on [a, b] and it is simply denoted by BV ([a, b]).

Remark 2.1.4. It is well-known ([4,5,7]) that the space BVp([a, b]), p ≥ 1,
endowed with the norm ‖f‖BVp

= |f(a)| + Vp(f, [a, b])
1
p is a Banach space.

In particular, the space BV ([a, b]) endowed with the norm ‖f‖BV = |f(a)| +
V (f, [a, b]) is a Banach space. Moreover, for 1 < p < q < ∞, the following
(strict) inclusions hold

BV ([a, b]) ⊂ BVp([a, b]) ⊂ BVq([a, b]) ⊂ B([a, b])

where B([a, b]) = {f : [a, b] → R; f is bounded}.

As it is well-known, the space BV ([a, b]) is not closed under composition.
For example, take [a, b] = [0, 1] and f = g ◦ h, where g(x) =

√
x and h(x) is

defined as

h(x) =
{

0 if x = 0
x2sin2( 1

x ) otherwise.

In the case of continuous functions, we have the following definition.

Definition 2.1.5. Let f be continuous on [a, b]. Let G be the union of all open
subintervals of (a, b) on which f is either strictly monotonic or constant. The
set of points of varying monotonicity of f is defined as

Kf = [a, b] \ G.

Theorem 2.1.6. ([23]: Theorem 2.3) For every f ∈ C([a, b]) and p ≥ 1, we
have

Vp(f,Kf ) = Vp(f, [a, b]).

Let CBVp([a, b]) = {f ∈ C([a, b]) : Vp(f,Kf ) < ∞}.

Corollary 2.1.7. ([23]: Corollary 2.4) If p ≥ 1 then CBVp([a, b]) is the family
of those f ∈ C([a, b]) for which Vp(f, [a, b]) < +∞, that is, CBVp([a, b]) =
C([a, b]) ∩ BVp([a, b]).

As remarked in [23], no analogous statement to Theorem 2.1.6 holds if
0 < p < 1 since the only continuous functions f with Vp(f, [a, b]) < +∞ are
constant. On the other hand, CBVp([a, b]) contains, for example, the continu-
ous, strictly monotone functions on [a, b].

Now, we introduce another type of variation: the Riesz variation.
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Definition 2.1.8. Let P be the family of all partitions of the interval [a, b].
Given a real number p ≥ 1, a partition P = {t0, . . . tm} of [a, b], and a function
f : [a, b] → R, the non-negative real number

RVp(f, P ) = RVp(f, P, [a, b]) =
m∑

j=1

|f(tj) − f(tj−1)|p
(tj − tj−1)p−1

is called the Riesz variation of f on [a, b] with respect to P. The (possibly
infinite) number

RVp(f) = RVp(f, [a, b]) = sup{RVp(f, P, [a, b]) : P ∈ P},
where the supremum is taken over all the partitions of [a, b], is called the total
Riesz variation of f on [a, b]. In case RVp(f) < ∞ we say that f has bounded
Riesz variation (or bounded p-variation in Riesz’ sense) on [a, b], and we write
f ∈ RBVp([a, b]).

Remark 2.1.9. It is well-known ([4,5]) that the space RBVp([a, b]) equipped
with the norm ‖f‖RBVp

= |f(a)| + RVp(f)
1
p is a Banach space.

By AC([a, b]), we denote the space of all absolutely continuous functions on
[a, b]. Moreover, AC([a, b]) is closed in BV ([a, b]), and therefore it is a Banach
space with respect to the BV -norm, which is equivalent to the W 1,1-norm

‖f‖W 1,1 = ‖f‖L1 + ‖f
′‖L1 .

In fact, it coincides with W 1,1([a, b]) (see, for instance, [4]: Proposition 3.24;
[5]: page 10, 1.1.16).

Recall the following useful (strict) inclusions.

1. For 1 < q < p < +∞,

Lip([a, b]) ⊂ W 1,p([a, b]) ⊂ W 1,q([a, b])

⊂ AC([a, b]) ⊂ C([a, b]) ∩ BV ([a, b])

⊂ B([a, b]).

2. Let 0 < γ < 1. Then

Lipγ([a, b]) �⊆ BV ([a, b]).

Moreover, there exists f ∈ ∩0<γ<1Lipγ([a, b]) \ BV ([a, b]) ([4]: Example
1.23 and Example 1.24).

Functions of bounded Riesz variation are particularly interesting since they
are related to Sobolev spaces: the space RBVp([a, b]) is basically the same as
the space W 1,p([a, b]), by the following well-known theorem.
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Theorem 2.1.10. (Riesz Theorem)([5]: Theorem 1.3.5) Let 1 < p < ∞. A
function f : [a, b] → R belongs to RBVp([a, b]) if and only if f ∈ AC([a, b])
and f ′ ∈ Lp([a, b]). Moreover, in this case the equality

RVp(f) = ‖f ′‖p
Lp([a,b]) =

∫ b

a

|f ′(t)|pdt

holds, where RVp(f) is the p-variation of f in Riesz’ sense.

For p = 1, RBV1([a, b]) = BV ([a, b]). Hence, the previous theorem does
not hold for p = 1 as a function in BV ([a, b]) usually does not need to be
continuous and therefore nor absolutely continuous.

2.2. Baire functions

Let X be a Polish space, that is a separable and completely metrizable space.
Recall that an Fσ set is a countable union of closed sets, a Gδ set is a countable
intersection of open sets, and a Gδσ set is a countable union of Gδ sets ([12]).
In every metrizable space, any open set is an Fσ set ([3]).

A real valued function g : X → R is said to be Baire one if there exists a se-
quence {gk}k∈N of continuous functions gk : X → R such that limk→+∞ gk(x) =
g(x), for every x ∈ X. These functions are so called since they were first de-
fined and studied by Baire ([9]). Clearly, each continuous function is of Baire
class one.

In general, a real valued function g : X → R is said to be of Baire class
n, n ∈ N, if there exists a sequence {gk}k∈N of functions of Baire class n − 1,
gk : X → R, such that limk→+∞ gk(x) = g(x), for every x ∈ X.

Denote by B0(X) the collection of real valued continuous functions on X,
that is B0(X) = C(X), and by Bn(X), n ≥ 1, the collection of real valued
Baire n functions on X.

Then, the following (strict) inclusions hold:

C(X) = B0(X) ⊂ B1(X) ⊂ · · · ⊂ Bn(X) ⊂ Bn+1(X) ⊂ · · · .

Several equivalent definitions of Baire class one functions have been obtained
already: it is well-known that “g is Baire one if and only if for every open set
A, g−1(A) is an Fσ set”, and that “g is Baire two if and only if for every open
set A, g−1(A) is a Gδσ set” (see, for instance, [21] and [30]).

Given g : X → R, the following are equivalent:

1. g is Baire one;
2. for every open subset A of R, g−1(A) is an Fσ set;
3. for every closed set C in X, the restriction g|C has a point of continuity

in C.
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Clearly, if a function g : X → R has countably many discontinuity points then
it is Baire one. In particular, if g : [a, b] → R is monotone, or of bounded
variation, then g is Baire one. In general, functions of Baire class one play
an important role in applications. For example, semi-continuous functions and
derived functions, all belong to this class ([12,22]). Some interesting, very
recent results concerning fixed points of Baire functions and the so called
equi-Baire property can be found in [1] and [2].

If g is Baire one, then the set of points of continuity of g is a residual subset
of X. This last property is not a characterisation as the following example
shows ([28]: page 148, Example IV).

Example 2.2.1. Let X = [0, 1]. Let C be the Cantor ternary set. The set C has
Lebesgue measure zero and is of first category since it is nowhere dense. Let
C0 be the collection of the points of P which are not endpoints of the com-
plementary intervals. Let f = χC and g = χC0 . Then f and g are continuous
at points of [0, 1] \ C and discontinuous at points of C. But f is Baire one as
it is the characteristic function of a closed set but g is not Baire one as g|C is
discontinuous at every point.

Another well-known example of non Baire one functions is the Dirichlet
function.

Example 2.2.2. Let X = [0, 1]. The Dirichlet function is the map g(·) =
χQ∩[0,1](·). List all the rationals in [0, 1] as r1, r2, . . . , rk, . . . . Define, for
each n ∈ N,

gn(x) =
{

1 if x ∈ {r1, · · · , rn}
0 otherwise.

As gn has finitely many discontinuity points, it is of Baire class one. The
Dirichlet map is the pointwise limit of the sequence {gn}n∈N. So, it is Baire
two but not Baire one.

The following is a beautiful, natural characterisation of a Baire one func-
tion.

Theorem 2.2.3. ([25]: Theorem 1) Suppose f : X → Y is a mapping between
complete separable metric spaces (X, dX) and (Y, dY ). Then the following state-
ments are equivalent.

1. For any ε > 0, there exists a positive function δ on X such that
dY (f(x), f(y)) < ε whenever dX(x, y) < min{δ(x), δ(y)}.

2. The function f is of Baire class one.

Remark 2.2.4. The function δ of Theorem 2.2.3 can be chosen to be Baire one
as shown in Corollary 33 of [24].

In the sequel, sometimes, when understood, in the above mentioned spaces,
we omit X (we write, for example, B1 rather than B1(X)).
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3. Two types of non-linear operators: (left) composition operators
and superposition operators

Recall that an operator between two normed spaces is said to be bounded
if it maps bounded sets into bounded sets. Clearly, unlike the case of linear
operators, in the non-linear case, the two properties of being bounded and
being continuous are not equivalent. They are not even, in general, related:
a non-linear operator may be continuous without being bounded, or bounded
without being continuous.

Definition 3.0.1. Let J be an arbitrary interval. Let f : R → R. The operator

g �→ f ◦ g

where g : J → R is an arbitrary function, is called the (autonomous) composi-
tion operator generated by the function f . It is usually denoted by Cf . Hence,
for each g : J → R, Cf (g) : J → R, is defined as Cf (g)(·) = f(g(·)).
Definition 3.0.2. Let J be an arbitrary interval. Let h : J × R → R. The
operator

g(·) �→ h(·, g(·)),
where g : J → R is an arbitrary function, is called the (non-autonomous)
superposition operator generated by the function h. It is usually denoted by Sh.
Hence, for each g : J → R, Sh(g) : J → R is defined as Sh(g)(·) = h(·, g(·)).

3.1. Composition operators

Composition operators on Lipschitz functions and some spaces of functions of
bounded variation.

Theorem 3.1.1. ([4]: Theorem 5.9) The operator Cf maps the space BV ([a, b])
into itself if and only if the corresponding function f is locally Lipschitz on R,
i.e. for each r > 0, there exists k(r) > 0 such that

(�) |f(u) − f(v)| ≤ k(r)|u − v|, (u, v ∈ R, |u|, |v| ≤ r).

Theorem 3.1.2. ([5]: Theorem 3.4.1; [4]: Theorem 5.24) Let 1 < p < ∞,
0 < γ ≤ 1. The following conditions are equivalent.
(a) The function f : R → R satisfies the local Lipschitz condition (�).
(b) The operator Cf maps the space BVp([a, b]) into itself.
(c) The operator Cf maps the space BV ([a, b]) into itself.
(d) The operator Cf maps the space AC([a, b]) into itself.
(e) The operator Cf maps the space RBVp([a, b]) into itself.
(f) The operator Cf maps the space Lipγ([a, b]) into itself.

Moreover, in this case the operator Cf is automatically bounded.
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Theorem 3.1.3. ([5]: Theorem 3.1.7) Under the hypothesis (�), the operator Cf

is automatically continuous in BV ([a, b]).

Theorem 3.1.4. ([5]: Theorem 3.4.2) Under the hypothesis (�), the operator Cf

is automatically continuous in RBVp([a, b]), 1 < p < ∞.

Note that the equivalence between conditions (a) and (d) of Theorem 3.1.2
is a particular case of the following more general result involving Sobolev
spaces, which follows from Theorem 1 in [27]:

Theorem 3.1.5. Let 1 ≤ q ≤ p < ∞, and let f : R → R be a Borel function.
Then the composition operator Cf maps the space W 1,p([a, b]) into W 1,q([a, b])
if and only if f satisfies the local Lipschitz condition (�). Moreover, the operator
Cf is bounded and the following inequality holds:

‖Cf (g)‖W 1,q ≤ b(M)(1 + ‖g‖W 1,p),

where ‖g‖W 1,p ≤ M and b(M) is a constant depending on M .

Some spaces behave well with respect to the composition operator, as the
following results show:

Theorem 3.1.6. ([4]: Theorem 5.20) The operator Cf maps C([a, b]) into itself
if and only if f is continuous on R. In this case, the operator Cf is automati-
cally bounded and continuous in the norm ‖ · ‖C .

Remark 3.1.7. Let 0 < γ ≤ 1. As example 5.25 in [4] shows, there exists a com-
position operator Cf that maps Lipγ([0, 1]) into itself but is not continuous.
In order to have the continuity of Cf , extra properties have to be satisfied by
the generating function f . In [18] the authors prove that Cf is continuous on
Lipγ([a, b]) if and only if f ∈ C1(R). In Theorem 5.26 of [4], the authors prove
that the continuity of Cf , defined from Lipγ([a, b]) into itself, is equivalent to
its uniform continuity on bounded subsets.

Given a space X of real functions defined on a real interval J , in accordance
with the terminology used in [30] by Zhao in the particular case of Baire
functions, we say that a function f : R → R is a left X compositor if f ◦ g
belongs to X whenever g is an element of X. Hence, we can re-write Theorem
3.1.2 as a characterisation of left compositors for some spaces.

Theorem 3.1.8. Let 1 < p < ∞, 0 < γ ≤ 1. Let f : R → R. The following
statements are equivalent.
(a) The function f satisfies the local Lipschitz condition (�).
(b) The function f is a left BVp([a, b]) compositor.
(c) The function f is a left BV ([a, b]) compositor.
(d) The function f is a left AC([a, b]) compositor.
(e) The function f is a left RBVp([a, b]) compositor.
(f) The function f is a left Lipγ([a, b]) compositor.



686 E. D’Aniello, M. Maiuriello AEM

Remark 3.1.9. Hence, the collections of left AC([a, b]), BVp([a, b]) (1 ≤ p <
∞), RBVp([a, b]) (1 < p < ∞), Lipγ([a, b]) (0 < γ ≤ 1) compositors are all the
same, namely they all coincide with the collection of all maps satisfying (�).

From Theorem 3.1.8 and the fact that the composition, the sum and the
product of two functions satisfying the local Lipschitz condition (�) still satisfy
the local Lipschitz condition (�), we have the following proposition.

Proposition 3.1.10. Let 1 < p < ∞, 0 < γ ≤ 1. Let X = BVp([a, b]),
BV ([a, b]), AC([a, b]), RBVp([a, b]), Lipγ([a, b]). Then, the following hold.

1. If f : R → R and g : R → R are left X compositors then so is the sum
f + g.

2. If f : R → R and g : R → R are left X compositors then so is the product
fg.

3. If f : R → R and g : R → R are left X compositors then so is the
composition f ◦ g.

In particular, for these spaces, the collection of left compositors is a vector
space and an algebra.

Composition operators on spaces of Baire functions

Let g : R → R and f : R → R. If g is a Baire one function and f is continuous,
then the composition function f ◦ g is Baire one but, as it is well-known, the
composition of two Baire one functions is not necessarily Baire one. Here is a
well-known example.

Example 3.1.11. ([30]: Example 1) Let f : R → R be defined as

f(x) =
{

1 if x = 1
n , n ∈ N

0 otherwise

and g : R → R be the Riemann function defined as

g(x) =

⎧⎨
⎩

1
q if x = p

q , p and q are co-prime integers and 0 < q

1 if x = 0
0 otherwise.

Then f ◦ g is the Dirichlet function, that is not Baire one.
Notice that, by taking f = χ(0,1] and g the same as above, we still have

that f ◦ g is the Dirichlet function. This also shows, as f has a finite number
of discontinuity points (namely, exactly one: x = 0), that the last claim in [30]
is not true.

Thus, as done above for other spaces, it is natural to ask which functions f
have the property that their composition with any Baire one function is still
of Baire class one, that is Cf maps the space of Baire one functions in itself.
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Remark 3.1.12. As already mentioned, Zhao, in [30], calls a function f : R → R

for which Cf (B1) ⊆ B1 a left Baire one compositor. That is, f is a left Baire
one compositor if and only if f ◦ g is Baire one whenever g is a Baire one
function.

The following result follows from Theorem 3 of [17], in the case of Baire
one functions and, more generally, from Theorem D of [20], for Baire functions
of class n.

Theorem 3.1.13. Let n ∈ N. Let f : R → R. The following are equivalent:
(a) The function f is continuous.
(b) The operator Cf maps the space Bn into itself.

We have that, in the case of Baire functions, the composition operator
behaves well. Namely, the following holds.

Theorem 3.1.14. Let n ∈ N. Let f : R → R. If Cf maps the space Bn into itself
then it is automatically continuous with respect to pointwise convergence.

Proof. As Cf maps the space Bn into itself, by Theorem 3.1.13, f is continuous.
Assume that {gk}k∈N is a sequence in Bn converging pointwise to a function g
of Baire class n. Then Cf (gk) = f ◦ gk is a sequence of Baire functions of class
n pointwise converging to the Baire class n function Cf (g) = f ◦ g. �

Recall that a subset A of Bn is said to be bounded if each element h in A is
bounded, that is ‖h‖∞ = sup |h(x)| < ∞, and, moreover, there exists M > 0
with ‖h‖∞ ≤ M,∀h ∈ A. When f is continuous, it is straightforward that the
operator Cf is locally bounded on the space B(R) of bounded functions on the
reals with the sup-norm, and hence, on Bn as well. (Let A be a bounded set of
functions and let M > 0 be such that ‖h‖∞ ≤ M , ∀h ∈ A. As f is continuous
on R, the restriction of f to the compact [−M,M ] admits a maximum. Call
this maximum L. Then, for each h ∈ A, we have ‖Cf (h)‖∞ = ‖f ◦ h‖∞ ≤ L.
Hence, Cf (A) is bounded.)

A natural question arises: what about right compositors in all the previous
spaces? Clearly, right composition g �→ g ◦ f , defined with a suitable f and on
suitable spaces, is linear.
This question is investigated in Sect. 4.

3.2. Superposition operators

Superposition operators on Lipschitz functions and some spaces of functions
of bounded variation

As for the case of composition operators, we are interested in investigat-
ing which spaces are mapped by Sh into themselves and, in general, in the
properties of Sh. Natural sufficient conditions are the following:
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Proposition 3.2.1. ([8]: Proposition 3.1) Let h : [a, b]×R → R, 0 < γ < 1, and
1 < p < +∞.

1. If h(·, y) ∈ Lip uniformly w.r.t. y then Sh maps Lip into itself.
2. If h(·, y) ∈ BV uniformly w.r.t. y and h(x, ·) ∈ Lip uniformly w.r.t. x

then Sh maps BV into itself.
3. If h(·, y) ∈ AC uniformly w.r.t. y and h(x, ·) ∈ Lip uniformly w.r.t. x

then Sh maps AC into itself.
4. If h(·, y) ∈ Lipγ uniformly w.r.t. y and h(x, ·) ∈ Lip uniformly w.r.t. x

then Sh maps Lipγ into itself.
5. If h(·, y) ∈ BVp uniformly w.r.t. y and h(x, ·) ∈ Lip uniformly w.r.t. x

then Sh maps BVp into itself.

Other known results are the following.

Theorem 3.2.2. ([4]: Theorem 6.1) Let h : [a, b] × R → R. The operator Sh

maps C([a, b]) into itself if and only if h is continuous on [a, b] × R. In this
case, the operator Sh is automatically bounded and continuous in the norm
‖ · ‖∞.

Theorem 3.2.3. ([4]: Theorem 6.4) Let 0 < γ ≤ 1. Let h : [a, b] × R → R.
The operator Sh maps Lipγ([a, b]) into itself and is bounded w.r.t. the norm
‖ · ‖Lipγ

if and only if h satisfies the mixed local Hölder–Lipschitz condition

|h(s, u) − h(t, v)| ≤ k(r)(|s − t|γ + |u − v|) (a ≤ s, t ≤ b, |u|, |v| ≤ r).

In particular, the function h is then necessarily continuous on [a, b] × R.

Theorem 3.2.4. ([13]: Theorem 3.8) Suppose that h : [a, b]×R → R is a given
function. The following conditions are equivalent:

(i) the non-autonomous superposition operator Sh maps the space BV ([a, b])
into itself and is locally bounded;

(ii) for every r > 0 there exists a constant Mr > 0 such that for every k ∈ N,
every finite partition a = t0 < · · · < tk = b of the interval [a, b] and
every finite sequence u0, u1, . . . , uk ∈ [−r, r] with

∑k
i=1 |ui − ui−1| ≤ r,

the following inequalities hold
k∑

i=1

|h(ti, ui) − h(ti−1, ui)| ≤ Mr and
k∑

i=1

|h(ti−1, ui) − h(ti−1, ui−1)| ≤ Mr.

In [26], the author presents necessary and sufficient conditions for the con-
tinuity of a non-autonomous superposition operator in the BV ([a, b]) case:

Theorem 3.2.5. ([26]: Theorem 10) Suppose that h : [a, b]×R → R is a function
such that the superposition operator Sh maps the space BV ([a, b]) into itself.
Let x ∈ BV ([a, b]) be fixed. The following conditions are equivalent:

(i) the superposition operator Sh is continuous at x;
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(ii) for each t ∈ [a, b], the function u ∈ R �→ h(t, u) − h(t, x(t)) is continuous
at u = x(t) and for every ε > 0 there exists δ > 0 such that, for every
k ∈ N, every partition a = t0 < · · · < tk = b of the interval [a, b], and
every finite sequence u0, u1, . . . , uk ∈ [−δ, δ] with

∑k
i=1 |ui − ui−1| ≤ δ,

we have
k∑

i=1

|[h(ti, ui + xi) − h(ti−1, ui + xi−1)] − [h(ti, xi) − h(ti−1, xi−1)]| ≤ ε,

and
k∑

i=1

|h(ti−1, ui + xi−1) − h(ti−1, ui−1 + xi−1)| ≤ ε,

where xi = x(ti), i ∈ {0, . . . , k}.
The following result is a special case of Theorem 3.8 in [13] (when X = BVϕ

with the Young function ϕ(t) = tp).

Theorem 3.2.6. Let p ≥ 1. Suppose that h : [a, b] ×R → R is a given function.
Consider the following conditions:

(a) for every r > 0 there exists a constant Mr > 0 such that for every k ∈ N,
every finite partition a = t0 < · · · < tk = b of the interval [a, b] and
every finite sequence u0, u1, . . . , uk ∈ [−r, r] with

∑k
i=1 |ui − ui−1|p ≤ r

the following inequalities hold

k∑
i=1

|h(ti, ui) − h(ti−1, ui)|p ≤ Mr and
k∑

i=1

|h(ti−1, ui) − h(ti−1, ui−1)|p ≤ Mr.

(b) the non-autonomous superposition operator Sh maps the space BVp([a, b])
into itself.

Then, (a) implies (b). Moreover, Sh is locally bounded.

In [13], the authors provide the following interesting example of an operator
Sh mapping BV into itself without being bounded or continuous. They take

h(t, u) =
{

1
u if u �= 0
0 otherwise.

As far as we know, up to now, no characterisation of the functions h is
known for the associated operator Sh to map BVp([a, b]) into itself, with p > 1.

Other interesting results concerning the operator Sh on the spaces men-
tioned above and on other spaces like, for instance, Sobolev spaces and Besov
spaces, also in higher dimensions, can be found, for example, in [8,10,11].
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Superposition operators on some spaces of Baire functions.

Theorem 3.2.7. Let h : [0, 1] × R → R. Then, the following statements are
equivalent.

1. For every positive function g ∈ B1([0, 1]), for every positive ε, there exists
a positive function δ on [0, 1], of Baire class one, such that |t − s| <
min{δ(t), δ(s)} implies |h(t, g(t)) − h(s, g(s))| < ε.

2. For every g ∈ B1([0, 1]), the function h(·, g(·)) ∈ B1([0, 1]).

Proof. The proof follows from Theorem 2.2.3 and Remark 2.2.4 applied, for
any given g ∈ B1([0, 1]), to the map, clearly depending on g, f(x) = h(x, g(x)).
More precisely, for any g ∈ B1([0, 1]), the following are equivalent:

1. for every positive ε, there exists a positive Baire one function δ on [0, 1]
such that |t − s| < min{δ(t), δ(s)} implies |h(t, g(t)) − h(s, g(s))| < ε;

2. the function h(·, g(·)) ∈ B1([0, 1]).
�

Proposition 3.2.8. If h : [0, 1] × R → R is continuous then, for every g ∈
B1([0, 1]), the function h(·, g(·)) is in B1([0, 1]). Hence, the non-autonomous
superposition operator Sh maps the space B1([0, 1]) into itself.

Proof. This follows from the fact that the composition of a continuous function
with a Baire one function is a Baire one function. �

Remark 3.2.9. Proposition 3.2.8 cannot be reverted. A function
h : [0, 1] × R → R need not be of Baire class one to generate a superposition
operator Sh in B1. For example, the function h := χ{0}×Q has the property
that h(t, g(t)) = χ{0}(t) if g(0) ∈ Q, and h(t, g(t)) ≡ 0 if g(0) /∈ Q, therefore
Sh maps B1 into itself. Since the restriction h(0, ·) is a Dirichlet function, h
cannot be of Baire class one, let alone continuous.

4. A type of linear operators: right composition operators

Definition 4.0.1. Let I and J be compact intervals. Let f : J → I. The oper-
ator

g �→ g ◦ f,

where g : I → R is an arbitrary function on I, is the right composition operator
generated by f . We, hereby, denote it by Tf . Hence, for each function g : I → R,
Tf (g) : J → R is defined as Tf (g)(·) = g(f(·)).

As in the case of non-linear operators, we are interested in finding conditions
on f in order for Tf to map a space of functions X into itself.
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Right composition operators on Lipschitz functions and some spaces of func-
tions of bounded variation

In [19], right BV compositors are completely characterised.

Definition 4.0.2. [19] Without loss of generality, take [a, b] = [0, 1]. For a pos-
itive integer N , let

JN = {X ⊆ [0, 1] : X can be expressed as a union of N intervals}
(where the intervals may be open or closed at either end and singletons are
allowed as degenerate closed intervals). Since any interval is a union of two
subintervals, JN ⊆ JN+1. A function f : [0, 1] → R is said to be of N -
bounded variation if f−1([c, d]) ∈ JN for all [c, d] ⊂ R. These functions are also
called pseudo-monotone functions (see [5]). Clearly, every monotone function
is pseudo-monotone, indeed it belongs to BV ([0, 1]). Let BV (N) be the set of
all functions f : [0, 1] → [0, 1] of N -bounded variation, and BV ′(N) the set of
all bounded functions f : [0, 1] → R of N -bounded variation.

Remark 4.0.3. Clearly, for every N ∈ N, the following inclusion holds:

BV (N) ⊆ BV ([0, 1]).

The inclusion is strict as Example 4.0.5 shows.

Lemma 4.0.4. ([19]: Lemma 1) Every function in BV ′(N) is of bounded vari-
ation.

The converse of Lemma 4.0.4 does not hold as the following example shows.

Example 4.0.5. ([5]: Example 2.1.2) Let

f(x) =
{

x2sin2( 1
x ) if 0 < x ≤ 1

0 if x = 0.

Then, f is in BV ([0, 1]) since f ′ exists and is bounded. But f is not pseudo-
monotone as f−1({0}) = {0} ∪ { 1

nπ : n ∈ N}.

Theorem 4.0.6. ([19]: Theorem 3; [5]: Theorem 2.1.4) For f : [0, 1] → [0, 1] ,
the composition g ◦ f belongs to BV ([0, 1]) for all g ∈ BV ′([0, 1]) if and only
if f ∈ BV ′(N) for some N . Moreover, if f ∈ BV

′
(N), then Tf is bounded.

All previous results are proved, in [5] and [19], on the unit interval [0, 1],
but, of course, it is the same thing if we work on any interval [a, b]. In this
general setting, we also prove the following results:

Theorem 4.0.7. The following conditions are equivalent:
(a) The function f : [a, b] → [a, b] satisfies a Lipschitz condition on [a, b].
(b) The operator Tf maps the space Lip([a, b]) into itself.
Moreover, the operator Tf is automatically bounded.
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Proof. The implication (a) ⇒ (b) and the boundedness of Tf follow from the
inequality Lip(g ◦ f) ≤ Lip(g)Lip(f).
The implication (b) ⇒ (a) follows from the fact that the identity f(x) = x is
Lipschitz continuous. �

Proposition 4.0.8. Let 0 < γ < 1. If the function f : [a, b] → [a, b] satisfies a
Lipschitz condition on [a, b] then the operator Tf maps the space Lipγ([a, b])
into itself. Moreover, in this case the operator Tf is automatically bounded.

Proof. The estimate Lipγ(g ◦ f) ≤ Lipγ(g)Lip(f)γ implies that the operator
Tf maps the space Lipγ([a, b]) into itself and it is bounded. �

Proposition 4.0.9. If the function f : [a, b] → [a, b] is absolutely continuous
and non-decreasing, then the operator Tf maps the space AC([a, b]) into itself.
Moreover, in this case the operator Tf is automatically bounded.

Proof. Let g ∈ AC([a, b]) and let ε > 0. Then, there exists δ > 0 such that for
all collections {[a1, b1], . . . , [an, bn]} of pairwise non-overlapping subintervals of
[a, b], the condition

n∑
k=1

(bk − ak) < δ

implies that
n∑

k=1

|g(bk) − g(ak)| < ε.

As f ∈ AC([a, b]) there exists ν > 0 such that, for all collections
{[a′

1, b
′
1], . . . , [a

′
n, b′

n]} of pairwise non-overlapping subintervals of [a, b], the con-
dition

n∑
k=1

(b′
k − a′

k) < ν

implies that
n∑

k=1

|f(b′
k) − f(a′

k)| < δ (•).

We may assume that the intervals [ak, bk] are all non-degenerated and that a ≤
a′
1 < b′

1 < · · · < a′
n < b′

n ≤ b and, as f is non-decreasing, we have a ≤ f(a′
1) ≤

f(b′
1) ≤ · · · ≤ f(a′

n) ≤ f(b′
n) ≤ b. Hence {[f(a′

1), f(b′
1)], . . . , [f(a′

n), f(b′
n)]} is a

collection of pairwise non-overlapping subintervals of [a, b] satisfying condition
(•), and then it follows that

n∑
k=1

|g(f(b′
k)) − g(f(a′

k))| < ε.
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As ε is arbitrary, g ◦ f is absolutely continuous, that is g ◦ f ∈ AC([a, b]).
Next, we prove the continuity (boundedness). Let {gn}n∈N and g be functions
in AC([a, b]) with

lim
n→+∞ ‖gn − g‖AC = 0.

As

‖Tf (gn) − Tf (g)‖AC = ‖gn ◦ f − g ◦ f‖BV

= |(gn ◦ f)(a) − (g ◦ f)(a)| + V ((gn − g) ◦ f, [a, b])

≤ |(gn ◦ f)(a) − (g ◦ f)(a)| + V (gn − g, [a, b])

≤ |(gn ◦ f)(a) − (g ◦ f)(a)| + ‖gn − g‖AC

and

lim
n→+∞ |(gn ◦ f)(a) − (g ◦ f)(a)| = 0,

we have

lim
n→+∞ ‖Tf (gn) − Tf (g)‖AC = 0.

Hence, the thesis. �

So, we have a condition, both necessary and sufficient, for the operator Tf

to map Lip([a, b]) into itself, and we have shown sufficient conditions for the
operator Tf to map Lipγ([a, b]) and AC([a, b]) into themselves.

Right composition operators on some spaces of functions.

Definition 4.0.10. [30] A function f : R → R is called k−continuous if for every
positive function ε there is a positive function δ such that for any x, y ∈ R,
|x − y| < min{δ(x), δ(y)} implies |f(x) − f(y)| < min{ε(f(x)), ε(f(y))}.

Note that every continuous function is k−continuous.

Proposition 4.0.11. ([16]: Lemma 3.3) The following properties hold:

1. If f and g are k−continuous functions, then so is the sum f + g.
2. If f and g are k−continuous functions, then so is the product fg.

In [20] and [30], right Baire compositors are studied. In [30], right Baire
one compositors are characterised as follows:

Theorem 4.0.12. ([30]: Theorem 1) Let f : R → R be a function. Then the
following statements are equivalent.

1. For any closed subset A of R, f−1(A) is an Fσ set.
2. For any Fσ set A, f−1(A) is an Fσ set.
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3. For every positive Baire class one function ε(·), there is a positive function
δ(·) on R such that |x − y| < min{δ(x), δ(y)} implies |f(x) − f(y)| <
min{ε(f(x)), ε(f(y)).

4. f is a right Baire one compositor.

Another characterisation of right Baire one compositors, involving
k−continuous functions, is given in [16]:

Theorem 4.0.13. ([16]: Theorem 2.6) A function f : R → R is a right Baire
one compositor if and only if f is k−continuous.

Next, we give a simple example of a k-continuous function that is not
continuous.

Example 4.0.14. The discontinuous function f = χ{0} is k-continuous, because
{0} is both Fσ and Gδ. So Tf maps B1 into itself, although Tf does not map
the space of continuous maps into itself.

Remark 4.0.15. Clearly, since each open set is an Fσ, from Theorem 4.0.12 it
follows that every continuous function is a right Baire one compositor. The
collection of Baire one compositors lies strictly in between the collection of
Baire one functions and the collection of continuous functions. The Riemann
function, as Example 3.1.11 shows, is a Baire one function but it is not a right
Baire one compositor.

Remark 4.0.16. The composition of two right Baire one compositors is a right
Baire one compositor. Therefore, if g : R → R is a right Baire one compositor,
then, for each c ∈ R, c + g and cg are right Baire one compositors as well
because they are the compositions of g and the function h(x) = c + x and
k(x) = cx.

However, Zhao writes in [30] that it is still not clear whether the sum and
the product of a continuous function and a right Baire one compositor are
right Baire one compositors. We can give a positive answer to the problem
posed by Zhao, combining Proposition 4.0.11 with Theorem 4.0.13:

Theorem 4.0.17. Let f be a continuous function and let g be a right Baire one
compositor. Then f + g and fg are right Baire one compositors.

Proof. Let f be a continuous function. Then f is also k−continuous. Let g be
a right Baire one compositor, then, by Theorem 4.0.13, g is a k−continuous
function. Hence, from the properties in Proposition 4.0.11, it follows that f +g
and fg are k−continuous functions. By Theorem 4.0.13, this is equivalent to
saying that f + g and fg are right Baire one compositors. �

Next, we give a characterisation of right Baire two compositors.

Theorem 4.0.18. Let f : R → R. The following conditions are equivalent:
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1. For any Gδ set C, f−1(C) is a Gδσ.
2. For any Gδσ set C, f−1(C) is a Gδσ.
3. The operator Tf maps the space B2 into itself (that is, the function f :

R → R is a right Baire two compositor).

Proof. (1) and (2) are clearly equivalent as every Gδ set is a Gδσ set.
(2) ⇒ (3) Let A be an open set and let g ∈ B2. Then g−1(A) is a Gδσ. Hence,
by the hypothesis it follows that (g ◦ f)−1(A) = f−1(g−1(A)) is a Gδσ. Hence,
g ◦ f ∈ B2.
(3) ⇒ (1) Suppose f is a right Baire two compositor and C is a Gδ set.
Let g be the characteristic function of C. As C is both Fσδ and Gδσ, g is
Baire two. Hence g ◦ f is Baire two. Therefore f−1(C) is a Gδσ set because
f−1(C) = (g ◦ f)−1(0, 3

2 ). �

The following example shows that there exist functions which are right
Baire two compositors but not right Baire one compositors.

Example 4.0.19. It is well-known that Q is an Fσ set, but not a Gδ set. As
every Fσ set is a Gδσ set, Q is a Gδσ set. Moreover, R \ Q = R \ ∪q∈Q{q} =
∩q∈Q(R\{q}) is a Gδ set but not an Fσ set. As every Gδ set is a Gδσ set, R\Q
is a Gδσ set. Consider the function f = χR\Q. Then f−1({1}) = R \Q. As {1}
is closed, from condition (1) of Theorem 4.0.12, it follows that f is not a right
Baire one compositor. Now, let C be a Gδ set. Then

f−1(C) =

⎧⎪⎪⎨
⎪⎪⎩

R if 0, 1 ∈ C
R \ Q if 1 ∈ C, 0 /∈ C
Q if 0 ∈ C, 1 /∈ C
∅ if 0, 1 /∈ C

and hence f−1(C) is a Gδσ set. From condition (1) of Theorem 4.0.18, it follows
that f is a right Baire two compositor.
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pania “Luigi Vanvitelli” within the CRUI-CARE Agreement.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If



696 E. D’Aniello, M. Maiuriello AEM

material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Alikhani-Koopaei, A.: On the sets of fixed points of bounded Baire one functions. Asian-
Eur. J. Math. 12(3), 1950040 (2019)

[2] Alikhani-Koopaei, A.: Equi–Baire one family of functions on metric spaces: a general-
ization of equi-continuity; and some applications. Topol. Appl. 277, 107170 (2020)

[3] Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide.
Springer, Berlin (2006)
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